首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pathway-based analysis approach has exploded in use during the last several years. It is successful in recognizing additional biological insight of disease and finding groupings of risk genes that represent disease developing processes. Therefore, shared pathways, with pleiotropic effects, are important for understanding similar pathogenesis and indicating the common genetic origin of certain diseases. Here, we present a pathway analysis to reveal the potential disease associations between RA and three potential RA-related autoimmune diseases: psoriasis, diabetes mellitus, type 1 (T1D) and systemic lupus erythematosus (SLE). First, a comprehensive knowledge mining of public databases is performed to discover risk genes associated with RA, T1D, SLE and psoriasis; then by enrichment test of these genes, disease-related risk pathways are detected to recognize the pathways common for RA and three other diseases. Finally, the underlying disease associations are evaluated with the association rules mining method. In total, we identify multiple RA risk pathways with significant pleiotropic effects, the most unsurprising of which are the immunology related pathways. Meanwhile for the first time we highlight the involvement of the viral myocarditis pathway related to cardiovascular disease (CVD) in autoimmune diseases such as RA, psoriasis, T1D and SLE. Further Association rule mining results validate the strong association between RA and T1D and RA and SLE. It is clear that pleiotropy is a common property of pathways associated with disease traits. We provide novel pathway associations among RA and three autoimmune diseases. These results ascertain that there are shared genetic risk profiles that predispose individuals to autoimmune diseases.  相似文献   

3.
Pathway analyses of genome-wide association studies aggregate information over sets of related genes, such as genes in common pathways, to identify gene sets that are enriched for variants associated with disease. We develop a model-based approach to pathway analysis, and apply this approach to data from the Wellcome Trust Case Control Consortium (WTCCC) studies. Our method offers several benefits over existing approaches. First, our method not only interrogates pathways for enrichment of disease associations, but also estimates the level of enrichment, which yields a coherent way to promote variants in enriched pathways, enhancing discovery of genes underlying disease. Second, our approach allows for multiple enriched pathways, a feature that leads to novel findings in two diseases where the major histocompatibility complex (MHC) is a major determinant of disease susceptibility. Third, by modeling disease as the combined effect of multiple markers, our method automatically accounts for linkage disequilibrium among variants. Interrogation of pathways from eight pathway databases yields strong support for enriched pathways, indicating links between Crohn''s disease (CD) and cytokine-driven networks that modulate immune responses; between rheumatoid arthritis (RA) and “Measles” pathway genes involved in immune responses triggered by measles infection; and between type 1 diabetes (T1D) and IL2-mediated signaling genes. Prioritizing variants in these enriched pathways yields many additional putative disease associations compared to analyses without enrichment. For CD and RA, 7 of 8 additional non-MHC associations are corroborated by other studies, providing validation for our approach. For T1D, prioritization of IL-2 signaling genes yields strong evidence for 7 additional non-MHC candidate disease loci, as well as suggestive evidence for several more. Of the 7 strongest associations, 4 are validated by other studies, and 3 (near IL-2 signaling genes RAF1, MAPK14, and FYN) constitute novel putative T1D loci for further study.  相似文献   

4.
Multiple sclerosis (MS) and type 1 diabetes (T1D) are organ-specific autoimmune disorders with significant heritability, part of which is conferred by shared alleles. For decades, the Human Leukocyte Antigen (HLA) complex was the only known susceptibility locus for both T1D and MS, but loci outside the HLA complex harboring risk alleles have been discovered and fully replicated. A genome-wide association scan for MS risk genes and candidate gene association studies have previously described the IL2RA gene region as a shared autoimmune locus. In order to investigate whether autoimmunity risk at IL2RA was due to distinct or shared alleles, we performed a genetic association study of three IL2RA variants in a DNA collection of up to 9,407 healthy controls, 2,420 MS, and 6,425 T1D subjects as well as 1,303 MS parent/child trios. Here, we report “allelic heterogeneity” at the IL2RA region between MS and T1D. We observe an allele associated with susceptibility to one disease and risk to the other, an allele that confers susceptibility to both diseases, and an allele that may only confer susceptibility to T1D. In addition, we tested the levels of soluble interleukin-2 receptor (sIL-2RA) in the serum from up to 69 healthy control subjects, 285 MS, and 1,317 T1D subjects. We demonstrate that multiple variants independently correlate with sIL-2RA levels.  相似文献   

