首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibrinogen chains are assembled in a stepwise manner in the rough endoplasmic reticulum prior to secretion of the final six-chain dimeric molecule. Previous studies indicated that the synthesis of B beta may be a rate-limiting factor in the assembly of human fibrinogen. To determine the domains of B beta which interact with the other two component chains of fibrinogen, deletion mutants of B beta were transiently co-expressed, together with A alpha and gamma chains, in COS cells, and fibrinogen assembly and secretion were measured. Deletion of the COOH-terminal half of the B beta chain (amino acids 208-461) did not affect assembly and secretion. Assembly of A alpha, gamma, and B beta also occurred when the first NH2-terminal 72 amino acids of B beta were deleted, but not when 93 amino acids were deleted. This indicates that the B beta domain between amino acids 73 and 93 is necessary for the assembly of the three fibrinogen chains. This domain marks the start of the alpha-helical "coiled-coil" region of fibrinogen.  相似文献   

2.
In order to study thrombin interaction with fibrinogen, thrombin binding to fragments D and E (prepared by plasmin digestion of fibrinogen) and to intact S-carboxymethylated chains of fibrinogen (A alpha, B beta, and gamma) was analyzed by autoradiography, immunoblotting, and affinity chromatography. Complex formation was observed between late fragment E and thrombin but not with fragment D. The three reduced chain remnants of fragment E all formed complexes with thrombin. Also, thrombin bound to the intact, separated A alpha, B beta, and gamma chains of fibrinogen as well as to the alpha and beta chains of fibrin. In these experiments the extended substrate-binding site, but not the catalytic-binding site, was being examined because fragment E had as its amino-terminal amino acids Val20 in the alpha chain, Lys54 in the beta chain, and Tyr1 in the gamma chain. Also, thrombin inhibited in its active center by D-phenyl-alanyl-L-prolyl-L-arginine-chloromethyl ketone bound to fragment E and to the separated chains in the same manner as unmodified thrombin. A lysine residue to thrombin was essential for its binding to fibrinogen. Thrombin attached to CNBr-activated Sepharose through its amino groups did not bind to fragment E, but when thrombin was attached through its carboxyl groups, it bound fragment E.  相似文献   

3.
Studies on the assembly and secretion of fibrinogen.   总被引:2,自引:0,他引:2  
cDNAs of fibrinogen A alpha and gamma chains were individually subcloned into a eukaryotic expression vector by using the polymerase chain reaction. Triple cotransfection into COS cells of the two plasmids together with a B beta chain expression plasmid, constructed as described previously (Danishefsky, K.J., Hartwig, R., Banerjee, D., and Redman, C. (1990) Biochim. Biophys. Acta 1048, 202-208), resulted in the secretion of complete fibrinogen into the media and the formation of four additional intracellular complexes which we also showed to be present in the hepatocyte cell line Hep 3B. The complexes, which have Mr = 232, 150, 135, and 128 (x 10(-3) conform with the Mr expected for A alpha B beta gamma 2, B beta gamma 2 and gamma 3, respectively. A A mechanism of assembly is proposed based on the assumption that all these complexes are precursors of complete fibrinogen. Each of the expressed fibrinogen chains in transfected COS cells interacts noncovalently with binding protein (BiP, GRP 78), but not to the same extent; gamma chain binds less BiP than the A alpha and B beta chains. Assembly of fibrinogen is not absolutely required for its secretion. In addition to complete fibrinogen, the conditioned media of hepatocytes and of transfected COS cells contained free A alpha, free gamma, and two of the above-mentioned complexes, A alpha gamma 2 and A alpha B beta gamma 2.  相似文献   

