首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrate concentration and microbial nitrogen transformations in ground-water-affected sediments of Great South Bay, NY were examined over several annual cycles. Nitrate concentrations are typically higher at 40 cm depth than at the surface, while salinity generally decreases with depth. Denitrification occurs through the sediment core and is organic substrate limited at depth while being nitrate limited near the sediment-water interface. Denitrification accounts for about 50% of the biological NO3 - decrease between 40 and 15 cm depth interval. Higher than average annual rainfall during 1983 and 1984 was reflected in an elevated water table as well as lower Bay salinities. Conversely, extremely low rainfall occurred in 1985 and 1986, and the water table reached an extreme low in Sep. 1986. Interestingly, the amounts of nitrate in the sediment column of our primary station varied directly with water table height and, presumably, the discharge rate of nitrate enriched groundwater. We suggest that this may be a result of the more efficient removal of advected nitrate by denitrification during low flow conditions.  相似文献   

2.
Nitrate concentration and microbial nitrogen transformations in ground-water-affected sediments of Great South Bay, NY were examined over several annual cycles. Nitrate concentrations are typically higher at 40 cm depth than at the surface, while salinity generally decreases with depth. Denitrification occurs through the sediment core and is organic substrate limited at depth while being nitrate limited near the sediment-water interface. Denitrification accounts for about 50% of the biological NO3 - decrease between 40 and 15 cm depth interval. Higher than average annual rainfall during 1983 and 1984 was reflected in an elevated water table as well as lower Bay salinities. Conversely, extremely low rainfall occurred in 1985 and 1986, and the water table reached an extreme low in Sep. 1986. Interestingly, the amounts of nitrate in the sediment column of our primary station varied directly with water table height and, presumably, the discharge rate of nitrate enriched groundwater. We suggest that this may be a result of the more efficient removal of advected nitrate by denitrification during low flow conditions.  相似文献   

3.
We measured net nitrate retention by mass balance in a 700-m upwelling reach of a third-order sand plains stream, Emmons Creek, from January 2007 to November 2008. Surface water and groundwater fluxes of nitrate were determined from continuous records of discharge and from nitrate concentrations based on weekly and biweekly sampling at three surface water stations and in 23 in-stream piezometers, respectively. Surface water nitrate concentration in Emmons Creek was relatively high (mean of 2.25 mg NO3?CN l?1) and exhibited strong seasonal variation. Net nitrate retention averaged 429 mg NO3?CN m?2 d?1 and about 2% of nitrate inputs to the reach. Net nitrate retention was highest during the spring and autumn when groundwater discharge was elevated. Groundwater discharge explained 57?C65% of the variation in areal net nitrate retention. Specific discharge and groundwater nitrate concentration varied spatially. Weighting groundwater solute concentrations by specific discharge improved the water balance and resulted in higher estimates of nitrate retention. Our results suggest that groundwater inputs of nitrate can drive nitrate retention in streams with high groundwater discharge.  相似文献   

4.
Insam  H.  Palojärvi  A. 《Plant and Soil》1995,168(1):75-81
Several boreal and alpine forests are depleted in nutrients due to acidification. Fertilization may be a remedy, but rapidly-soluble salts (N, P, K, Mg) may pose nitrate problems for the groundwater or decrease microbial activity.With the aim to investigate potential nitrogen leaching after fertilization we set up an experiment employing intact soil cores (11 cm diameter, 20–40 cm long) from a mixed forest and a Picea abies stand (soil type Rendsina) in the Northern Calcareous Alps of Austria. The cores were fertilized with a commercial NPK fertilizer or a methylene-urea-apatite-biotite (MuAB) fertilizer at a rate corresponding to 300 kg N ha-1 and incubated for 28 weeks together with unfertilized controls. Both soil water (retrieved 5 cm below the soil surface) and leachate were analyzed for nitrate and ammonium in regular intervals. After the incubation, soil microbial biomass and basal repiration were determined and a nitrogen mineralization assay was performed.For the control, in the soil water and leachate maximum NH4 + and NO3 - concentrations of 5 and 11 mg N L-1, respectively, were found. Compared to that, MuAB fertilizer resulted in a slow increase of NH4 + and NO3 - in the soil water (up to 11 and 35 mg N L-1 respectively) and in the leachate (4 mg NH4 +-N L-1 and 44 mg NO3 --N L-1). Highest nitrogen loads were found for the fast release NPK fertilizer, with NH4 + and NO3 - concentrations up to 170 and 270 mg N L-1, respectively, in the soil water. NH4 +-N levels in the leachate remained below 5, while NO3-N levels were up to 190 mg L-1. Fast- release NPK caused a significant decrease of microbial biomass and basal respiration. These parameters were not affected by MuAB fertilizer.The results suggest that the MuAB fertilizer may be an ecologically appropriate alternative to fast-release mineral fertilizers for improving forest soils.  相似文献   