5.
Growing evidence from epidemiological studies indicates the association between rheumatoid arthritis (RA) and measles. However, the exact mechanism for this association is still unclear now. We consider that the strong association between both diseases may be caused by shared genetic pathways. We performed a pathway analysis of large-scale RA genome-wide association studies (GWAS) dataset with 5,539 cases and 20,169 controls of European descent. Meanwhile, we evaluated our findings using previously identified RA loci, protein-protein interaction network and previous results from pathway analysis of RA and other autoimmune diseases GWAS. We confirmed four pathways including Cytokine-cytokine receptor interaction, Jak-STAT signaling, T cell receptor signaling and Cell adhesion molecules. Meanwhile, we highlighted for the first time the involvement of Measles and Intestinal immune network for IgA production pathways in RA. Our results may explain the strong association between RA and measles, which may be caused by the shared genetic pathway. We believe that our results will be helpful for future genetic studies in RA pathogenesis and may significantly assist in the development of therapeutic strategies.  相似文献   

6.
Viral agents are of interest as possible autoimmune triggers due to prior reported associations and widely studied molecular mechanisms of antiviral immune responses in autoimmunity. Here we examined new viral candidates for the initiation and/or promotion of systemic autoimmune diseases (SAID), as well as possible related signaling pathways shared in the pathogenesis of those disorders. RNA isolated from peripheral blood samples from 33 twins discordant for SAID and 33 matched, unrelated healthy controls was analyzed using a custom viral-human gene microarray. Paired comparisons were made among three study groups—probands with SAID, their unaffected twins, and matched, unrelated healthy controls—using statistical and molecular pathway analyses. Probands and unaffected twins differed significantly in the expression of 537 human genes, and 107 of those were associated with viral infections. These 537 differentially expressed human genes participate in overlapping networks of several canonical, biologic pathways relating to antiviral responses and inflammation. Moreover, certain viral genes were expressed at higher levels in probands compared to either unaffected twins or unrelated, healthy controls. Interestingly, viral gene expression levels in unaffected twins appeared intermediate between those of probands and the matched, unrelated healthy controls. Of the viruses with overexpressed viral genes, herpes simplex virus-2 (HSV-2) was the only human viral pathogen identified using four distinct oligonucleotide probes corresponding to three HSV-2 genes associated with different stages of viral infection. Although the effects from immunosuppressive therapy on viral gene expression remain unclear, this exploratory study suggests a new approach to evaluate shared viral agents and antiviral immune responses that may be involved in the development of SAID.  相似文献   

7.
Although the introduction of genome-wide association studies (GWAS) have greatly increased the number of genes associated with common diseases, only a small proportion of the predicted genetic contribution has so far been elucidated. Studying the cumulative variation of polymorphisms in multiple genes acting in functional pathways may provide a complementary approach to the more common single SNP association approach in understanding genetic determinants of common disease. We developed a novel pathway-based method to assess the combined contribution of multiple genetic variants acting within canonical biological pathways and applied it to data from 14,000 UK individuals with 7 common diseases. We tested inflammatory pathways for association with Crohn''s disease (CD), rheumatoid arthritis (RA) and type 1 diabetes (T1D) with 4 non-inflammatory diseases as controls. Using a variable selection algorithm, we identified variants responsible for the pathway association and evaluated their use for disease prediction using a 10 fold cross-validation framework in order to calculate out-of-sample area under the Receiver Operating Curve (AUC). The generalisability of these predictive models was tested on an independent birth cohort from Northern Finland. Multiple canonical inflammatory pathways showed highly significant associations (p 10−3–10−20) with CD, T1D and RA. Variable selection identified on average a set of 205 SNPs (149 genes) for T1D, 350 SNPs (189 genes) for RA and 493 SNPs (277 genes) for CD. The pattern of polymorphisms at these SNPS were found to be highly predictive of T1D (91% AUC) and RA (85% AUC), and weakly predictive of CD (60% AUC). The predictive ability of the T1D model (without any parameter refitting) had good predictive ability (79% AUC) in the Finnish cohort. Our analysis suggests that genetic contribution to common inflammatory diseases operates through multiple genes interacting in functional pathways.  相似文献   

