首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The metabolic syndrome (MS) is characterized by insulin resistance, dyslipidemia and hypertension. It is associated with increased risk of cardiovascular diseases and type-2 diabetes. Consumption of fructose is linked to increased prevalence of MS. Ursodeoxycholic acid (UDCA) is a steroid bile acid with antioxidant, anti-inflammatory activities and has been shown to improve insulin resistance. The current study aims to investigate the effect of UDCA (150 mg/kg) on MS induced in rats by fructose administration (10%) in drinking water for 12 weeks. The effects of UDCA were compared to fenofibrate (100 mg/kg), an agonist of PPAR-α receptors. Treatment with UDCA or fenofibrate started from the 6th week after fructose administration once daily. Fructose administration resulted in significant increase in body weight, elevations of blood glucose, serum insulin, cholesterol, triglycerides, advanced glycation end products (AGEs), uric acid levels, insulin resistance index and blood pressure compared to control rats. Moreover, fructose increased oxidative stress in aortic tissues indicated by significant increases of malondialdehyde (MDA), expression of iNOS and reduction of reduced glutathione (GSH) content. These disturbances were associated with decreased eNOS expression, increased infiltration of leukocytes and loss of aortic vascular elasticity. Treatment with UDCA successfully ameliorated the deleterious effects of fructose. The protective effect of UDCA could be attributed to its ability to decrease uric acid level, improve insulin resistance and diminish oxidative stress in vascular tissues. These results might support possible clinical application of UDCA in MS patients especially those present with liver diseases, taking into account its tolerability and safety. However, further investigations on human subjects are needed before the clinical application of UDCA for this indication.  相似文献   

2.
The worldwide prevalence of metabolic syndrome, which includes obesity and its associated diseases, is rising rapidly. The human gut microbiome is recognized as an independent environmental modulator of host metabolic health and disease. Research in animal models has demonstrated that the gut microbiome has the functional capacity to induce or relieve metabolic syndrome. One way to modify the human gut microbiome is by transplanting fecal matter, which contains an abundance of live microorganisms, from a healthy individual to a diseased one in the hopes of alleviating illness. Here we review recent evidence suggesting efficacy of fecal microbiota transplant (FMT) in animal models and humans for the treatment of obesity and its associated metabolic disorders.  相似文献   

3.
Polycystic ovarian syndrome (PCOS) is the most common endocrine disorder in women of reproductive age, with a prevalence of 5–8%. Type 2 diabetes and cardiovascular disease (CVD) are its long-term complications. Targeted therapies addressing both these complications together are lacking. Glucagon like peptide-1 (GLP-1) agonists that are used to treat type 2 diabetes mellitus have beneficial effects on the cardiovascular system. Hence we hypothesized that a GLP-1 agonist would improve both cardiovascular and metabolic outcomes in PCOS. To test this hypothesis, we used an established rat model of PCOS. Prepubertal female Sprague Dawley rats were sham-implanted or implanted s.c. with dihydrotestosterone (DHT) pellets (90 day release; 83μg/day). At 12 wks of age, sham implanted rats received saline injections and the DHT treated animals were administered either saline or liraglutide (0.2mg/kg s.c twice daily) for 4 weeks. Subgroups of rats were implanted with telemeters between 12-13 weeks of age to monitor blood pressure. DHT implanted rats had irregular estrus cycles and were significantly heavier than the control females at 12 weeks (mean± SEM 251.9±3.4 vs 216.8±3.4 respectively; p<0.05) and 4 weeks of treatment with liraglutide in DHT treated rats significantly decreased body weight (mean± SEM 294.75 ±3.2 in DHT+ saline vs 276.25±2.7 in DHT+ liraglutide group respectively; p<0.01). Liraglutide treatment in the DHT implanted rats significantly improved glucose excursion during oral glucose tolerance test (area under the curve: DHT+ saline 28674±310 vs 24990± 420 in DHT +liraglutide p <0.01). DHT rats were hypertensive and liraglutide treatment significantly improved mean arterial pressure. These results suggest that GLP-1 treatment could improve DHT–induced metabolic and blood pressure deficits associated with PCOS.  相似文献   

4.