5.
There is always a relatively high moisture content in the shallow soil layer in Gobi area on the top of the Mogao Grottoes in the extremely dry zone. This paper gives out a new judgement on soil water source through field experiments using the isolated water method, simulated rainfall method and greenhouse method. Under the condition of typical hyper-arid climate far away from rainfall effect and after cutting off the connection of soil and groundwater the simulated rainfall experiment was conducted, through putting up a plastic greenhouse to obtain a relatively closed space and extracting the condensed water on the film surface, the soil water output from the greenhouse was monitored. The experimental results show that generally the rainfall can be completely evaporated in about 20 days under the isolated condition. In the relatively closed space sheltered by arched greenhouse in the Gobi area water can be continuously transferred outward from subsoil and condensed on the roof film, with a daily output quantity of 3–5 g/m2d. After prolonged output soil water content remains significantly higher than that of the control and before covering by arched shed. Comprehensively judging from this, groundwater is an important source of soil water in addition to precipitation. The new judgement has a very important practical significance to the water research of the groundwater–soil–plant-atmosphere circle (GSPAC) and the recovery of the desertified environment.  相似文献   

6.
1. Groundwater nitrate contamination has become a worldwide problem as increasing amounts of nitrogen fertilisers are used in agriculture. Alluvial groundwater is uniquely juxtaposed between soils and streams. Hydrological connections among these subsystems regulate nutrient cycling. 2. We measured denitrification using an in situ acetylene‐block assay in a nitrate‐contaminated portion of the Garonne River catchment along a gradient of surface water–ground water mixing during high (snowmelt) and low flow. 3. During high flow (mid‐April to early June) the water table rose an average of 35 cm and river water penetrated the subsurface to a great extent in monitoring wells. Denitrification rates averaged 5.40 μgN2O L?1 min?1 during the high flow period, nearly double the average rate (2.91 μgN2O L?1 min?1) measured during base flow. This was driven by a strong increase in denitrification in groundwater under native riparian vegetation. Nitrate concentrations were significantly lower during high flow compared with base flow. Riparian patches had higher dissolved organic carbon concentrations that were more aromatic compared with the gravel bar patch closest to the river. 4. Multiple linear regression showed that the rate of denitrification was best predicted by the concentration of low molecular weight organic acids. These molecules are probably derived from decomposition of soil organic matter and are an important energy source for anaerobic respiratory processes like denitrification. The second best predictor was per cent surface water, reflecting higher denitrification rates during spring when hydrological connection between surface water and ground water was greatest. 5. Our results indicate that, while denitrification rates in Garonne River alluvium were spatially and temporally variable, denitrification was a significant NO3 sink during transport from the NO3‐contaminated floodplain to the river. DOC availability and river–floodplain connectivity were important factors influencing observed spatial and temporal patterns.  相似文献   