8.
Genome-wide association studies (GWAS) led to the identification of numerous novel loci for a number of complex diseases. Pathway-based approaches using genotypic data provide tangible leads which cannot be identified by single marker approaches as implemented in GWAS. The available pathway analysis approaches mainly differ in the employed databases and in the applied statistics for determining the significance of the associated disease markers.So far, pathway-based approaches using GWAS data failed to consider the overlapping of genes among different pathways or the influence of protein–interactions. We performed a multistage integrative pathway (MIP) analysis on three common diseases - Crohn''s disease (CD), rheumatoid arthritis (RA) and type 1 diabetes (T1D) - incorporating genotypic, pathway, protein- and domain-interaction data to identify novel associations between these diseases and pathways. Additionally, we assessed the sensitivity of our method by studying the influence of the most significant SNPs on the pathway analysis by removing those and comparing the corresponding pathway analysis results. Apart from confirming many previously published associations between pathways and RA, CD and T1D, our MIP approach was able to identify three new associations between disease phenotypes and pathways. This includes a relation between the influenza-A pathway and RA, as well as a relation between T1D and the phagosome and toxoplasmosis pathways. These results provide new leads to understand the molecular underpinnings of these diseases.The developed software herein used is available at http://www.cogsys.cs.uni-tuebingen.de/software/GWASPathwayIdentifier/index.htm.  相似文献   

9.
Genome-wide association studies (GWASs) have recently revealed many genetic associations that are shared between different diseases. We propose a method, disPCA, for genome-wide characterization of shared and distinct risk factors between and within disease classes. It flips the conventional GWAS paradigm by analyzing the diseases themselves, across GWAS datasets, to explore their “shared pathogenetics”. The method applies principal component analysis (PCA) to gene-level significance scores across all genes and across GWASs, thereby revealing shared pathogenetics between diseases in an unsupervised fashion. Importantly, it adjusts for potential sources of heterogeneity present between GWAS which can confound investigation of shared disease etiology. We applied disPCA to 31 GWASs, including autoimmune diseases, cancers, psychiatric disorders, and neurological disorders. The leading principal components separate these disease classes, as well as inflammatory bowel diseases from other autoimmune diseases. Generally, distinct diseases from the same class tend to be less separated, which is in line with their increased shared etiology. Enrichment analysis of genes contributing to leading principal components revealed pathways that are implicated in the immune system, while also pointing to pathways that have yet to be explored before in this context. Our results point to the potential of disPCA in going beyond epidemiological findings of the co-occurrence of distinct diseases, to highlighting novel genes and pathways that unsupervised learning suggest to be key players in the variability across diseases.  相似文献   

10.
Multiple myeloma (MM) is a common hematologic malignancy for which the underlying molecular mechanisms remain largely unclear. This study aimed to elucidate key candidate genes and pathways in MM by integrated bioinformatics analysis. Expression profiles GSE6477 and GSE47552 were obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) with p < .05 and [logFC] > 1 were identified. Functional enrichment, protein–protein interaction network construction and survival analyses were then performed. First, 51 upregulated and 78 downregulated DEGs shared between the two GSE datasets were identified. Second, functional enrichment analysis showed that these DEGs are mainly involved in the B cell receptor signaling pathway, hematopoietic cell lineage, and NF-kappa B pathway. Moreover, interrelation analysis of immune system processes showed enrichment of the downregulated DEGs mainly in B cell differentiation, positive regulation of monocyte chemotaxis and positive regulation of T cell proliferation. Finally, the correlation between DEG expression and survival in MM was evaluated using the PrognoScan database. In conclusion, we identified key candidate genes that affect the outcomes of patients with MM, and these genes might serve as potential therapeutic targets.  相似文献   

