首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Retinoic acid induces growth arrest and differentiation in B16 mouse melanoma cells. Using gene arrays, we identified several early response genes whose expression is altered by retinoic acid. One of the genes, tbx2, is a member of T-box nuclear binding proteins that are important morphogens in developing embryos. Increased TBX2 mRNA is seen within 2 h after addition of retinoic acid to B16 cells. The effect of retinoic acid on gene expression is direct since it does not require any new protein synthesis. We identified a degenerate retinoic acid response element (RARE) between -186 and -163 in the promoter region of the tbx2 gene. A synthetic oligonucleotide spanning this region was able to drive increased expression of a luciferase reporter gene in response to retinoic acid; however, this induction was lost when a point mutation was introduced into the RARE. This oligonucleotide also specifically bound RAR in nuclear extracts from B16 cells. TBX2 expression and its induction by retinoic acid was also observed in normal human and nonmalignant mouse melanocytes.  相似文献   

4.
5.
Mammalian alcohol dehydrogenase (ADH) catalyzes the oxidation of retinol to retinaldehyde, the rate-limiting step in the synthesis of retinoic acid. There exists a family of ADH isozymes encoded by unique genes, and it is unclear which isozymes are most important for regulation of retinoic acid synthesis during differentiation or development. A region in the human ADH3 promoter from -328 to -272 base pairs was shown previously to function as a retinoic acid response element (RARE), prompting an hypothesis for a positive feedback mechanism controlling retinoic acid synthesis (Duester, G., Shean, M. L., McBride, M. S., and Stewart, M. J. (1991) Mol. Cell. Biol. 11, 1638-1646). The ADH3 RARE contains three direct AGGTCA repeats which constitute the critical nucleotides of RAREs present in other genes. We dissected the ADH3 RARE and determined that receptor binding as well as transactivation are dependent upon only the two downstream AGGTCA motifs separated by 5 base pairs, a structure noticed previously for a RARE in the promoter for the retinoic acid receptor beta (RAR beta) gene. ADH3 and RAR beta RAREs functioned similarly in transfection assays, suggesting that the feedback mechanisms controlling ADH3 and RAR beta utilize a common RARE. We also found that the normal functioning of the ADH3 RARE was abrogated by thyroid hormone receptor in the presence of thyroid hormone. A negative thyroid hormone response element in the human ADH3 promoter was found to colocalize with the RARE. Since ADH production in rat liver is known to be repressed by thyroid hormone, these findings suggest that human ADH production may also be subject to thyroid hormone repression and that the mechanism involves an interference with retinoic acid induction.  相似文献   

6.
Retinoic acid receptor beta (RARbeta) is thought to be involved in suppressing cell growth and tumorigenicity. Many premalignant and malignant cells exhibit a reduced RARbeta expression. However, in some of these cells (e.g. H157 human squamous cell carcinoma cells), RARbeta can be induced by retinoids (e.g. all-trans-retinoic acid, ATRA) because its promoter contains a retinoic acid response element. To examine the hypothesis that RARbeta induction is important for inhibition of cell proliferation by retinoids, we blocked ATRA-induced RARbeta expression in H157 cells using a retroviral vector harboring multiple copies of antisense RARbeta2 sequences. Antisense RARbeta-transfected cells showed not only decreased expression of ATRA-induced RARbeta protein but also reduced ATRA-induced RARE binding activity and transactivation. Importantly, all antisense RARbeta transfectants of H157 cells were less responsive than vector-transfected cells to the growth inhibitory effects of the retinoids ATRA and Ch55 in vitro. These results demonstrate that RARbeta induction may play an important role in mediating growth inhibitory effects of retinoids in cancer cells.  相似文献   