7.
Melaleuca halmaturorum is a salt and waterlogging tolerant tree and thus often occurs in saline areas fringing permanent wetlands and in ephemeral swamps. The dominance of this tree in natural groundwater discharge areas may result in M. halmaturorum transpiration making a major contribution to groundwater discharge. To quantify this the seasonal changes in tree water sources in response to fluctuating soil salinity and waterlogging were examined. This study was conducted in a natural system where seasonally fluctuating saline groundwater (64 dS m–1; 0.3–1.2 m deep) allowed the patterns of M. halmaturorum root water uptake to be followed over a 15 month period. Tree water sources were examined using the naturally occurring stable isotopes of water, while new root growth was examined using a field root observation window and from soil cores. The presence of isotopic fractionation of 2H under conditions of soil salinity and waterlogging was tested in a glasshouse experiment. Measurements of soil and leaf water potential were also made to examine the possible water sources and limits to water uptake. No isotopic fractionation was found by tree roots under conditions of salinity and waterlogging. M. halmaturorum trees were active in taking up groundwater at most times and combined this with a shallower soil water source replenished by rainfall in winter. Water uptake was concentrated in the deeper parts of the soil profile when the groundwater was at its deepest and salt had accumulated in the surface soils, at the end of summer. When groundwater rose, at the end of winter, roots responded by extracting water from near the soil surface (0–0.1 m), at the new watertable. This pattern of water uptake in response to groundwater fluctuations and salt accumulation in the surface soil was also reflected in new root tip appearance at the root observation window. Fluctuations in leaf water potential fallowed fluctuations in surface soil (0.1 m depth) water potential at all times. In winter leaf water potential reflected the absolute values of the surface soil water potential but in summer it was between surface soil and groundwater water potentials. We conclude that M. halmaturorum used groundwater in summer and a combination of rainfall and groundwater from the surface soils in winter. The ability to take up water from saline substrates through the maintenance of low leaf water potential, combined with this ability to rapidly alter root water uptake in response to changes in soil water availability contributed to the survival of M. halmaturorum in this saline swamp.  相似文献   

8.
《农业工程》2014,34(6):342-350
The increased use of nitrogen fertilizers in agriculture would cause migration of nitrogen to surface and groundwater; accordingly, would lead to water resources contamination. The objective of this study is to investigate the effect of potassium zeolite on nitrate and ammonium ions sorption and retention in a saturated sandy loam soil in a laboratory condition. The study was conducted as a completely randomized block design with four treatments of 0, 2, 4 and 8 g zeolite per kilogram soil and three replications. Ammonium nitrate fertilizer with concentration of 10 g l−1 was added to soil columns and then leaching was performed. The results show that increasing potassium zeolite to soil causes reduction to the mobility of both nitrate and ammonium and enhancement of the retention of ions in soil. Ions leaching were simulated with convection–dispersion-equation (CDE) and mobile–immobile model (MIM) using HYDRUS-1D code. The results indicate that ammonium ion sorption by soil followed the Freundlich isotherm model. Absorption isotherms and dispersion (De) coefficient were determined through the inverse modeling for both ions. Based on the results, optimized values of Freundlich isotherm were much less than the observed amounts. This shows that the HYDRUS-1D model underestimated the adsorption parameters to predict the ammonium ion mobility in soil macropores. Since soil has been disturbed, the prediction of CDE model was equal to MIM model approximately. Both models showed that as the amount of applied zeolite increases, the dispersion (De) coefficient of nitrate and ammonium ions in the soil increases.  相似文献   

9.
为探索山东南四湖沿岸麦玉轮作区玉米季内减少土壤无机氮素淋溶和径流损失的施肥策略,降低其对湖区水质产生的潜在威胁,采用田间原位安装淋溶水采集器和地表水径流池收集水样结合室内分析不同形态氮含量的方法,研究了不同施肥模式下无机氮素淋溶和径流损失特征。结果表明:土壤淋溶水量及地表水径流量与降水呈显著正相关关系,其水量受秸秆类物质还田的影响;硝态氮(NO3--N)与铵态氮(NH4 -N)随地表水径流损失的浓度及总量均明显高于淋溶水,由径流方式损失的氮素占2/3以上,是氮素以水溶液形式流失的主要途径;淋溶和径流均以NO3--N损失为主(径流损失中NO3--N占总量的82.9%-90.8%,淋溶损失中NO3--N占63.5%-72.9%),地表径流水NO3--N浓度对水质有较大影响,但土壤淋溶水NO3--N浓度对地下水污染不构成威胁;农民习惯施肥处理在玉米整个生育期淋溶和径流氮损失最高。在保证玉米产量前提下,降低氮素流失造成湖区的污染,平衡施用氮磷钾肥、施用控释氮肥、有机替代无机和秸秆还田等措施均可在沿南四湖区农田使用。  相似文献   

