首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Irisin, an exercise-induced myokine, induces conversion of white into brown adipocytes, promoting mitochondrial biogenesis and energy expenditure. Irisin has a vascular protective effect on endothelial function in animals, including humans. Defects in irisin signaling pathways result in endothelial dysfunction in obesity and diabetes. However, the mechanisms underlying the effects of irisin on endothelial function have not been elucidated. Transient receptor potential vanilloid subtype 4 (TRPV4) channels are one of the most important Ca2+-permeable cation channels in vascular endothelial cells. In this study, we hypothesized that irisin may induce endothelium-dependent vasodilation by activating Ca2+ influx into endothelial cells via TRPV4 channels. In primary cultured rat mesenteric artery endothelial cells, irisin caused an increase in [Ca2+]i due to extracellular Ca2+ influx rather than release from Ca2+ stores. Moreover, irisin-induced increases in [Ca2+]i were completely abolished by a TRPV4 inhibitor. In addition, irisin induced endothelium-dependent vasodilation of rat mesenteric arteries. However, irisin had no effect on endothelium-independent vasodilation. Furthermore, irisin-induced vasodilation was fully abolished in the presence of a TRPV4 inhibitor, indicating the involvement of TRPV4 channels in endothelium-dependent vasodilation. This study provides the first evidence that irisin-induced endothelium-dependent vasodilation is related to the stimulation of extracellular Ca2+ influx via TRPV4 channels in rat mesenteric arteries.  相似文献   

2.
As a link between exercise and metabolism, irisin is assumed to be involved in increased total body energy expenditure, reduced body weight, and increased insulin sensitivity. Although our recent evidence supported the contribution of irisin to vascular endothelial cell (ECs) proliferation and apoptosis, further research of irisin involvement in the angiogenesis of ECs was not conclusive. In the current study, it was found that irisin promoted Human Umbilical Vein Endothelial Cell (HUVEC) angiogenesis via increasing migration and tube formation, and attenuated chemically-induced intersegmental vessel (ISV) angiogenic impairment in transgenic TG (fli1: GFP) zebrafish. It was further demonstrated that expression of matrix metalloproteinase (MMP) 2 and 9 were also up-regulated in endothelial cells. We also found that irisin activated extracellular signal–related kinase (ERK) signaling pathways. Inhibition of ERK signaling by using U0126 decreased the pro-migration and pro-angiogenic effect of irisin on HUVEC. Also, U0126 inhibited the elevated expression of MMP-2 and MMP-9 when they were treated with irisin. In summary, these findings provided direct evidence that irisin may play a pivotal role in maintaining endothelium homeostasis by promoting endothelial cell angiogenesis via the ERK signaling pathway.  相似文献   

3.
4.
Irisin is a newly discovered myokine that links exercise with metabolic homeostasis. It is involved in modest weight loss and improves glucose intolerance. However, the direct effects and mechanisms of irisin on vascular endothelial cells (ECs) are not fully understood. In the current study, we demonstrated that irisin promoted Human Umbilical Vein Endothelial Cell (HUVEC) proliferation. It was further demonstrated that this pro-proliferation effect was mediated by irisin-induced activation of extracellular signal–related kinase (ERK) signaling pathways. Inhibition of ERK signaling with U0126 decreased the pro-proliferation effect of irisin on HUVECs. It was also demonstrated that irisin reduced high glucose-induced apoptosis by up-regulating Bcl-2 expression and down-regulating Bax, Caspase-9 and Caspase-3 expression. In summary, these results suggested that irisin plays a novel role in sustaining endothelial homeostasis by promoting HUVEC proliferation via the ERK signaling pathway and protects the cell from high glucose-induced apoptosis by regulating Bcl-2,Bax and Caspase expression.  相似文献   

5.
目的幽门螺杆菌被认为是诱发胃癌的最强的风险因素。幽门螺旋杆菌的毒性成分是可以增加癌症危险的cag分泌系统,它可以使cagA和肽聚糖易位进入宿主细胞,进而激活信号转导通路。AKT是磷脂酰肌醇3。激酶(PI3K)的目的蛋白,并在胃癌中被激活,但PI3K-AKT和具有潜在致癌性的幽门螺旋杆菌诱导的细胞反应之间的关系尚不清楚。方法我们揭示了介导幽门螺旋杆菌刺激的AKT活化和胃上皮细胞的这些生物学结果之间的分子通路。结果幽门螺旋杆菌以Scr和表皮生长因子受体依赖性方式增加PI3K-AKT的信号,是幽门螺旋杆菌诱导的细胞迁移不可或缺的。结论这些结果表明,PI3K-AKT信号调节幽门螺旋杆菌诱发的病理生理反应,从而降低癌变门槛。  相似文献   