11.
12.
There is accumulating evidence that the proteins encoded by the genes associated with a common disorder interact with each other, participate in similar pathways and share GO terms. It has been anticipated that the functional modules in a disease related functional linkage network are informative to reveal significant metabolic processes and disease’s associations with other complex disorders. In the current study, Type 2 diabetes associated functional linkage network (T2DFN) containing 2770 proteins and 15041 linkages was constructed. The functional modules in this network were scored and evaluated in terms of shared pathways, co-localization, co-expression and associations with similar diseases. The assembly of top scoring overlapping members in the functional modules revealed that, along with the well known biological pathways, circadian rhythm, diverse actions of nuclear receptors in steroid and retinoic acid metabolisms have significant occurrence in the pathophysiology of the disease. The disease’s association with other metabolic and neuromuscular disorders was established through shared proteins. Nuclear receptor NRIP1 has a pivotal role in lipid and carbohydrate metabolism, indicating the need to investigate subsequent effects of NRIP1 on Type 2 diabetes. Our study also revealed that CREB binding protein (CREBBP) and cardiotrophin-1 (CTF1) have suggestive roles in linking Type 2 diabetes and neuromuscular diseases.  相似文献   

13.
Selective immunoglobulin A deficiency (IgAD) is the most common primary immunodeficiency in Caucasians. It has previously been suggested to be associated with a variety of concomitant autoimmune diseases. In this review, we present data on the prevalence of IgAD in patients with Graves disease (GD), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), celiac disease (CD), myasthenia gravis (MG) and rheumatoid arthritis (RA) on the basis of both our own recent large-scale screening results and literature data. Genetic factors are important for the development of both IgAD and various autoimmune disorders, including GD, SLE, T1D, CD, MG and RA, and a strong association with the major histocompatibility complex (MHC) region has been reported. In addition, non-MHC genes, such as interferon-induced helicase 1 (IFIH1) and c-type lectin domain family 16, member A (CLEC16A), are also associated with the development of IgAD and some of the above diseases. This indicates a possible common genetic background. In this review, we present suggestive evidence for a shared genetic predisposition between these disorders.  相似文献   

14.
BackgroundImmune and skeletal systems physiologically and pathologically interact with each other. Immune and skeletal diseases may share potential pleiotropic genetics factors, but the shared specific genes are largely unknown.ObjectiveThis study aimed to investigate the overlapping genetic factors between multiple diseases (including rheumatoid arthritis (RA), psoriasis, osteoporosis, osteoarthritis, sarcopenia, and fracture).MethodsThe canonical correlation analysis (metaCCA) approach was used to identify the shared genes for six diseases by integrating genome-wide association study (GWAS)-derived summary statistics. The versatile Gene-based Association Study (VEGAS2) method was further applied to refine and validate the putative pleiotropic genes identified by metaCCA.ResultsAbout 157 (p<8.19E-6), 319 (p<3.90E-6), and 77 (p<9.72E-6) potential pleiotropic genes were identified shared by two immune diseases, four skeletal diseases, and all of the six diseases, respectively. The top three significant putative pleiotropic genes shared by both immune and skeletal diseases, including HLA-B, TSBP1, and TSBP1-AS1 (p<E-300), were located in the major histocompatibility complex (MHC) region. Nineteen of 77 putative pleiotropic genes identified by metaCCA analysis were associated with at least one disease in the VEGAS2 analysis. Specifically, the majority (18) of these 19 putative validated pleiotropic genes were associated with RA.ConclusionThe metaCCA method identified some pleiotropic genes shared by the immune and skeletal diseases. These findings help to improve our understanding of the shared genetic mechanisms and signaling pathways underlying immune and skeletal diseases.  相似文献   