10.
Nitrate in the unsaturated zone between the soil surface and the water table was studied in agroforestry Parklands in north western Senegal by examination of samples obtained by hand auger. Depending on location, water tables existed at depths between 10 and 35m below ground. Previous studies of groundwater in this region had found that large concentrations of nitrate were unconnected with anthropogenic activity. The objective of this study was to determine whether nitrogen fixing vegetation had a role in groundwater nitrate accumulation and whether roots of trees were located deeply enough to access the nitrate. Accordingly, sample profiles were augered close to stems of nitrogen fixing trees, non-nitrogen fixing trees and also in adjacent areas that were unaffected by tree presence. These adjacent areas were typically open pasture or cultivated fields. Tree fine roots were quantified in the samples and examined for the presence of mycorrhizas. Similarly, sand/soil samples were examined and tested for the presence of nitrogen fixing rhizobia that were capable of forming functional nodules on appropriate host plants. Concentrations of nitrate were greatest in soils beneath nitrogen fixing trees and nitrate was more plentiful in profiles augered beneath nitrogen fixing crops than it was elsewhere suggesting that N-fixation was the source of the nitrate. The concentrrations of nitrate that were found in the unsaturated zone were greatly in excess of the WHO recommended limit for nitrate in drinking water. High NO3-N/Cl ratios confirm insitu production of nitrate, and indicate that this is a natural baseline occurrence related to N-fixation. The nitrate is moving down the profile and impacts the groundwater unless it can be intercepted by plant roots. NO3-N amounts in solution in the soil profile varied between 75 and 1000kg ha–1 beneath trees and between 120 and 400kg ha–1 in areas outwith tree crowns. Although these quantities of N occupy the lower end of the range of N values obtained in north American deserts, they comprise a considerable dryland resource where amounts of organic fertilizer are limited and where cost prohibits the use of commercial fertilizers. Roots of both nitrogen fixing and non-nitrogen fixing trees were deep enough to access the nitrate but the small amounts of available water at intermediate depths suggest that large scale uptake of nitrate will only be possible in the wetter zones located close to the water table. Shallow roots tended to be more heavily colonized by mycorrhizas than deeper roots but mycorrhizas were recovered from roots located 22m below ground. Tree roots and rhizobia had similar patterns of distribution. They were commonest close to the soil surface, less frequent at intermediate depths and tended to increase in frequency close to the water table.  相似文献   

11.
The lack of understanding of nitrate dynamics in soil profiles of semiarid regions hampers the assessment of the environmental risks associated with nitrate. A long-term field experiment established in the Loess Plateau of Northwest China in 1984 was used to investigate the seasonal dynamics of water and nitrate contents in the soil profile (0–300 cm) under bare fallow and continuous winter wheat (Triticum aestivum L.) with various fertilizer treatments. For treatments without mineral N input (i.e., no fertilizer, farmyard manure alone, and with P fertilizer), the amount of nitrate accumulated in the soil profile (52–120 kg N ha?1, the average for June, August, February and April) was significantly lower than that (292 kg N ha?1) accumulated in the bare fallow treatment. A large amount of nitrate (1,065 kg N ha?1) was found accumulated in the soil profile with the treatment applied with mineral N at a rate of 120 kg N ha?1 year?1 for 17 years (1984–2001) and this nitrate moved downward during the wet season (from August to February). Clearly, the amount of nitrate accumulated in the soil profiles, and its tendency of downward movement, appears to potentially be an environmental risk as it may reach groundwater. Fertilization as mineral N fertilizers coupled with FYM or P resulted in 50–70% less nitrate accumulation in the soil profiles than that using mineral N fertilizer alone, and therefore the environmental risk was reduced. It is proposed that a “break point” of nitrate distribution existed in the soil profiles, providing an indication of soil depth to which nitrate can transfer.  相似文献   

12.
Summary Following uptake by rape plants, the nitrate concentration decreased near the root surface. The gradient up to 4 mm from the root was greater when the initial concentration used was higher. In a similar way to exchangeable K+, the concentration of exchangeable NH 4 + in the soil decreased at the soil-root interface.Native, non-exchangeable NH4/+ was not taken up by roots, so that its concentration in the soil close to the root remained unchanged. In contrast, recently fixed non-ecchangeable NH 4 + originating from fertilizer was absorbed by plants and almost completely extracted from the soil near the roots.  相似文献   