7.
8.
All-trans-retinoic acid (RA) plays an important physiological role in embryonic development and is teratogenic in large doses in almost all species. p53, a tumor suppressor gene encodes phosphoproteins, which regulate cellular proliferation, differentiation, and apoptosis. Temporal modulation of p53 by retinoic acid was investigated in murine embryonic stem cells during differentiation and apoptosis. Undifferentiated embryonic stem cells express a high level of p53 mRNA and protein followed by a decrease in p53 levels as differentiation proceeds. The addition of retinoic acid during 8–10 days of differentiation increased the levels of p53 mRNA and protein, accompanied by accelerated neural differentiation and apoptosis. Marked increase in apoptosis was observed at 10–20 h after retinoic acid treatment when compared with untreated controls. Retinoic acid-induced morphological differentiation resulted in predominantly neural-type cells. Maximum increase in p53 mRNA in retinoic acid-treated cells occurred on day 17, whereas maximum protein synthesis occurred on days 14–17, which coincided with increased neural differentiation and proliferation. Increased p53 levels did not induce p21 transactivation, interestingly a decrease in p21 was observed on day 17 on exposure to retinoic acid. The level of p53 declined by day 21 of differentiation. The results demonstrated that retinoic acid-mediated apoptosis preceded the changes in p53 expression, suggesting that p53 induction does not initiate retinoic acid-induced apoptosis during development. However, retinoic acid accelerated neural differentiation and increased the expression of p53 in proliferating neural cells, corroborated by decreased p21 levels, indicating the importance of cell type and stage specificity of p53 function. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
10.
11.
Treatment of F9 teratocarcinoma stem cells with retinoic acid (RA) causes their irreversible differentiation into extraembryonic endoderm. To elucidate the role of the cellular retinoic acid binding protein-I (CRABP-I) in this differentiation process, we have generated several different stably transfected F9 stem cell lines expressing either elevated or reduced levels of functional CRABP-I protein. Stably transfected lines expressing elevated levels of CRABP-I exhibit an 80-90% reduction in the RA induced expression of retinoic acid receptor (RAR) beta, laminin B1, and collagen type IV (alpha 1) mRNAs at low exogenous RA concentrations, but this reduction is eliminated at higher RA concentrations. Thus, greater expression of CRABP-I reduces the potency of RA in this differentiation system. Moreover, transfection of a CRABP-I expression vector into F9 cells resulted in five- and threefold decreases in the activation of the laminin B1 RARE (retinoic acid response element) and the RAR beta RARE, respectively, as measured from RARE/CAT expression vectors in transient transfection assays. These results support the idea that CRABP-I sequesters RA within the cell and thereby prevents RA from acting to regulate differentiation specific gene expression. Our data suggest a mechanism whereby the level of CRABP-I can regulate responsiveness to RA during development.  相似文献   

12.
In our previous studies, the TR4 orphan nuclear receptor (TR4) has been demonstrated to suppress retinoic acid (RA)-induced transactivation via a negative feedback control mechanism and in situ analysis showed that TR4 is extensively expressed in mouse brain, especially in regions where the cells are proliferating. To further study the potential roles of TR4 during cell differentiation, a tetracycline-inducible system with anti-sense TR4 in teratocarcinoma P19 cell lines was generated to analyze the retinoic acid-induced differentiation of these cells. The results indicated that the expression of TR4 reduced by doxycycline anti-sense TR4 would alter the retinoic acid-induced differentiation pathway that results in the changes of cell morphology and cell cycle profile. Unexpectedly, our data further indicated that the RA-induced apoptosis, judging by DNA fragmentation, could also be altered by the induction of anti-sense TR4. Together, these findings provide the first in vivo evidence that an orphan nuclear receptor, such as TR4, may play major roles in the RA-mediated apoptosis or differentiation in P19 cells.  相似文献   