4.
Z Vali  H A Scheraga 《Biochemistry》1988,27(6):1956-1963
Affinity chromatography of active site inhibited thrombin on immobilized fragments derived from the central (desAB-NDSK) and terminal (D1) globular domains of fibrinogen revealed that the site responsible for the binding of thrombin at its secondary fibrin binding site is located in the central domain. Chromatography of various domains of the central nodule (desAB-NDSK, fibrinogen E, and fibrin E) having nonidentical amino acid sequences showed that all of these fragments are capable of binding to PMSF-thrombin-Sepharose, suggesting that the thrombin binding site resides within the peptide regions common to all of these fragments: alpha(Gly17-Met51), beta(Val55-Met118), and gamma(Tyr1-Lys53). Competitive affinity chromatography of the same binding domains revealed that there is no detectable difference in their binding constants to PMSF-thrombin-Sepharose, indicating that the alpha(Lys52-Lys78), beta(Gly15-Lys54)/(Tyr119-Lys122), and gamma(Thr54-Met78) peptide segments do not contribute significantly to the binding of thrombin. Chromatography of the isolated chains of fibrinogen E showed that the alpha(Gly17-Lys78) peptide region itself contains a strong binding site for PMSF-thrombin-Sepharose. The location of the binding site suggests that the secondary site interaction may play an important role in determining the cleavage specificity of thrombin on fibrinogen and can affect the rate of release of the fibrinopeptides. Affinity chromatography of fragments prepared from polymerized fibrin showed that cross-linked DD (D x D) itself does not bind to thrombin, whereas the D x DE complex remained attached to the column, suggesting that the binding site on fragment E for thrombin is distinct from its binding site for D x D.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Glycoprotein IIb (GPIIb) and glycoprotein IIIa (GPIIIa) form a macromolecular complex on the activated platelet surface which contains the fibrinogen-binding site necessary for normal platelet aggregation. To identify the specific region of the fibrinogen molecule responsible for its interaction with the GPIIb-GPIIIa complex, purified fragment D1 (Mr = 100,000) and fragment E (Mr = 50,000) were prepared from plasmin digests of purified human fibrinogen. In addition, the polypeptide chain subunits A alpha, B beta, and gamma of fibrinogen were prepared. Using an enzyme-linked immunosorbent assay we have demonstrated that isolated fragment D1 in a solid phase system forms a complex with a mixture of GPIIb and GPIIIa. The binding of the GPIIb-GPIIIa mixture to fragment D1-coated plates reached saturation at 8 nM and to fibrinogen-coated plates at 24 nM. Isolated A alpha, B beta, and gamma chains were not reactive with added glycoproteins. Fragment E coated directly on plastic plates or immobilized on antibody-coated plastic plates did not form a complex with GPIIb-GPIIIa. Only fluid phase fibrinogen and fragment D1 but not fragment E were inhibitory toward formation of a complex between solid phase fibrinogen and GPIIb-GPIIIa. Isolated A alpha, B beta, and gamma chains at concentrations equivalent to fluid phase fibrinogen were inactive. Binding of fragment D1 but not fragment E to the GPIIb-GPIIIa complex was also demonstrated by rocket immunoelectrophoresis of the membrane glycoprotein mixture through a gel containing the individual fragments and subsequent autoradiography of the complex following exposure to 125I-anti-fibrinogen. These observations with isolated platelet membrane glycoproteins provide strong evidence that each of the D domains of the fibrinogen molecule interacts directly with the GPIIb-GPIIIa complex on the activated platelet surface, thus allowing formation of a tertiary molecular "bridge" across the surface of two adjacent activated platelets.  相似文献   