13.
Upland humid tropical forest soils are often characterized by fluctuating redox dynamics that vary temporally and spatially across the landscape. An increase in the frequency and intensity of rainfall events with climate change is likely to affect soil redox reactions that control the production and emissions of greenhouse gases. We used a 24-day rainfall manipulation experiment to evaluate temporal and spatial trends of surface soil (0–20 cm) redox-active chemical species and greenhouse gas fluxes in the Luquillo Experimental Forest, Puerto Rico. Treatments consisted of a high rainfall simulation (60 mm day?1), a fluctuating rainfall regime, and a control. Water addition generated high temporal and spatial variation in soil moisture (0.3–0.6 m3 m?3), but had no significant effect on soil oxygen (O2) concentrations. Extractable nitrate (NO3 ?) concentrations decreased with daily water additions and reduced iron (Fe(II)) concentrations increased towards the end of the experiment. Overall, redox indicators displayed a weak, non-deterministic, nonlinear relationship with soil moisture. High concentrations of Fe(II) and manganese (Mn) were present even where moisture was relatively low, and net Mn reduction occurred in all plots including controls. Mean CO2 fluxes were best explained by soil C concentrations and a composite redox indicator, and not water addition. Several plots were CH4 sources irrespective of water addition, whereas other plots oscillated between weak CH4 sources and sinks. Fluxes of N2O were highest in control plots and were consistently low in water-addition plots. Together, these data suggest (1) a relative decoupling between soil moisture and redox processes at our spatial and temporal scales of measurement, (2) the co-occurrence of aerobic and anaerobic biogeochemical processes in well-drained surface soils, and (3) an absence of threshold effects from sustained precipitation on redox reactions over the scale of weeks. Our data suggest a need to re-evaluate representations of moisture in biogeochemical models.  相似文献   

14.
Soil and water conservation measures can impact hydrological cycle, but quantitative analysis of this impact is still difficult in a watershed scale. To assess the effect quantitatively, a three-dimensional finite-difference groundwater flow model (MODFLOW) with a surface runoff model–the Soil Conservation Service (SCS) were calibrated and applied based on the artificial rainfall experiments. Then, three soil and water conservation scenarios were simulated on the sand-box model to assess the effect of bare slope changing to grass land and straw mulching on water volume, hydraulic head, runoff process of groundwater and surface water. Under the 120 mm rainfall, 60 mm/h rainfall intensity, 5 m2 area, 3° slope conditions, the comparative results indicated that the trend was decrease in surface runoff and increase in subsurface runoff coincided with the land-use converted from bare slope to grass land and straw mulching. The simulated mean surface runoff modulus was 3.64×10−2 m3/m2/h in the bare slope scenario, while the observed values were 1.54×10−2 m3/m2/h and 0.12×10−2 m3/m2/h in the lawn and straw mulching scenarios respectively. Compared to the bare slope, the benefits of surface water reduction were 57.8% and 92.4% correspondingly. At the end of simulation period (T = 396 min), the simulated mean groundwater runoff modulus was 2.82×10−2 m3/m2/h in the bare slope scenario, while the observed volumes were 3.46×10−2 m3/m2/h and 4.91×10−2 m3/m2/h in the lawn and straw mulching scenarios respectively. So the benefits of groundwater increase were 22.7% and 60.4% correspondingly. It was concluded that the soil and water conservation played an important role in weakening the surface runoff and strengthening the underground runoff. Meanwhile the quantitative analysis using a modeling approach could provide a thought for the study in a watershed scale to help decision-makers manage water resources.  相似文献   

15.
蒸发条件下潜水埋深对土壤-柽柳水盐分布的影响   总被引:1,自引:0,他引:1  
赵西梅  夏江宝  陈为峰  陈印平 《生态学报》2017,37(18):6074-6080
盐水矿化度下模拟设置4个潜水埋深(0.9、1.2、1.5、1.8 m),分析不同土层的土壤相对含水量(RWC)、含盐量(S_C)和土壤溶液绝对浓度(C_S)等水盐参数,及柽柳叶片和新生枝条的含水量及Na~+含量,探讨盐水矿化度下土壤-柽柳水盐参数对潜水埋深的响应规律。结果表明:各土层RWC与潜水埋深呈负相关,0.9 m潜水埋深下各土层的RWC均最高,且各土层RWC随土层深度的增加呈先降低后增加的趋势,其它潜水埋深下各土层RWC均逐渐增加,1.2 m是地下水所能上升且保持柽柳柱体土壤表层湿润的最高高度。各土层S_C和C_S与潜水埋深呈抛物线型,均表现为先增加后降低,潜水埋深1.2 m时,各土层S_C均最高。随土层深度的增加,各潜水埋深下S_C先降低后增加,而C_S呈现减少趋势;潜水埋深越高,土层间C_S变化幅度越激烈。潜水埋深对柽柳叶片和新生枝条的含水量无显著影响(P0.05),而随潜水埋深的增加,柽柳叶片Na~+含量逐渐增加,新生枝条Na~+含量则先增加后降低。从整个柽柳土柱看,随潜水埋深的增加,整个土壤剖面的RWC均值逐渐降低,而S_C和C_S均值先增加后降低,潜水埋深1.2 m是盐分变化的分界点,建议栽植柽柳的潜水埋深大于1.2 m。  相似文献   

