首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. The total lipid was extracted from the non-capsulated strain of Pneumococcus I-192R, A.T.C.C. 12213, with chloroform-methanol mixtures. Two glycolipids were isolated by chromatography on silicic acid and DEAE-cellulose (acetate form). 2. The major glycolipid was obtained pure in a yield of 640mg./34g. dry wt. of cells and represents about 34% of the total lipid. It contained galactose, glucose, glycerol and fatty acid ester residues in the proportions 1:1:1:2, and yielded on saponification a crystalline non-reducing glycoside. 3. The structure of the glycoside was shown to be O-alpha-d-galactopyranosyl-(1-->2)-O-alpha-d-glucopyranosyl-(1-->1)-d-glycerol. The fatty acids obtained on saponification were identified by gas-liquid partition chromatography of their methyl esters. 4. The minor glycolipid was obtained as a 1:1 (w/w) mixture with the major component, but after saponification the two glycosides were separated by paper chromatography. Evidence was obtained for the structure of the glycoside derived from the minor glycolipid as 1-O-alpha-d-glucosylglycerol. 5. A general method is described for determining the stereochemistry of the glycerol moiety in 1-linked glycerol glycosides.  相似文献   

2.
Previous crystal structures of thrombin indicate that the 60-insertion loop is a rigid moiety that partially occludes the active site, suggesting that this structural feature plays a decisive role in restricting thrombin's specificity. This restricted specificity is typified by the experimental observation that thrombin is not inhibited by micromolar concentrations of basic pancreatic trypsin inhibitor (BPTI). Surprisingly, a single atom mutation in thrombin (E192Q) results in a 10(-8) M affinity for BPTI. The crystal structure of human thrombin mutant E192Q has been solved in complex with BPTI at 2.3 A resolution. Binding of the Kunitz inhibitor is accompanied by gross structural rearrangements in thrombin. In particular, thrombin's 60-loop is found in a significantly different conformation. Concomitant reorganization of other surface loops that surround the active site, i.e. the 37-loop, the 148-loop and the 99-loop, is observed. Thrombin can therefore undergo major structural reorganization upon strong ligand binding. Implications for the interaction of thrombin with antithrombin and thrombomodulin are discussed.  相似文献   

3.
4.
5.
6.
7.
A teichuronic acid, containing glucuronic acid and N-acetylgalactosamine, was purified from acid extracts of Bacillus licheniformis 6346 cell walls as described by Janczura, Perkins & Rogers (1961). After reduction of the carboxyl function of glucuronic acid residues in the polysaccharide the reduced polymer contains equimolar amounts of N-acetylgalactosamine and glucose. Methylation of the reduced polysaccharide by the Hakamori (1964) technique showed the glucose residues to be substituted on C-4. A disaccharide, 3-O-glucuronosylgalactosamine, was isolated from partial acid hydrolysates of teichuronic acid. After N-acetylation the disaccharide produces chromogen readily on heating at pH7, in agreement with C-3 substitution of the reducing N-acetylamino sugar. Teichuronic acid also produces chromogen under the same conditions, with concurrent elimination of a modified polysaccharide from C-3 of reducing terminal N-acetylgalactosamine residues of the teichuronic acid chains. The number-average chain lengths of several preparations of teichuronic acid were estimated from the amounts of chromogen produced in comparison with the N-acetylated disaccharide. The values obtained are in good agreement with the weight-average molecular weight determined by ultracentrifugal analysis. The reducing terminals of teichuronic acid are shown to be exclusively N-acetylgalactosamine by reduction with sodium boro[(3)H]hydride. The number-average chain lengths of the teichuronic acid preparations were estimated by the extent of in corporation of tritium and are in agreement with values obtained by the other methods.  相似文献   

8.
9.
10.
11.
12.
13.
The reactions of the hydrated electron (eaq-), produced during pulse radiolysis, have been used to study the binding of phosphatidyl choline (PC), phosphatidyl serine (PS), phosphatidyl ethanolamine (PE), and phosphatidyl inositol (PI) vesicles with horse-heart cytochrome C. An interaction could only be detected between cytochrome C and either PS or PI. An apparent equivalence point in the binding was reached for both phospholipids at a molar ratio of phospholipid : protein of 6 : 1. At this point, the reactivity of (eaq-) towards the cytochrome C was very markedly reduced. Indeed, the rate of disappearance of (eaq-) under such conditions was the same as the rate of eaq- disappearance in triply-distilled water. The inclusion of cholesterol at a molar ratio of 1 : 1 within the phospholipid vesicles changed the stoichiometry of the interaction. Evidence that protonated epsilon-amino groups of lysine residues are involved in the interaction is presented. Possible models for the complexes formed are discussed.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号