Purpose

To study the role of sensory dysfunction of bladder mucosa in bladder oversensitivity of rats with metabolic syndrome.

Materials and Methods

Female Wistar rats were fed a fructose-rich diet (60%) or a normal diet for 3 months. Based on cystometry, the fructose-fed rats (FFRs) were divided into a group with normal detrusor function or detrusor overactivity (DO). Acidic adenosine triphosphate (ATP) solution (5mM, pH 3.3) was used to elicit reflex micturition. Cystometric parameters were evaluated before and after drug administration. Functional proteins of the bladder mucosa were assessed by western blotting.

Results

Compared to the controls, intravesical acidic ATP solution instillation induced a significant increase in provoked phasic contractions in both FFR groups and a significant decrease in the mean functional bladder capacity of group DO. Pretreatment with capsaicin for C-fiber desentization, intravesical liposome for mucosal protection, or intravenous pyridoxal 5-phosphate 6-azophenyl-2′,4′-disulfonic acid for antagonized purinergic receptors can interfere with the urodynamic effects of intravesical ATP in FFRs and controls. Over-expression of TRPV1, P2X3, and iNOS proteins, and down-regulation of eNOS proteins were observed in the bladder mucosa of both fructose-fed groups.

Conclusions

Alterations of sensory receptors and enzymes in the bladder mucosa, including over-expression of TRPV1, P2X3, and iNOS proteins, can precipitate the emergence of bladder phasic contractions and oversensitivity through the activation of C-afferents during acidic ATP solution stimulation in FFRs. The down-regulation of eNOS protein in the bladder mucosa of FFRs may lead to a failure to suppress bladder oversensitivity and phasic contractions. Sensory dysfunction of bladder mucosa and DO causing by metabolic syndrome are easier to elicit bladder oversensitivity to certain urothelium stimuli.  相似文献   

5.
Obesity-related disorders, especially metabolic syndrome, contribute to 2.8 million deaths each year worldwide, with significantly increasing morbidity. Eating at regular times and proper food quantity are crucial for maintaining a healthy status. However, many people in developed countries do not follow a regular eating schedule due to a busy lifestyle. Herein, we show that a repeated sense of hunger leads to a high risk of developing visceral obesity and metabolic syndrome in a mouse model (both 3-week and 6-week-old age, 10 mice in each group). The ad libitum (AL) group (normal eating pattern) and the food restriction (FR) group (alternate-day partially food restriction by given only 1/3 of average amount) were compared after 8-week experimental period. The total food consumption in the FR group was lower than in the AL group, however, the FR group showed a metabolic syndrome-like condition with significant fat accumulation in adipose tissues. Consequently, the repeated sense of hunger induced the typical characteristics of metabolic syndrome in an animal model; a distinct visceral obesity, hyperlipidemia, hyperglycemia and hepatic steatosis. Furthermore, we found that specifically leptin, a major metabolic hormone, played a major role in the development of these pathological disorders. Our study indicated the importance of regular eating habits besides controlling calorie intake.  相似文献   

6.
Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16) and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx) into the genomic background of the spontaneously hypertensive rat (SHR) strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18–28 mmHg difference) and diastolic (10–15 mmHg difference) blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001). The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes) are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1). Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic syndrome.  相似文献   

7.

Background

Sensitivity to obesity is highly variable in humans, and rats fed a high fat diet (HFD) are used as a model of this inhomogeneity. Energy expenditure components (basal metabolism, thermic effect of feeding, activity) and variations in substrate partitioning are possible factors underlying the variability. Unfortunately, in rats as in humans, results have often been inconclusive and measurements usually made after obesity onset, obscuring if metabolism was a cause or consequence. Additionally, the role of high carbohydrate diet (HCD) has seldom been studied.

Methodology/Findings

Rats (n=24) were fed for 3 weeks on HCD and then 3 weeks on HFD. Body composition was tracked by MRI and compared to energy expenditure components measured prior to obesity. Results: 1) under HFD, as expected, by adiposity rats were variable enough to be separable into relatively fat resistant (FR) and sensitive (FS) groups, 2) under HCD, and again by adiposity, rats were also variable enough to be separable into carbohydrate resistant (CR) and sensitive (CS) groups, the normal body weight of CS rats hiding viscerally-biased fat accumulation, 3) HCD adiposity sensitivity was not related to that under HFD, and both HCD and HFD adiposity sensitivities were not related to energy expenditure components (BMR, TEF, activity cost), and 4) only carbohydrate to fat partitioning in response to an HCD test meal was related to HCD-induced adiposity.

