首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first complete mitochondrial genome (mitogenome) of Tachinidae Exorista sorbillans (Diptera) is sequenced by PCR-based approach. The circular mitogenome is 14,960?bp long and has the representative mitochondrial gene (mt gene) organization and order of Diptera. All protein-coding sequences are initiated with ATN codon; however, the only exception is Cox I gene, which has a 4-bp ATCG putative start codon. Ten of the thirteen protein-coding genes have a complete termination codon (TAA), but the rest are seated on the H strand with incomplete codons. The mitogenome of E. sorbillans is biased toward A+T content at 78.4?%, and the strand-specific bias is in reflection of the third codon positions of mt genes, and their T/C ratios as strand indictor are higher on the H strand more than those on the L strand pointing at any strain of seven Diptera flies. The length of the A+T-rich region of E. sorbillans is 106?bp, including a tandem triple copies of a13-bp fragment. Compared to Haematobia irritans, E. sorbillans holds distant relationship with Drosophila. Phylogenetic topologies based on the amino acid sequences, supporting that E. sorbillans (Tachinidae) is clustered with strains of Calliphoridae and Oestridae, and superfamily Oestroidea are polyphyletic groups with Muscidae in a clade.  相似文献   

2.
This is the first study to describe the mitochondrial genome of the Himalayan Griffon, Gyps himalayensis, which is an Old World vulture belonging to the family Accipitridae and occurring along the Himalayas and the adjoining Tibetan Plateau. Its mitogenome is a closed circular molecule 17,381 bp in size containing 13 protein‐coding genes, 22 tRNA coding genes, two rRNA‐coding genes, a control region (CR), and an extra pseudo‐control region (CCR) that are conserved in most Accipitridae mitogenomes. The overall base composition of the G. himalayensis mitogenome is 24.55% A, 29.49% T, 31.59% C, and 14.37% G, which is typical for bird mitochondrial genomes. The alignment of the Accipitridae species control regions showed high levels of genetic variation and abundant AT content. At the 5′ end of the domain I region, a long continuous poly‐C sequence was found. Two tandem repeats were found in the pseudo‐control regions. Phylogenetic analysis with Bayesian inference and maximum likelihood based on 13 protein‐coding genes indicated that the relationships at the family level were (Falconidae + (Cathartidae + (Sagittariidae + (Accipitridae + Pandionidae))). In the Accipitridae clade, G. himalayensis is more closely related to Aegypius monachus than to Spilornis cheela. The complete mitogenome of G. himalayensis provides a potentially useful resource for further exploration of the taxonomic status and phylogenetic history of Gyps species.  相似文献   

3.
《Genomics》2020,112(5):3056-3064
Here, the complete mitochondrial genome (mitogenome) of Drawida gisti was sequenced and compared with the mitogenomes of other Metagynophora species. The circular mitogenome was 14,648 bp in length and contained two ribosomal RNA genes (rRNAs), 13 protein-coding genes (PCGs), and 22 transfer RNA genes (tRNAs). The types of constitutive genes and the direction of the coding strand that appeared in Drawida mitogenome were identical to those observed in other Metagynophora species, except for a missing lengthy non-coding region. The conservative relationships between Drawida species were supported by the overall analyses of 13 PCGs, two rRNAs, and 22 tRNAs. A comparison of the Metagynophora mitogenomes revealed that the ATP8 gene possessed the highest polymorphism among the 13 PCGs and two rRNAs. Phylogenetic analysis suggested that the Moniligastridae contained Drawida, which is a primitive Metagynophora group. Our study provides a step forward toward elucidating the evolutionary linkages within Drawida and even Metagynophora.  相似文献   

4.
The mitochondrial genome (mitogenome) provides important information for phylogenetic analysis and understanding evolutionary origins. Herein, we sequenced, annotated, and characterised the mitogenome of the crab Helice wuana to better understand its molecular evolution and phylogeny. The 16,359 bp mitogenome includes 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and one control region. The genome composition is highly A + T biased 68.42%, and exhibits a negative AT–skew (? 0.036) and GC–skew (? 0.269) among Brachyura crabs. Gene rearrangements were detected, as was tandem duplication followed by random loss, which explains the translocation of mitochondrial genes. Phylogenetic analysis showed that H. wuana and H. tientsinensis clustered on one branch with high nodal support values. These results confirm that the placement of H. wuana within the Varunidae family of Thoracotrematan crabs. This study will provided a better understanding for gene rearrangements and crab evolution in the further.  相似文献   