16.
宁夏引黄灌区秸秆还田对麦田土壤硝态氮淋失的影响   总被引:3,自引:0,他引:3  
以宁夏引黄灌区为例,探索秸秆还田条件下冬小麦土壤硝态氮淋失规律。试验设置常规施肥(CK)、常规施肥条件下施用4500kg/hm2(T1,半量还田)和9000 kg/hm2(T2,全量还田)秸秆3个处理。利用树脂芯法吸附10、20、30、60cm和90cm土层的硝态氮流失量。结果表明:硝态氮(纯N)淋失量6.26—12.85 kg/hm2,是冬小麦施用化肥氮量的2.78%—5.71%。与对照CK相比,T1和T2在10cm土层减少0.09%和3.97%;20cm土层减少8.51%和9.81%;30cm土层减少2.25%和10.34%;60cm土层减少23.85%和13.08%;90cm土层减少27.65%和20.73%。10cm和20cm土层,处理与对照以及处理之间均未到显著性差异(P0.05);30cm处理,T1与CK以及T1与T2未达到显著性差异,但T2与CK达到显著性差异表明全量还田效果最好;60cm土层,处理与对照、以及处理之间均达到显著性差异;90cm土层,处理与对照之间达到显著性差异,处理之间未达到显著性差异。硝态氮淋失主要发生在冬小麦返青至灌浆期间,占全生育期淋失量的52.95%—67.79%。T1、T2冬小麦产量增产率分别为10.11%与11.51%。可见,稻秆还田能够减少灌区土壤硝态氮淋失量。  相似文献   

17.
Relationships between groundwater and lake ecology are often overlooked, but they may be strong, particularly in seepage lakes. As a result, the nature and degree of groundwater effects on lakes are usually neglected. In this study interactions among rainfall, groundwater and surface water and their limnological effects were traced seasonally for two years of changing rainfall in a Spanish flowthrough, seepage lake complex. Cumulative rainfall dictated recharge of groundwater with delays of nine months. Groundwater discharge, in turn, increased surface discharge downstream. Mediated by the geographical setting of lakes, both fluxes impinged on lake water renewal time, but effects of the latter on limnological variables were much stronger at the district scale than at the single lake scale. These water‐renewal effects included the following: decreasing salinity, total phosphorus concentration and phytoplankton biomass and increasing water transparency and total nitrogen concentration as water renewal shortened, the nitrogen effect arising because of nitrate‐rich water entering the lakes as groundwater levels rose. This complex response of a Mediterranean lake district to water availability may also be expected in cold temperate lakes as climate change effects become stronger. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Little is known of the mechanisms employed by woody plants to acquire key resources such as water and nutrients in hyperarid environments. For phreatophytic plants, deep roots are necessary to access the water table, but given that most nutrients in many desert ecosystems are stored in the upper soil layers, viable shallow roots may be equally necessary for nutrient uptake. We sought to better understand the interaction between water and nutrient uptake from soil horizons differing in the relative abundance of these resources. To this end, we monitored plant water and nutrient status before and after applying flood irrigation to four phreatophytic perennial plant species in the remote hyperarid Taklamakan desert in western China. Sap flow in the roots of five plants of the perennial desert species Alhagi sparsifolia Shap., Karelina caspica (Pall.) Less., Calligonum caput medusea Schrenk, and Eleagnus angustifolia Hill. was monitored using the heat ratio method (HRM). Additionally we measured predawn and midday water potential, foliar nitrate reductase activity (NRA), xylem sap nutrient concentration and the concentration of total solutes in the leaves before, 12 and 96 h after flooding to investigate possible short-term physiological effects on water and nutrient status. Rates of sap flow measured during the day and at night in the absence of transpiration did not change after flooding. Moderately high rates of sap flow (HRM heat pulse velocity, 5–25 cm h−1) detected during the day in soils that had a near zero water content at the surface indicated that all species had contact to groundwater. There was no evidence from sap flow data that plants had utilised flood water to increase maximum rates of transpiration under similar climatic conditions, and there was no evidence of a process to improve the efficiency of water or nutrient uptake, such as hydraulic redistribution (i.e. the passive movement of water from moist soil to very dry soil via roots). Measurements of plant water status, xylem sap nutrient status, foliar NRA and the concentration of osmotically active substances were also unaffected by flood irrigation. Our results clearly show that groundwater acts as the major source of water and nutrients for these plants. The inability of plants to utilise abundant surface soil–water or newly available nutrients following irrigation was attributed to the absence of fine roots in the topsoil layer.  相似文献   