6.
Knowledge of the interactive domains on the surface of small heat shock proteins (sHSPs) is necessary for understanding the assembly of complexes and the activity as molecular chaperones. The primary sequences of 26 sHSP molecular chaperones were aligned and compared. In the interactive beta3 sequence, 73DRFSVNLDVKHFS85 of human alphaB crystallin, Ser-76, Asn-78, Lys-82, and His-83 were identified as nonconserved residues on the exposed surface of the alpha crystallin core domain. Site-directed mutagenesis produced the mutant alphaB crystallins: S76E, N78G, K82Q, and H83F. Domain swapping with homologous beta3 sequences, 32EKFEVGLDVQFFT44 from Caenorhabditis elegans sHSP12.2 or 69DKFVIFLDVKHFS81 from alphaA crystallin, resulted in the mutant alphaB crystallins, CE1 and alphaA1, respectively. Decreased chaperone activity was observed with the point mutants N78G, K82Q, and H83F and with the mutant, CE1, in aggregation assays using betaL crystallin, alcohol dehydrogenase (ADH), or citrate synthase (CS). The S76E mutant had minimal effect on chaperone activity, and domain swapping with alphaA crystallin had no effect on chaperone activity. The mutations that resulted in altered chaperone activity, produced minimal modification to the secondary, tertiary, and quaternary structure of human alphaB crystallin as determined by ultraviolet circular dichroism spectroscopy, chymotrypsin proteolysis, and size exclusion chromatography. Chaperone activity was influenced by the amount of unfolding of the target proteins and independent of complex size. The results characterized the importance of the exposed side chains of Glu-78, Lys-82, and His-83 in the interactive beta3 sequence of the alpha crystallin core domain in alphaB crystallin for chaperone function.  相似文献   

7.
The E1 component (pyruvate decarboxylase) of the pyruvate dehydrogenase complex of Bacillus stearothermophilus is a heterotetramer (alpha2beta2) of E1alpha and E1beta polypeptide chains. The domain structure of the E1alpha and E1beta chains, and the protein-protein interactions involved in assembly, have been studied by means of limited proteolysis. It appears that there may be two conformers of E1alpha in the E1 heterotetramer, one being more susceptible to proteolysis than the other. A highly conserved region in E1alpha, part of a surface loop at the entrance to the active site, is the most susceptible to cleavage in E1 (alpha2beta2). As a result, the oxidative decarboxylation of pyruvate catalysed by E1 in the presence of dichlorophenol indophenol as an artificial electron acceptor is markedly enhanced, but the reductive acetylation of a free lipoyl domain is unchanged. The parameters of the interaction between cleaved E1 and the peripheral subunit-binding domain of the dihydrolipoyl acetyltransferase E2 component are identical to those of the wild-type E1. However, a pyruvate dehydrogenase complex assembled in vitro with cleaved E1p exhibits a markedly lower overall catalytic activity than that assembled with untreated E1. This implies that active site coupling between the E1 and E2 components has been impaired. This has important implications for the way in which a tethered lipoyl domain can interact with E1 in the assembled complex.  相似文献   

8.
Yokoyama K  Zhang XP  Medved L  Takada Y 《Biochemistry》1999,38(18):5872-5877
Integrin alpha v beta 3, a widely distributed fibrinogen receptor, recognizes the RGD572-574 motif in the alpha chain of human fibrinogen. However, this motif is not conserved in other species, nor is it required for alpha v beta 3-mediated fibrin clot retraction, suggesting that fibrinogen may have other alpha v beta 3 binding sites. Fibrinogen has conserved C-terminal domains in its alpha (E variant), beta, and gamma chains (designated alpha EC, beta C, and gamma C, respectively), but their function in cell adhesion is not known, except that alpha IIb beta 3, a platelet fibrinogen receptor, binds to the gamma C HHLGGAKQAGDV400-411 sequence. Here we used mammalian cells expressing recombinant alpha v beta 3 to show that recombinant alpha EC and gamma C domains expressed in bacteria specifically bind to alpha v beta 3. Interaction between alpha v beta 3 and gamma C or alpha EC is blocked by LM609, a function-blocking anti-alpha v beta 3 mAb, and by RGD peptides. alpha v beta 3 does not require the HHLGGAKQAGDV400-411 sequence of gamma C for binding, and alpha EC does not have such a sequence, indicating that the alpha v beta 3 binding sites are distinct from those of alpha IIb beta 3. A small fragment of gamma C (residues 148-226) supports alpha v beta 3 adhesion, suggesting that an alpha v beta 3 binding site is located within the gamma chain 148-226 region. We have reported that the CYDMKTTC sequence of beta 3 is responsible for the ligand specificity of alpha v beta 3. gamma C and alpha EC do not bind to wild-type alpha v beta 1, but do bind to the alpha v beta 1 mutant (alpha v beta 1-3-1), in which the CYDMKTTC sequence of beta 3 is substituted for the corresponding beta 1 sequence CTSEQNC. This suggests that gamma C and alpha EC contain determinants for fibrinogen's specificity to alpha v beta 3. These results suggest that fibrinogen has potentially significant novel alpha v beta 3 binding sites in gamma C and alpha EC.  相似文献   