6.
7.
Interleukin (IL)-15 is an important inflammatory cytokine and plays a key role in autoimmune disease. At present, IL-15 gene expression and regulation related to many innate immunity trigger signals have been clarified in some specific cell types, but the relationship of IL-6 and IL-15 in the human keratinocyte cell line (HaCaT) is unknown. In this study, we investigated the effect of IL-6 on the expression of IL-15 and selected signaling pathways in HaCaT cells. Results demonstrated that IL-6 up-regulated the expression of IL-15 both at the mRNA and protein levels. Meanwhile, IL-6 was able to activate MAPKs-ERK1/2 and PI3K-AKT signaling pathways. Furthermore, the high expression of IL-15 induced by IL-6 was down-regulated while MAPKs-ERK1/2 and PI3K-AKT signaling pathways were, respectively, blocked by PD98059 and LY294002. These findings indicate that the expression of IL-15 up-regulated by IL-6 is associated with MAPKs-ERK1/2 and PI3K-AKT signaling pathways in HaCaT cells.  相似文献   

8.
We studied the PI3K/Akt signaling pathway modulation and its involvement in the stimulation of ROS 17/2.8 osteoblast-like cell proliferation by extracellular ATP. A dose- and time-dependent increase in Akt-Ser 473 phosphorylation (p-Akt) was observed. p-Akt was increased by ATPγS and UTP, but not by ADPβS. Akt activation was abolished by PI3K inhibitors and reduced by inhibitors of PI-PLC, Src, calmodulin (CaM) but not of CaMK. p-Akt was diminished by cell incubation in a Ca2+-free medium but not by the use of L-type calcium channel blockers. The rise in intracellular Ca2+ induced by ATP was potentiated in the presence of Ro318220, a PKC inhibitor, and attenuated by the TPA, a known activator of PKC. ATP-dependent p-Akt was diminished by TPA and augmented by Ro318220 treatment in a Ca2+-containing but not in a Ca2+-free medium. ATP stimulated the proliferation of both ROS 17/2.8 cells and rat osteoblasts through PI3K/Akt. In the primary osteoblasts, ATP induces alkaline phosphatase activity via PI3K, suggesting that the nucleotide promotes osteoblast differentiation. These results suggest that ATP stimulates osteoblast proliferation through PI-PLC linked-P2Y2 receptors and PI3K/Akt pathway activation involving Ca2+, CaM and Src. PKC seems to regulate Akt activation through Src and the Ca2+ influx/CaM pathway.  相似文献   

9.
Previous results showed an inducible radiation sensitivity selectively observable for K-RAS-mutated cell lines as a function of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor blockade of phosphatidylinositol 3-kinase (PI3K)-AKT signaling. Therefore, the role of K-Ras activity for a direct (i.e., through activation of PI3K by K-Ras) or an indirect stimulation of PI3K-AKT signaling (through K-Ras activity-dependent EGFR ligand production) was investigated by means of small interfering RNA and inhibitor approaches as well as ELISA measurements of EGFR ligand production. K-RASmt tumor cells presented a constitutively activated extracellular signal-regulated kinase-1/2 signaling, resulting in enhanced production and secretion of the EGFR ligand amphiregulin (AREG). Medium supernatants conditioned by K-RASmt tumor cells equally efficiently stimulated EGFR signaling into the PI3K-AKT and mitogen-activated protein kinase pathways. Knocking down K-Ras expression by specific small interfering RNA markedly affected autocrine production of AREG, but not PI3K-AKT signaling, after treatment of K-RAS-mutated or wild-type cells with EGFR ligands or exposure to ionizing radiation. These results indicate that PI3K-mediated activation of AKT in K-RASmt human tumor cells as a function of EGFR ligand or radiation stimulus is independent of a direct function of K-Ras enzyme activity but depends on a K-Ras-mediated enhanced production of EGFR ligands (i.e., most likely AREG) through up-regulated extracellular signal-regulated kinase-1/2 signaling. The data provide new differential insight into the importance of K-RAS mutation in the context of PI3K-AKT-mediated radioresistance of EGFR-overexpressing or EGFR-mutated tumors.  相似文献   