15.
低温胁迫是萱草(Hemerocallis fulva)生长过程中经常会遭遇的一种非生物胁迫。比较了萱草叶片在低温处理(10、5、0 ℃)下转录组与对照(15 ℃)数据的差异,共筛选出差异表达基因2 457个,其中上调基因1 253个,下调基因1 204个。差异表达基因主要富集在细胞过程、代谢过程和催化活性等49个GO过程,代谢途径、次生代谢产物的生物合成、植物激素信号转导等42条KEGG代谢途径中。其中参与植物激素信号转导通路的差异表达基因发生了不同程度的变化,GH3.10基因上调至对照组的13.624倍,IAA1基因下调0.120倍;参与可溶性糖合成通路的差异基因发生了0.076~28.114倍不同程度的变化。随后对3个低温处理组共有的29个差异表达基因进行热图和网络调控分析,基于基因在网络调控中的位置,对ABCF5OFPsSWEETs等基因在冷应答的作用进行了分析。本研究结果为进一步挖掘萱草低温响应的关键基因及耐寒萱草种质开发、分子育种提供了一定的理论支撑。  相似文献   

16.
17.
用生物信息学方法筛选肺腺癌(Lung adenocarcinoma,LUAD)的诊断生物标志物,并分析肺腺癌中免疫细胞浸润情况。从GEO和TCGA数据库下载肺腺癌的表达数据集,利用R软件筛选肺腺癌与正常肺组织间的差异表达基因(DEGs),使用DAVID网站对DEGs进行GO及KEGG富集分析,使用STRING及Cytoscape等工具对DEGs构建蛋白相互作用网络并筛选hub基因;利用Kaplan-Meier法对DEGs进行生存分析,并对hub基因进行ROC分析筛选诊断生物标志物,利用GSEA预测有预后价值的基因参与的信号通路;并用Cibersort软件反卷积算法分析肺腺癌中免疫细胞浸润情况。共得到肺腺癌的234个DEGs,这些基因主要参与信号转导、物质代谢、免疫反应等相关信号通路;构建PPI网络筛选出的20个hub基因中8个存在预后价值(CCNA2、DLGAP5、HMMR、MMP1、MMP9、MMP13、SPP1、TOP2A),ROC分析中DLGAP5、SPP1值分别是0.703、0.706;DLGAP5、SPP1基因表达水平与肺腺癌组织浆细胞、未活化的CD4+记忆细胞、调节T细胞、巨噬细胞M0、M1、M2及中性粒细胞浸润密切相关(P<0.05)。肺腺癌中DLGAP5、SPP1具有较高诊断价值且参与肺腺癌组织免疫细胞浸润;DLGAP5、SPP1基因可作为肺腺癌诊断的生物标志物,可为肺腺癌的靶向治疗研究提供新思路。  相似文献   