9.
HepG2 cells, which synthesize and secrete fibrinogen, accumulate surplus Aalpha and gamma chains. The nonsecreted fibrinogen chains are degraded both by proteasomes and lysosomes, with unassembled chains primarily degraded by proteasomes and an Aalpha-gamma complex by lysosomes. To further determine the mechanisms by which unassembled fibrinogen chains are degraded, and to explain the pools of Aalpha and gamma chains that occur in HepG2 cells, the association of fibrinogen chains with Sec61beta, a component of the translocon, and with a cytosol chaperone, Hsp70, was studied in both HepG2 cells and COS cells expressing single fibrinogen chains. Retrotranslocation from the lumen of the endoplasmic reticulum was shown by treatment with MG132, a proteasome inhibitor. MG132 caused glycosylated Bbeta to accumulate on Sec61beta in COS cells expressing Bbeta and acted similarly with all three fibrinogen chains in HepG2 cells. In HepG2 cells, Bbeta was associated with Sec61beta ahead of Aalpha and gamma chains, suggesting that pools of Aalpha and gamma chains may be caused by unequal rates of retrotranslocation. In COS cells, retrotranslocation into the cytoplasm was demonstrated by the ATP-sensitive association of ubiquitinylated Aalpha, Bbeta, and gamma chains bound to Hsp70. More Aalpha and gamma than Bbeta accumulated on Hsp70 of HepG2 cells, consistent with more rapid degradation of Bbeta. Overexpression of Hsp70 in HepG2 cells resulted in decreased secretion, but not synthesis, of fibrinogen. Decreased secretion may be due to enhanced degradation of unassembled fibrinogen chains, indicating that proteolysis by proteasomes might regulate both the intracellular pools of fibrinogen chains and fibrinogen secretion.  相似文献   

10.
GTP-binding proteins which participate in signal transduction share a common heterotrimeric structure of the alpha beta gamma-type. In the activated state, the alpha subunit dissociates from the beta gamma complex but remains anchored in the membrane. The alpha subunits of several GTP-binding proteins, such as Go and Gi, are myristoylated at the amino terminus (Buss, J. E., S. M. Mumby, P. J. Casey, A. G. Gilman, and B. M. Sefton. 1987. Proc. Natl. Acad. Sci. USA. 84:7493-7497). This hydrophobic modification is crucial for their membrane attachment. The absence of fatty acid on the alpha subunit of Gs (Gs alpha), the protein involved in adenylate cyclase activation, suggests a different mode of anchorage. To characterize the anchoring domain of Gs alpha, we used a reconstitution model in which posttranslational addition of in vitro-translated Gs alpha to cyc- membranes (obtained from a mutant of S49 cell line which does not express Gs alpha) restores the coupling between the beta-adrenergic receptor and adenylate cyclase. The consequence of deletions generated by proteolytic removal of amino acid sequences or introduced by genetic removal of coding sequences was determined by analyzing membrane association of the proteolyzed or mutated alpha chains. Proteolytic removal of a 9-kD amino-terminal domain or genetic deletion of 28 amino-terminal amino acids did not modify the anchorage of Gs alpha whereas proteolytic removal of a 1-kD carboxyterminal domain abolished membrane interaction. Thus, in contrast to the myristoylated alpha subunits which are tethered through their amino terminus, the carboxy-terminal residues of Gs alpha are required for association of this protein with the membrane.  相似文献   