Conclusions/Significance

The rat model of human obesity is based on substantial variance in adiposity gains under HFD (FR/FS model). Here, since we also found this phenomenon under HCD, where it was also linked to an identifiable metabolic difference, we should consider the existence of another model: the carbohydrate resistant (CR) or sensitive (CS) rat. This new model is potentially complementary to the FR/FS model due to relatively greater visceral fat accumulation on a low fat high carbohydrate diet.  相似文献   

8.

Objective

Chemerin is a novel adipokine. Previous research has investigated the association between chemerin and clinical indices in patients with obesity or metabolic syndrome (MS), although the results obtained have been inconsistent. We conducted a meta-analysis to investigate the association between chemerin and clinical indicators of diabetes, MS and obesity with obesity or MS subjects.

Design and Methods

Studies were identified by searching the PubMed, the Cochrane Library, EMBASE and CNKI, databases beginning with the original report in July 2007 until the end of May 2013. For each variable, summary correlation coefficients were estimated using random-effects or fixed-effect meta-analysis with 95% confidence interval (CI) performed by STATA software.

Results

A total of eight studies with 20 clinical variables (total n = 1787) met the inclusion criteria. The meta-analyse of diabetes markers showed that FSI (rs = 0.26; 95% CI = 0.21–0.31; P = 0.000), 2HPG (rs = 0.06; 95% CI = 0.01–0.12; P = 0.030) and HOMA-IR (rs = 0.178; 95% CI = 0.019–0.337; P = 0.028) were positively correlated with chemerin, however, FPG (rs = 0.03, 95% CI = −0.02 to 0.08, P = 0.240) and HbA1c (rs = −0.05; 95% CI = −0.24–0.15; P = 0.641) were not significantly correlated with chemerin. The meta-analyses of MS and obesity markers indicated that TG, TC, CRP BMI, TBF%, WC, WHR and Leptin were positively correlated with chemerin, nevertheless, SBP, DBP, LDL-C, HDL-C, ALT and r-GT were not significantly correlated, adiponectin was negatively correlated. Sensitivity analysis was performed and the summary results did not change significantly.

Conclusions

The results suggest that chemerin in patients with obesity or MS may be associated with obesity, imbalances in lipid and diabetes metabolism and insulin resistance. Chemerin played an important role in the pathophysiology of obesity and MS.  相似文献   

9.
10.
近年来,儿童肥胖的检出率呈逐年增长趋势,代谢综合征是以糖代谢异常、血脂异常、高血压、中心性肥胖等集聚于一体的症候群。儿童肥胖是儿童代谢综合征发生的中心因素,严重影响儿童的身心健康,应及早诊断及治疗,而控制儿童肥胖的发生和发展是预防代谢综合征,降低成人心血管疾病、糖尿病等发病率的重要因素。治疗上重在预防,建议合理饮食、加强锻炼,阻止儿童肥胖及代谢综合征的流行与发展。本文针对儿童肥胖与代谢综合征相关性的研究进展进行综述,并提出进一步研究的设想。  相似文献   