10.
Phosphatase and tensin homologue (PTEN) is a dual lipid-protein phosphatase that catalyzes the conversion of phosphoinositol 3,4,5-triphosphate to phosphoinositol 4,5-bisphosphate and thereby inhibits PI3K-Akt-dependent cell proliferation, migration, and tumor vascularization. We have uncovered a previously unrecognized role for PTEN in regulating Ca2+ entry through transient receptor potential canonical channel 6 (TRPC6) that does not require PTEN phosphatase activity. We show that PTEN tail-domain residues 394–403 permit PTEN to associate with TRPC6. The inflammatory mediator thrombin promotes this association. Deletion of PTEN residues 394–403 prevents TRPC6 cell surface expression and Ca2+ entry. However, PTEN mutant, C124S, which lacks phosphatase activity, did not alter TRPC6 activity. Thrombin failed to increase endothelial monolayer permeability in the endothelial cells, transducing the Δ394–403 PTEN mutant. Paradoxically, we also show that thrombin failed to induce endothelial cell migration and tube formation in cells transducing the Δ394–403 PTEN mutant. Our results demonstrate that PTEN, through residues 394–403, serves as a scaffold for TRPC6, enabling cell surface expression of the channel. Ca2+ entry through TRPC6 induces an increase in endothelial permeability and directly promotes angiogenesis. Thus, PTEN is indicated to play a role beyond suppressing PI3K signaling.  相似文献   

11.
Calcium deficiency causes abnormal colonic growth and increases colon cancer risk with poorly understood mechanisms. Here we elucidate a novel signaling mechanism underlying the Ca2+ deficiency-induced epithelial proliferation using a unique animal model. The zebrafish larval yolk sac skin contains a group of Ca2+-transporting epithelial cells known as ionocytes. Their number and density increases dramatically when acclimated to low [Ca2+] environments. BrdU pulse-labeling experiments suggest that low [Ca2+] stimulates pre-existing ionocytes to re-enter the cell cycle. Low [Ca2+] treatment results in a robust and sustained activation of IGF1R-PI3K-Akt signaling in these cells exclusively. These ionocytes specifically express Igfbp5a, a high-affinity and specific binding protein for insulin-like growth factors (IGFs) and the Ca2+-selective channel Trpv5/6. Inhibition or knockdown of Igfbp5a, IGF1 receptor, PI3K, and Akt attenuates low [Ca2+]-induced ionocyte proliferation. The role of Trpv5/6 was investigated using a genetic mutant, targeted knockdown, and pharmacological inhibition. Loss-of-Trpv5/6 function or expression results in elevated pAkt levels and increased ionocyte proliferation under normal [Ca2+]. These increases are eliminated in the presence of an IGF1R inhibitor, suggesting that Trpv5/6 represses IGF1R-PI3K-Akt signaling under normal [Ca2+]. Intriguingly, blockade of Trpv5/6 activity inhibits the low [Ca2+]-induced activation of Akt. Mechanistic analyses reveal that the low [Ca2+]-induced IGF signaling is mediated through Trpv5/6-associated membrane depolarization. Low extracellular [Ca2+] results in a similar amplification of IGF-induced PI3K-PDK1-Akt signaling in human colon cancer cells in a TRPV6-dependent manner. These results uncover a novel and evolutionarily conserved signaling mechanism that contributes to the abnormal epithelial proliferation associated with Ca2+ deficiency.  相似文献   

12.
13.
14.
15.
Abnormal proliferation is one characteristic of cancer-associated fibroblasts (CAFs), which play a key role in tumorigenesis and tumor progression. Oxidative stress (OS) is the root cause of CAFs abnormal proliferation. ATM (ataxia-telangiectasia mutated protein kinase), an important redox sensor, is involved in DNA damage response and cellular homeostasis. Whether and how oxidized ATM regulating CAFs proliferation remains unclear. In this study, we show that there is a high level of oxidized ATM in breast CAFs in the absence of double-strand breaks (DSBs) and that oxidized ATM plays a critical role in CAFs proliferation. The effect of oxidized ATM on CAFs proliferation is mediated by its regulation of cellular redox balance and the activity of the ERK, PI3K-AKT, and Wnt signaling pathways. Treating cells with antioxidant N-acetyl-cysteine (NAC) partially rescues the proliferation defect of the breast CAFs caused by ATM deficiency. Administrating cells with individual or a combination of specific inhibitors of the ERK, PI3K-AKT, and Wnt signaling pathways mimics the effect of ATM deficiency on breast CAF proliferation. This is mainly ascribed to the β-catenin suppression and down-regulation of c-Myc, thus further leading to the decreased cyclinD1, cyclinE, and E2F1 expression and the enhanced p21Cip1 level. Our results reveal an important role of oxidized ATM in the regulation of the abnormal proliferation of breast CAFs. Oxidized ATM could serve as a potential target for treating breast cancer.  相似文献   