13.
The diversity of isoforms of retinoic acid (RA) receptors (RARs) and of DNA sequences of retinoic acid-responsive elements (RAREs) suggests the existence of selectivities in the RAR/RARE recognition or in the subsequent gene modulation. Such selectivities might be particularly important for RAREs involved in positive feedback, eg. the RAR beta RARE. In the present work we found that in several epithelial cell lines, reporter constructs containing the RAR beta RARE linked to the HSV-tk promoter were transactivated in the presence of RA by endogenous RARs and co-transfected RAR alpha 1 and RAR beta 2 isoforms, but not by RAR gamam 1. On the contrary, this latter isoform behaved towards the RAR beta RARE as an inhibitor of the transactivation produced by endogenous RARs and by cotransfected RAR alpha 1 and RAR beta 2. RAR gamma 1 also behaved as an antagonist of the transactivation produced by cotransfected RXR alpha. The natural RAR beta gene promoter or RAR beta RARE tk constructs were not activated by the endogenous receptors of normal human keratinocytes (NHK), which are known to contain predominantly RAR gamma 1. It was, however, possible to activate to a certain extent RAR beta RARE-reporter constructs in NHK by co-transfecting RAR alpha 1, RAR beta 2 or RXR alpha. The antagonist behavior of RAR gamma 1 towards the RAR beta RARE may explain why in certain cell types such as keratinocytes, RAR beta is neither expressed nor induced by RA.  相似文献   

14.
15.
We have used whole PCR in an attempt to isolate novel retinoic acid (RA) responsive genes. We cloned several small genomic fragments from total human DNA containing putative retinoic acid responsive elements (RAREs) selected by direct binding to the retinoic acid receptor alpha (RAR alpha). We report here that an oligonucleotide containing a sequence from one of the cloned human DNA fragments, and referred to as alpha 1, functions as an authentic RARE. It is shown that both RAR alpha and RAR beta produced in Cos cells as well as in vitro translated RAR alpha bind directly and sequence-specifically to the alpha 1RARE. By mutational analysis it is demonstrated that the alpha 1RARE consists of an imperfect direct repeat of the estrogen- and thyroid hormone-related AGGTCA half-site motif separated by a 5 bp spacer. The orientation and spacing of the half-site repeats are shown to play a critical role in RAR recognition. When cloned upstream of a TK-Luc reporter, the alpha 1RARE is shown to confer responsiveness to RA in an orientation-independent fashion in F9 and CV-1 cells. The magnitude of the RA response mediated by the alpha 1RARE differed in these cell lines.  相似文献   

16.
17.
18.
L M De Luca 《FASEB journal》1991,5(14):2924-2933
  相似文献   

19.
Neuroblastoma cells are neural crest derivatives that can differentiate into neuron-like cells in response to exogenous agents, and are known to be particularly sensitive to retinoic acid. The spectrum of neuroblastoma responses, ranging from proliferation, migration, differentiation, or apoptosis, is difficult to predict due to the heterogeneity of these tumors and to the broad effective range of retinoic acid. Our study focused on the effects of nanomolar concentrations of retinoic acid on neuroblastoma differentiation in two cell lines cells: SK-N-SH (HTB-11) and IMR-32. Each cell line was treated with retinoic acid from 1 to 100 nM for up to 6 d. Morphological changes were quantified; immunocytochemistry was used to observe changes in neuronal protein expression and localization, while live-cell calcium imaging utilizing pharmacological agents was conducted to identify neuron-like activity. Retinoic acid-treated HTB-11 but not IMR-32 cells developed specific neuronal phenotypes: acquisition of long neurite-like processes, expression of neurofilament-200, increased responsiveness to acetylcholine, and decreased responsiveness to nicotine and epinephrine. In addition, nanomolar levels of retinoic acid elicited increased nuclear trafficking of the CRABP2, which is traditionally associated with gene expression of cellular pathways related to neuronal differentiation. Collectively, these results show that nanomolar concentrations of retinoic acid are capable of inducing both structural and functional neuron-like features in HTB-11 cells using CRABP2, suggesting differentiation in neuroblastoma cells into neuronal phenotypes. These have important implications for both chemotherapeutic design and for the use of neuroblastomas as in vitro models for neuron differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号