11.
The cholinergic antiinflammatory pathway (CAP), which terminates in the spleen, attenuates postoperative cognitive decline (PCD) in rodents. Surgical patients with metabolic syndrome exhibit exaggerated and persistent PCD that is reproduced in postoperative rats selectively bred for easy fatigability and that contain all features of metabolic syndrome (low-capacity runners [LCRs]). We compared the CAP and lipoxin A4 (LXA4), another inflammation-resolving pathway in LCR, with its counterpart high-capacity runner (HCR) rats. Isoflurane-anesthetized LCR and HCR rats either underwent aseptic trauma involving tibial fracture (surgery) or not (sham). At postoperative d 3 (POD3), compared with HCR, LCR rats exhibited significantly exaggerated PCD (trace fear conditioning freezing time 43% versus 57%). Separate cohorts were killed at POD3 to collect plasma for LXA4 and to isolate splenic mononuclear cells (MNCs) to analyze CAP signaling, regulatory T cells (Tregs) and M2 macrophages (M2 Mφ). Under lipopolysaccharide (LPS) stimulation, tumor necrosis factor (TNF)-α produced by splenic MNCs was 117% higher in LCR sham and 52% higher in LCR surgery compared with HCR sham and surgery rats; LPS-stimulated TNF-α production could not be inhibited by an α7 nicotinic acetylcholine receptor agonist, whereas inhibition by the β2 adrenergic agonist, salmeterol, was significantly less (−35%) than that obtained in HCR rats. Compared to HCR, sham and surgery LCR rats had reduced β2 adrenergic receptor–expressing T lymphocytes (59%, 44%), Tregs (47%, 54%) and M2 Mφ (45%, 39%); surgical LCR rats’ hippocampal M2 Mφ was 66% reduced, and plasma LXA4 was decreased by 120%. Rats with the metabolic syndrome have ineffective inflammation-resolving mechanisms that represent plausible reasons for the exaggerated and persistent PCD.  相似文献   

12.
目的建立奥氮平诱导的肥胖大鼠模型,并探讨其诱导肥胖的发生机制。方法 SD雌性大鼠20只,随机分为对照组和模型组,模型组大鼠每日黑暗时相前1h灌胃奥氮平(1.2mg/kg),对照组给予等容量蒸馏水。每周称体重1次,测饮水饮食量2次。给药7周时,利用SMART video-tracking system测定大鼠白天和黑暗时相的自主活动,然后处理大鼠,测体长,计算Lee's指数,称脂肪湿重,计算脂肪系数,采用高效液相色谱-电化学检测(HPLC-ECD)法测定大鼠下丘脑神经递质,用ELISA试剂盒测定血清瘦素(leptin)、脂联素(adiponectin,ADP)水平。结果模型组大鼠造模第2周至第7周时体重均明显高于对照组(P0.05或P0.01),饮食量明显增加(P0.01),黑暗时相平均速度、路程明显减少(P0.05),Lee's指数、脂肪湿重、脂肪系数明显升高(P0.05或P0.01),下丘脑5-HT、DA、DOPAC含量明显升高(P0.01或P0.05),血清leptin含量明显升高(P0.01),ADP含量明显降低(P0.01)。结论奥氮平(1.2mg/kg)增加动物摄食量,减少活动量而引起肥胖,此作用与下丘脑神经递质、瘦素和脂联素的调节有着密切联系。  相似文献   

13.
14.
Objective: The term metabolic syndrome (MS) describes a cluster of cardiovascular risk factors including dyslipidemia, glucose intolerance, insulin resistance, and hypertension. Obesity increases the risk of MS, but as obesity is neither necessary nor sufficient to cause the syndrome, there is considerable interest in identifying obesity‐independent pathways. One such pathway may involve the actions of the adipokine leptin, which is associated cross‐sectionally with MS and prospectively with coronary heart disease and stroke, independently of obesity. Our goal was to test the hypothesis that leptin predicts the development of the features of MS independently of obesity. Research Methods and Procedures: This study used a prospective population‐based cohort of 748 middle‐aged whites in whom baseline measures of leptin and repeated measurement of the subcomponents of the MS at 5 and 10 years were available. The features of the MS were characterized as five factors (obesity, dyslipidemia, elevated blood pressure, glucose intolerance, and insulin resistance), which were combined to create an MS summary score. Results: Baseline leptin significantly predicted the development of obesity (p = 0.001) and, after adjustment for BMI, development of glucose intolerance (p = 0.016) and insulin resistance (p < 0.0001). Leptin levels did not independently predict a change in lipids or blood pressure. Leptin levels significantly predicted the development of the MS (p = 0.036), independently of baseline BMI. Discussion: Leptin predicts the development of the MS independently of baseline obesity. This association is specifically related to the development of glucose intolerance and insulin resistance. The extent to which these relationships are explained through residual confounding by obesity remains to be determined.  相似文献   