16.
17.
18.
Beige adipose cells are a distinct and inducible type of thermogenic fat cell that express the mitochondrial uncoupling protein-1 and thus represent a powerful target for treating obesity. Mice lacking the TGF-β effector protein SMAD3 are protected against diet-induced obesity because of browning of their white adipose tissue (WAT), leading to increased whole body energy expenditure. However, the role SMAD3 plays in WAT browning is not clearly understood. Irisin is an exercise-induced skeletal muscle hormone that induces WAT browning similar to that observed in SMAD3-deficient mice. Together, these observations suggested that SMAD3 may negatively regulate irisin production and/or secretion from skeletal muscle. To address this question, we used wild-type and SMAD3 knock-out (Smad3−/−) mice subjected to an exercise regime and C2C12 myotubes treated with TGF-β, a TGF-β receptor 1 pharmacological inhibitor, adenovirus expressing constitutively active SMAD3, or siRNA against SMAD3. We find that in Smad3−/− mice, exercise increases serum irisin and skeletal muscle FNDC5 (irisin precursor) and its upstream activator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) to a greater extent than in wild-type mice. In C2C12 myotubes, TGF-β suppresses FNDC5 and PGC-1α mRNA and protein levels via SMAD3 and promotes SMAD3 binding to the FNDC5 and PGC-1α promoters. These data establish that SMAD3 suppresses FNDC5 and PGC-1α in skeletal muscle cells. These findings shed light on the poorly understood regulation of irisin/FNDC5 by demonstrating a novel association between irisin and SMAD3 signaling in skeletal muscle.  相似文献   

19.
Irisin, a newly identified hormone and cardiokine, is critical for modulating body metabolism. New evidence indicates that irisin protects the heart against myocardial ischemic injury. However, whether irisin enhances cardiac progenitor cell (CPC)-induced cardiac repair remains unknown. This study examines the effect of irisin on CPC-induced cardiac repair when these cells are introduced into the infarcted myocardium. Nkx2.5+ CPC stable cells were isolated from mouse embryonic stem cells. Nkx2.5 + CPCs (0.5 × 10 6) were reintroduced into the infarcted myocardium using PEGlylated fibrin delivery. The mouse myocardial infarction model was created by permanent ligation of the left anterior descending (LAD) artery. Nkx2.5 + CPCs were pretreated with irisin at a concentration of 5 ng/ml in vitro for 24 hr before transplantation. Myocardial functions were evaluated by echocardiographic measurement. Eight weeks after engraftment, Nkx2.5 + CPCs improved ventricular function as evident by an increase in ejection fraction and fractional shortening. These findings are concomitant with the suppression of cardiac hypertrophy and attenuation of myocardial interstitial fibrosis. Transplantation of Nkx2.5 + CPCs promoted cardiac regeneration and neovascularization, which were increased with the pretreatment of Nkx2.5 + CPCs with irisin. Furthermore, irisin treatment promoted myocyte proliferation as indicated by proliferative markers Ki67 and phosphorylated histone 3 and decreased apoptosis. Additionally, irisin resulted in a marked reduction of histone deacetylase 4 and increased p38 acetylation in cultured CPCs. These results indicate that irisin promoted Nkx2.5 + CPC-induced cardiac regeneration and functional improvement and that irisin serves as a novel therapeutic approach for stem cells in cardiac repair.  相似文献   

20.
Penehyclidine hydrochloride (PHC) can protect against myocardial ischemia/reperfusion (I/R) injury. However, the possible mechanisms of PHC in anoxia/reoxygenation (A/R)‐induced injury in H9c2 cells remain unclear. In the present study, H9c2 cells were pretreated with PI3K/Akt inhibitor LY294002, ATP‐sensitive K+ (KATP) channel blocker 5‐hydroxydecanoate (5‐HD), PHC, or KATP channel opener diazoxide (DZ) before subjecting to A/R injury. Cell viability and cell apoptosis were determined by cell counting kit‐8 assay and annexin V/PI assay, respectively. Myocardial injury was evaluated by measuring creatine kinase (CK) and lactate dehydrogenase (LDH) activities. Intracellular Ca2+ levels, reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm), and mitochondrial permeability transition pore (mPTP) were measured. The levels of cytoplasmic/mitochondrial cytochrome c (Cyt‐C), Bax, Bcl‐2, cleaved caspase‐3, KATP channel subunits (Kir6.2 and SUR2A), and the members of the Akt/GSK‐3β and Akt/mTOR signaling pathways were determined by western blotting. We found that PHC preconditioning alleviated A/R‐induced cell injury by increasing cell viability, reducing CK and LDH activities, and inhibiting cell apoptosis. In addition, PHC preconditioning ameliorated intracellular Ca2+ overload and ROS production, accompanied by inhibition of both mPTP opening and Cyt‐C release into cytoplasm, and maintenance of ΔΨm. Moreover, PHC preconditioning activated mitochondrial KATP channels, and modulated the Akt/GSK‐3β and Akt/mTOR signaling pathways. Similar effects were observed upon treatment with DZ. Pretreatment with LY294002 or 5‐HD blocked the beneficial effects of PHC. These results suggest that the protective effects of PHC preconditioning on A/R injury may be related to mitochondrial KATP channels, as well as the Akt/GSK‐3β and Akt/mTOR signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号