11.
12.
Previous studies indicated that synthesis of B beta chain may be a rate-limiting factor in the production of human fibrinogen since Hep G2 cells contain surplus pools of A alpha and gamma but not of B beta chains, and fibrinogen assembly commences by the addition of preformed A alpha and gamma chains to nascent B beta chains attached to polysomes. To test whether B beta chain synthesis is rate limiting Hep G2 cells were transfected with B beta cDNA, and its effect on fibrinogen synthesis and secretion was measured. Two sets of stable B beta cDNA-transfected Hep G2 cells were prepared, and both cell lines synthesized 3-fold more B beta chains than control cells. The B beta-transfected cells also synthesized and secreted increased amounts of fibrinogen. Transfection with B beta cDNA not only increased the synthesis of B beta chain but also increased the rate of synthesis of the other two component chains of fibrinogen and maintained surplus intracellular pools of A alpha and gamma chains. Transfection with B beta cDNA did not affect the synthesis of albumin, transferrin, or anti-chymotrypsin and had a small inhibitory effect on the synthesis of C-reactive protein. Taken together these studies demonstrate that increased B beta chain synthesis specifically causes increased production of the other two component chains of fibrinogen and that unequal and surplus amounts of A alpha and gamma chains are maintained intracellularly.  相似文献   

13.
Hep G2 cells produce surplus A alpha and gamma fibrinogen chains. These excess chains, which are not secreted, exist primarily as free gamma chains and as an A alpha-gamma complex. We have determined the intracellular location and the degradative fate of these polypeptides by treatment with endoglycosidase-H and by inhibiting lysosomal enzyme activity, using NH4Cl, chloroquine, and leupeptin. Free gamma chain and the gamma component of A alpha-gamma are both cleaved by endoglycosidase-H, indicating that the gamma chains accumulate in a pre-Golgi compartment. Lysosomal enzyme inhibitors did not affect the disappearance of free gamma chains but inhibited A alpha-gamma by 50%, suggesting that A alpha-gamma is degraded in lysosomes. The degradative fate of individual chains was determined in transfected COS cells which express but do not secrete single chains. Leupeptin did not affect B beta chain degradation, had very little affect on gamma chain, but markedly inhibited A alpha chain degradation. Antibody to immunoglobulin heavy chain-binding protein (GRP 78) co-immunoprecipitated B beta but not A alpha or gamma chains. Preferential binding of heavy chain-binding protein to B beta was also noted in Hep G2 cells and in chicken hepatocytes. Taken together these studies indicate that B beta and gamma chains are degraded in the endoplasmic reticulum, but only B beta is bound to BiP. By contrast A alpha chains and the A alpha-gamma complex undergo lysosomal degradation.  相似文献   

14.
Recombinant human fibrinogen and sulfation of the gamma' chain   总被引:2,自引:0,他引:2  
Human fibrinogen and the homodimeric gamma'-chain-containing variant have been expressed in BHK cells using cDNAs coding for the alpha, beta, and gamma (or gamma') chains. The fibrinogens were secreted at levels greater than 4 micrograms (mg of total cell protein)-1 day-1 and were biologically active in clotting assays. Recombinant fibrinogen containing the gamma' chain incorporated 35SO4 into its chains during biosynthesis, while no incorporation occurred in the protein containing the gamma chain. The identity of the sulfated gamma' chain was verified by its ability to form dimers during clotting. In addition, carboxypeptidase Y digestion of the recombinant fibrinogen containing the gamma' chain released 96% of the 35S label from the sulfated chain, and the radioactive material was identified as tyrosine O-sulfate. These results clarify previous findings of the sulfation of tyrosine in human fibrinogen.  相似文献   