15.
We tested two hypotheses about monoamine neurotransmitters in two strains of rats that differ in their sensitivity to obesity when eating a high-fat diet; 1) that the concentrations of norepinephrine and serotonin and of their metabolites differ in the extracellular fluid of tlie ventromedial hypothalamus of conscious, unrestrained Osborne-Mendel and S 5B/PI rats, and 2) that these monoamines are altered differently between strains by a high-fat diet. The monoamines were measured by HPLC in dialysate collected by in vivo microdialysis in rats eating a semisyntlietic low-fat diet (10% of kcal as fat) and again after either two or seven days of eating a high-fat diet (56 % of kcal as fat). Norepinephrine, serotonin (5-HT), and 5-hydroxyindole-3-acetic acid (5-HIAA) were lower in Osborne-Mendel rats than in S 5BR1 rats eating the low-fat diet. Norepinephrine and serotonin both increased in Osborne-Mendel rats with the onset of tlie high-fat diet so that Osborne-Mendel and S 5B/PI rats no longer differed in these neurotransmitters. By day 7 of high-fat feeding, the concentrations of 3-methoxy-4-hydroxyplienylglycol (MHPG), 5-HIAA and the 5-HIAA/5-HT ratio rose in both strains. Ambient extracellular monoamines in the medial hypothalamus are lower in Osborne-Mendel rats than in S 5B/PI rats and the response of these catecholamines to dietary fat was greater in Osborne-Mendel rats than in S 5B/PI rats.  相似文献   

16.
Evidence indicates that the degeneration of basal forebrain cholinergic neurons may represent an important factor underlying the progressive cognitive decline characterizing Alzheimer’s disease (AD). However, the nature of the relationship between cholinergic depletion and AD is not fully elucidated. This study aimed at clarifying some aspects of the relation existing between deficits in cerebral energy metabolism and degeneration of cholinergic system in AD, by investigating the neuronal metabolic activity of several cortical areas after depletion of basal forebrain cholinergic neurons. In cholinergically depleted rats, we evaluated the neuronal metabolic activity by assaying cytochrome oxidase (CO) activity in frontal, parietal and posterior parietal cortices at four different time-points after unilateral injection of 192 IgG-saporin in the nucleus basalis magnocellularis. Unilateral depletion of cholinergic cells in the basal forebrain induced a bilateral decrease of metabolic activity in all the analyzed areas. Frontal and parietal cortices showed decreased metabolic activity even 3 days after the lesion, when the cholinergic degeneration was still incomplete. In posterior parietal cortex metabolic activity decreased only 7 days after the lesion. The possible molecular mechanisms underlying these findings were also investigated. Real-time PCR showed an increase of CO mRNA levels at 3, 7 and 15 days after the lesion both in frontal and parietal cortices, followed by normalization at 30 days. Western Blot analysis did not show any change in CO protein levels at any time-point after the lesion. Our findings support a link between metabolic deficit and cholinergic hypofunctionality characterizing AD pathology. The present model of cholinergic hypofunctionality provides a useful means to study the complex mechanisms linking two fundamental and interrelated phenomena characterizing AD from the early stages.  相似文献   

17.
目的建立以高脂纯化饲料诱导的、遗传背景和环境因素共同起作用的C57BL/6J小鼠代谢综合征(MS)模型,为研究营养因素与代谢综合征的关系提供周期较短、稳定性好、可重复性、与人类发病可比性高的动物模型。方法雄性3周龄C57BL/6J小鼠30只适应性喂养10d后随机分为2组,其中一组(10只)给予普通生长饲料(对照组),另一组(20只)给予高脂纯化饲料(模型组)。喂养期间对空腹血糖(FBG)、体重进行连续监测,同时监测体重指数(BMI)、血清胰岛素(FINS)、血清甘油三脂(TG)、总胆固醇(TC)、高密度脂蛋白(HDL-C)、低密度脂蛋白(LDL-C),实验期10周。实验结束时取内脏脂肪和肝脏称重,取肝胰做病理分析。结果分组喂养1周时,模型组小鼠体重出现显著性升高(P〈0.001),并表现为中心型肥胖。4周时FBG显著性升高(P〈0.05),5周时FINS开始升高但无显著性差异。8周时血清TC、HDL-C显著性升高(P〈0.001),10周时TG、TC、HDL-C、LDL-C均升高(P〈0.01)。HE染色显示肝脏中度脂肪变,胰岛细胞无明显改变。结论单纯施以高脂饲料10周即可建立MS小鼠模型。并且该模型造模方法简单易行、周期较短、稳定性好、可重复性高,与人类MS自然发病过程类似,是MS较理想的动物模型。  相似文献   

18.