18.
Rheumatoid arthritis (RA) and osteoarthritis (OA) are the common joints disorder in the world. Although they have showed the analogous clinical manifestation and overlapping cellular and molecular foundation, the pathogenesis of RA and OA were different. The pathophysiologic mechanisms of arthritis in RA and OA have not been investigated thoroughly. Thus, the aim of study is to identify the potential crucial genes and pathways associated with RA and OA and further analyze the molecular mechanisms implicated in genesis. First, we compared gene expression profiles in synovial tissue between RA and OA from the National Center of Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. Gene Expression Series (GSE) 1919, GSE55235, and GSE36700 were downloaded from the GEO database, including 20 patients of OA and 21 patients of RA. Differentially expressed genes (DEGs) including “CXCL13,” “CD247,” “CCL5,” “GZMB,” “IGKC,” “IL7R,” “UBD///GABBR1,” “ADAMDEC1,” “BTC,” “AIM2,” “SHANK2,” “CCL18,” “LAMP3,” “CR1,” and “IL32.” Second, Gene Ontology analyses revealed that DEGs were significantly enriched in integral component of extracellular space, extracellular region, and plasma membrane in the molecular function group. Signaling pathway analyses indicated that DEGs had common pathways in chemokine signaling pathway, cytokine-cytokine receptor interaction, and cytosolic DNA-sensing pathway. Third, DEGs showed the complex DEGs protein-protein interaction network with the Coexpression of 83.22%, Shared protein domains of 8.40%, Colocalization of 4.76%, Predicted of 2.87%, and Genetic interactions of 0.75%. In conclusion, the novel DEGs and pathways between RA and OA identified in this study may provide new insight into the underlying molecular mechanisms of RA.  相似文献   

19.
The antiviral treatment efficacy varies among chronic hepatitis B (CHB) patients and the underlying mechanism is unclear. An integrated bioinformatics analysis was performed to investigate the host factors that affect the therapeutic responsiveness in CHB patients. Four GEO data sets (GSE54747, GSE27555, GSE66698 and GSE66699) were downloaded from the Gene Expression Omnibus (GEO) database and analysed to identify differentially expressed genes(DEGs). Enrichment analyses of the DEGs were conducted using the DAVID database. Immune cell infiltration characteristics were analysed by CIBERSORT. Upstream miRNAs and lncRNAs of hub DEGs were identified by miRWalk 3.0 and miRNet in combination with the MNDR platform. As a result, seventy-seven overlapping DEGs and 15 hub genes were identified including CCL5, CXCL9, MYH2, CXCR4, CD74, CCL4, HLA-DRB1, ACTA1, CD69, CXCL10, HLA-DRB5, HLA-DQB1, CXCL13, STAT1 and CKM. The enrichment analyses revealed that the DEGs were mainly enriched in immune response and chemokine signalling pathways. Investigation of immune cell infiltration in liver samples suggested significantly different infiltration between responders and non-responders, mainly characterized by higher proportions of CD8+ T cells and activated NK cells in non-responders. The prediction of upstream miRNAs and lncRNAs led to the identification of a potential mRNA-miRNA-lncRNA regulatory network composed of 2 lncRNAs (H19 and GAS5) and 5 miRNAs (hsa-mir-106b-5p, hsa-mir-17-5p, hsa-mir-20a-5p, hsa-mir-6720-5p and hsa-mir-93-5p) targeting CCL5 mRNA. In conclusion, our study suggested that host genetic factors could affect therapeutic responsiveness in CHB patients. The antiviral process might be associated with the chemokine-mediated immune response and immune cell infiltration in the liver microenvironment.  相似文献   

20.
【目的】蜜蜂是典型的具有发育狭温性的全变态昆虫。本研究以对低温最敏感的意大利蜜蜂Apis mellifera ligustica预蛹为研究对象,通过低温胁迫不同时间的差异表达基因(differentially expressed genes, DEGs)趋势分析,探讨低温胁迫对蜜蜂发育影响的关键基因。【方法】对3日龄意大利蜜蜂封盖子预蛹进行20℃低温胁迫18 h(T18)和36 h(T36),以未经低温胁迫的预蛹为对照(CK),通过Illumina HiSeqTM平台进行转录组学测定。利用Short Time-series Expression Miner(STEM)软件对2个处理组与对照组比较共有的差异表达基因进行趋势分析,再进一步对显著富集趋势模式中富集的差异表达基因进行GO分类和KEGG pathway分析。利用RT-qPCR对随机挑选的5个DEGs的表达模式进行验证。【结果】对检测到1 062个T18 vs CK和T36 vs CK共有的DEGs进行趋势分析,发现3个显著的基因表达模式,包括2个上调表达模式(Profile 6,有539个基因;Profil...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号