15.
16.
The interactions of platelets with fibrinogen mediate a variety of responses including adhesion, platelet aggregation, and fibrin clot retraction. Whereas it was assumed that interactions of the platelet integrin alpha IIb beta 3 with the AGDV sequence in the gamma C-domain of fibrinogen and/or RGD sites in the A alpha chains are involved in clot retraction and adhesion, recent data demonstrated that fibrinogen lacking these sites still supported clot retraction. These findings suggested that an unknown site in fibrinogen and/or other integrins participate in clot retraction. Here we have identified a sequence within gamma C that mediates binding of fibrinogen to platelets. Synthetic peptide duplicating the 365-383 sequence in gamma C, designated P3, efficiently inhibited clot retraction in a dose-dependent manner. Furthermore, P3 supported platelet adhesion and was an effective inhibitor of platelet adhesion to fibrinogen fragments. Analysis of overlapping peptides spanning P3 and mutant recombinant gamma C-domains demonstrated that the P3 activity is contained primarily within gamma 370-383. Integrins alpha IIb beta 3 and alpha 5 beta 1 were implicated in recognition of P3, since platelet adhesion to the peptide was blocked by function-blocking monoclonal antibodies against these receptors. Direct evidence that alpha IIb beta 3 and alpha 5 beta 1 bind P3 was obtained by selective capture of these integrins from platelet lysates using a P3 affinity matrix. Thus, these data suggest that the P3 sequence in the gamma C-domain of fibrinogen defines a previously unknown recognition specificity of alpha IIb beta 3 and alpha 5 beta 1 and may function as a binding site for these integrins.  相似文献   

17.
Lishko VK  Kudryk B  Yakubenko VP  Yee VC  Ugarova TP 《Biochemistry》2002,41(43):12942-12951
Fibrinogen is a ligand for leukocyte integrin alpha(M)beta2 (CD11b/CD18, Mac-1) and mediates adhesion and migration of leukocytes during the immune-inflammatory responses. The binding site for alpha(M)beta2 resides in gammaC, a constituent subdomain in the D-domain of fibrinogen. The sequence gamma383-395 (P2-C) in gammaC was implicated as the major binding site for alpha(M)beta2. It is unknown why alpha(M)beta2 on leukocytes can bind to immobilized fibrinogen in the presence of high concentrations of soluble fibrinogen in plasma. In this study, we have investigated the accessibility of the binding site in fibrinogen for alpha(M)beta2. We found that the alpha(M)beta2-binding site in gammaC is cryptic and identified the mechanism that regulates its unmasking. Proteolytic removal of the small COOH-terminal segment(s) of gammaC, gamma397/405-411, converted the D100 fragment of fibrinogen, which contains intact gammaC and is not able to inhibit adhesion of the alpha(M)beta2-expressing cells, into the fragment D98, which effectively inhibited cell adhesion. D98, but not D100, bound to the recombinant alpha(M)I-domain, and the alpha(M)I-domain recognition peptide, alpha(M)(Glu253-Arg261). Exposure of the P2-C sequence in fibrinogen, D100, and D98 was probed with a site-specific mAb. P2-C is not accessible in soluble fibrinogen and D100 but becomes exposed in D98. P2-C is also unmasked by immobilization of fibrinogen onto a plastic and by deposition of fibrinogen in the extracellular matrix. Thus, exposure of P2-C by immobilization and by proteolysis correlates with unmasking of the alpha(M)beta2-binding site in the D-domain. These results demonstrate that conformational alterations regulate the alpha(M)beta2-binding site in gammaC and suggest that processes relevant to tissue injury and inflammation are likely to be involved in the activation of the alpha(M)beta2-binding site in fibrinogen.  相似文献   

18.
Proteolytic experiments performed on transducin and Go alpha subunit strongly suggest that the amino-terminal residues of the alpha chain are involved in the interaction with beta gamma subunits. To test the possibility that the same region in Gs may fulfill a similar function, we introduced a deletion in the amino-terminal domain of Gs alpha. The properties of the wild type and the deleted alpha chains were characterized on in vitro translated proteins or after reconstitution of cyc- membranes by in vitro-translated alpha subunits. The mutant (delta 2-29) Gs alpha could still bind guanosine 5'-3-O-(thio)triphosphate, as revealed by its resistance to trypsin proteolysis and was still able to interact with the membrane. However, (delta 2-29) Gs alpha was not ADP-ribosylated by cholera toxin. In contrast to Gs alpha, addition of beta gamma subunits did not increase the rate of sedimentation of (delta 2-29) Gs alpha in sucrose gradients. Binding experiments on reconstituted membranes showed that the coupling to beta-adrenergic receptors was very low with (delta 2-29) Gs alpha. Finally, the mutant did not restore activation of adenylate cyclase of cyc- membranes. We propose that the primary functional defect is the loss of interaction with beta gamma subunits, which secondarily impairs beta gamma-dependent properties such as receptor coupling and cholera toxin-catalyzed ADP-ribosylation. However, it remains to be established that the lack of adenylate cyclase activation also results from this impaired interaction with beta gamma subunits.  相似文献   