Background

Despite significant advances in organ preservation, surgical techniques and perioperative care, primary graft dysfunction is a serious medical problem in transplantation medicine in general and a specific problem in patients undergoing lung transplantation. As a result, patients develop lung edema, causing reduced tissue oxygenation capacity, reduced lung compliance and increased requirements for mechanical ventilatory support. Yet, there is no effective strategy available to protect the grafted organ from stress reactions induced by ischemia/reperfusion and by the surgical procedure itself.

Methods

We assessed the effect of a cingulin-derived peptide, XIB13 or a random peptide in an established rat model of allogeneic lung transplantation. Donor lungs and recipients received therapeutic peptide at the time of transplantation and outcome was analyzed 100min and 28 days post grafting.

Results

XIB13 improved blood oxygenation and reduced vascular leak 100min post grafting. Even after 28 days, lung edema was significantly reduced by XIB13 and lungs had reduced fibrotic or necrotic zones. Moreover, the induction of an allogeneic T cell response was delayed indicating a reduced antigen exchange between the donor and the host.

Conclusions

In summary, we provide a new tool to strengthen endothelial barrier function thereby improving outcomes in lung transplantation.  相似文献   

19.
实验性X综合征大鼠模型的建立   总被引:6,自引:1,他引:6  
目的 建立一种典型的X综合症动物模型。方法 雄性SD大鼠施行两肾一夹术后普通饲料喂养 4周 ,诱发肾性高血压 ,继以高果糖饲料喂养 4周 ,诱导建立X综合症模型。结果 术后 4周 ,大鼠仅出现收缩压升高 ,血糖、血脂未见明显改变。高果糖饲料喂养 4周后 ,大鼠出现高血糖、高胰岛素血症、胰岛素抵抗、高血压和高脂血症。结论 肾性高血压形成后高果糖饮食 1个月 ,可诱导SD大鼠出现典型的X综合症 ,为研究胰岛素抵抗及其伴随的心血管疾病提供了一种理想的动物模型。  相似文献   

20.
Aerobic capacity is a strong predictor of all-cause mortality and can influence many complex traits. To explore the biological basis underlying this connection, we developed via artificial selection two rat lines that diverge for intrinsic (i.e. inborn) aerobic capacity and differ in risk for complex disease traits. Here we conduct the first in-depth pedigree and molecular genetic analysis of these lines, the high capacity runners (HCR) and low capacity runners (LCR). Our results show that both HCR and LCR lines maintain considerable narrow-sense heritability (h2) for the running capacity phenotype over 28 generations (h2 = 0.47 ± 0.02 and 0.43 ± 0.02, respectively). To minimize inbreeding, the lines were maintained by rotational mating. Pedigree records predict that the inbreeding coefficient increases at a rate of <1% per generation, ~37-38% slower than expected for random mating. Genome-wide 10K SNP genotype data for generations 5, 14, and 26 demonstrate substantial genomic evolution: between-line differentiation increased progressively, while within-line diversity deceased. Genome-wide average heterozygosity decreased at a rate of <1% per generation, consistent with pedigree-based predictions and confirming the effectiveness of rotational breeding. Linkage disequilibrium index r2 decreases to 0.3 at ~3 Mb, suggesting that the resolution for mapping quantitative trait loci (QTL) can be as high as 2-3 cM. To establish a test population for QTL mapping, we conducted an HCR-LCR intercross. Running capacity of the F1 population (n=176) was intermediate of the HCR and LCR parentals (28 pairs); and the F2 population (n=645) showed a wider range of phenotypic distribution. Importantly, heritability in the F0-F2 pedigree remained high (h2~0.6). These results suggest that the HCR-LCR lines can serve as a valuable system for studying genomic evolution, and a powerful resource for mapping QTL for a host of characters relevant to human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号