19.
Soil and hydroponic culture experiments were conducted to investigate the effects of phosphite (Phi) as phosphorus (P) fertilizer via root and foliar applications on the growth and P supply of komatsuna. In both experiments, root P treatments were combinations of Phi and phosphate (Pi) at different Pi:Phi ratios, for a total of high P level (92 mg P pot?1; the soil experiment) or low P level (0.05 mM P; the hydroponic experiment). Foliar P treatments were deionized water (control), a Pi solution and a Phi solution at low concentration of 0.05% P2O5. In both experiments, shoot dry weight of plants significantly decreased as Pi:Phi ratio decreased. In the soil experiment, plants grew abnormally at a Pi:Phi ratio of 25:75 and died when P was applied to soil entirely as Phi form (0:100 treatment). In the hydroponic experiment, no visible damage was found in shoot but root growth was strongly inhibited with severe damage symptoms at low Pi:Phi ratios. Total P concentration in plant decreased significantly with decreasing Pi:Phi ratio, especially in the hydroponic experiment. Foliar application of Phi although greatly increased total P of plants compared to that of Pi in both experiments, it did not improve but further decreased plant growth at low Pi:Phi ratios in the soil experiment and at all Pi:Phi ratios in the hydroponic experiment. The results of this study clearly indicated that Phi could not be used as P fertilizer by komatsuna plants via both application methods and could not substitute P at any rate at either low or high level. No beneficial effect of Phi was detected even when it was applied at low rate or applied in combination with Pi at different ratios. The effects of Phi were strongly dependent on the P nutrition status of plants; and plants that were not sufficiently fertilized with Pi may become vulnerable to Phi even at low levels.  相似文献   

20.
Strong seasonal increases in aquatic (stream, ground and hyporheic water) nitrate have been observed in a variety of ecosystems. In most cases, changes in hydrological and vegetative activity occur contemporaneously, making it difficult to determine whether soil leaching is being driven by increases in the availability of leachable N or is simply due to flushing of N that has accumulated over longer periods. Three studies were conducted to better determine controls on soil nitrate leaching in a near-pristine temperate floodplain ecosystem receiving large N inputs via N-fixation by red alder: 1) an artificial rainfall experiment was conducted to estimate N-leaching potential during the summer, when plant uptake is high and new inputs of organic matter are low; 2) soil solution, groundwater and surface water were sampled during a major autumn storm to document exchanges at the seasonal transition, when plant uptake is low and inputs of senescent organic matter are high; and 3) monthly samples of soil and aquatic nitrogen were collected in 1997 and 1998 to document seasonal patterns of N exchanges. Collectively, these studies demonstrate the importance of hydrologic factors in controlling N flux. Nitrate was rapidly leached from soils during actual and simulated rainstorms. Two pathways of nitrate leaching were identified. Localized flooding and direct leaching of streamside soils into surface waters contributed to high solute concentrations in peak flows. Nitrate that leached into interstitial waters was subject to various factors that could delay or reduce its delivery to surface waters. Greater residence time may increase the influence of this component of stormflow on ecosystem productivity. While soil nitrate pools were rapidly depleted during rainstorms, accumulation of soil nitrate occurred over summer dry periods. Large differences in soil and aquatic nitrate concentrations between two years with contrasting rainfall highlight the potential for inter-annual hydrologic variability to affect ecosystem nutrient cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号