19.
The interaction between the leukocyte integrin alpha(M)beta(2) (CD11b/CD18, Mac-1, CR3) and fibrinogen mediates the recruitment of phagocytes during the inflammatory response. Previous studies demonstrated that peptides P2 and P1, duplicating gamma 377-395 and gamma 190-202 sequences in the gamma C domain of fibrinogen, respectively, blocked the fibrinogen-binding function of alpha(M)beta(2), implicating these sequences as possible binding sites for alpha(M)beta(2). To determine the role of these sequences in integrin binding, recombinant wild-type and mutant gamma C domains were prepared, and their interactions with the alpha(M)I-domain, a ligand recognition domain within alpha(M)beta(2), were tested. Deletion of gamma 383-411 (P2-C) and gamma 377-411 produced gamma C mutants which were defective in binding to the alpha(M)I-domain. In contrast, alanine mutations of several residues in P1 did not affect alpha(M)I-domain binding, and simultaneous mutations in P1 and deletion of P2 did not decrease the binding function of gamma C further. Verifying the significance of P2, inserting P2-C and the entire P2 into the homologous position of the beta C-domain of fibrinogen imparted the higher alpha(M)I-domain binding ability to the chimeric proteins. To further define the molecular requirements for the P2-C activity, synthetic peptides derived from P2-C and a peptide array covering P2-C have been analyzed, and a minimal recognition motif was localized to gamma(390)NRLTIG(395). Confirming a critical role of this sequence, the cyclic peptide NRLTIG retained full activity inherent to P2-C, with Arg and Leu being important residues. Thus, these data demonstrate the essential role of the P2, but not P1, sequence for binding of gamma C by the alpha(M)I-domain and suggest that the adhesive function of P2 depends on the minimal recognition motif NRLTIG.  相似文献   

20.
The COOH-terminal portion of the A alpha chain of human fibrinogen is highly susceptible to proteolytic degradation. This property has prevented isolation of the COOH-terminal domain of fibrinogen for the direct investigation of its functional characteristics. Human fibrinogen was degraded with hementin, a fibrinogen-olytic protease from the posterior salivary glands of the leech, Haementeria ghilianii. Two initial fragments, Yhem1 and Dhem1, produced by cleavage through the three polypeptide chains in the connector region, were characterized and shown to retain the entire A alpha COOH-terminal domain. Late cleavages by hementin occurred in the A alpha chain COOH-terminal region to produce fragments Yhem and Dhem with shorter A alpha chain remnants. Fragments Dhem were isolated from an intermediate hementin digest of fibrinogen using anion-exchange chromatography. Fragment Dhem1 was separated further from Dhem fragments with shorter alpha chain remnants by affinity chromatography on immobilized plasma fibronectin. Fragment Dhem1 represents a unique proteolytic fragment of fibrinogen containing an intact A alpha chain COOH-terminal region. NH2-terminal sequence analysis of isolated chains from fragment Dhem1 located hementin cleavage sites in the connector region to A alpha Asn102-Asn103, B beta Lys130-Gln131, and gamma Pro76-Asn77. The specific interaction of fragment Dhem1 with immobilized fibronectin indicated that the binding site probably was located within the COOH-terminal 111 amino acids of the A alpha chain. The overall pattern of fibrinogen cleavage by hementin is similar to that of plasmin, yet hementin cleaves preferably in the coiled-coil connector, sparing the A alpha COOH-terminal domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号