5.
《Journal of Asia》2022,25(3):101933
The crickets of genus Sclerogryllus Gorochov, 1985 belongs to subfamily Sclerogryllinae of family Gryllidae. In this study, we report the first complete mitogenome sequences of the genus Sclerogryllus, and analyze the features of mitogenomes of S. punctatus. The mitogenome of S. punctatus was 15,438 bp and consisted of 37 genes, coding for 13 proteins, 2 ribosomal RNA (rRNA) and 22 transfer RNA (tRNA), and a control region. S. punctatus shares the arrangement of trnE-trnS-trnN with most mitogenomes of Grylloidea. Besides, the tRNAs possess the typical cloverleaf secondary structure except for the trnS1 (AGN) gene. The phylogenetic analysis using 13 protein-coding genes and 2 rRNA represents that genus Sclerogryllus is included in subfamily Gryllinae. Our results uncover the phylogenetic position of genus Sclerogryllus by mitogenome data within the family Gryllidae.  相似文献   

6.
This is the first documentation of the complete mitochondrial genome sequence of the Malaysian Mahseer, Tor tambroides. The 16,690 bp mitogenome with GenBank accession number JX444718 contains 13 protein genes, 22 tRNAs, two rRNAs, and a noncoding control region (D-loop) as is typical of most vertebrates. The phylogenomic reconstruction of this newly generated data with 21 Cypriniformes GenBank accession ID concurs with the recognized status of T. tambroides within the subfamily Cyprininae. This is in agreement with previous hypotheses based on morphological and partial mitochondrial analyses.  相似文献   

7.
The complete mitochondrial genome (mitogenome) of Bombyx mori strain Dazao (Lepidoptera: Bombycidae) was determined to be 15,653 bp, including 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and a A + T-rich region. It has the typical gene organization and order of mitogenomes from lepidopteran insects. The AT skew of this mitogenome was slightly positive and the nucleotide composition was also biased toward A + T nucleotides (81.31%). All PCGs were initiated by ATN codons, except for cytochrome c oxidase subunit 1 (cox1) gene which was initiated by CGA. The cox1 and cox2 genes had incomplete stop codons consisting of just a T. All the tRNA genes displayed a typical clover-leaf structure of mitochondrial tRNA. The A + T-rich region of the mitogenome was 495 bp in length and consisted of several features common to the lepidopteras. Phylogenetic analysis showed that the B. mori Dazao was close to Bombycidae.  相似文献   

8.
Ting Ma  Jia Huang 《Journal of Asia》2018,21(4):1416-1423
Hydrotaea spinigera Stein is a muscid species with high forensic importance. To further supplement the genome-level features of related species, the complete mitochondrial genome of H. spinigera is amplified, sequenced, annotated, analyzed, and compared with 13 other species of the family Muscidae. This mitogenome is 15,517?bp in length, with a standard set of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a typical non-coding control region. The gene organization, base composition, and secondary structures of tRNA genes of this mitogenome are similar to other dipteran species. Phylogenetic analyses based on all the mitochondrial PCGs and rRNA genes for 14 muscid and one outgroup taxa are performed using Bayesian inference (BI) and maximum likelihood (ML) analysis. The inferred trees indicate that the Muscidae, the subfamily Muscinae, and the tribes Azeliini and Reinwardtiini are monophyletic, whereas the monophyly of the subfamily Azeliinae and the tribe Muscini is not supported.  相似文献   

9.
Porrocaecum angusticolle is a nematode species mainly parasitic in the birds of Accipitriformes and Strigiformes. However, some aspects of the morphology of P. angusticolle remain insufficiently known. In the present study, the detailed morphology of P. angusticolle was studied using light and, for the first time, scanning electron microscopy, based on newly collected specimens from the common buzzard Buteo buteo (Linnaeus) (Accipitriformes: Accipitridae) in Czech Republic. Some previously unreported morphological features of taxonomic significance were observed. The nuclear and mitochondrial DNA markers, including partial large ribosomal DNA (28S), complete internal transcribed spacer (ITS-1 + 5.8S + ITS-2), cytochrome c oxidase subunit 1 (cox1) and subunit 2 (cox2) of P. angusticolle were sequenced for molecular identification of this species. There was no intraspecific genetic variation detected in the 28S and ITS regions among different individuals of P. angusticolle, but low level of intraspecific nucleotide divergence was found in the cox1 (0.26–0.78%) and cox2 regions (1.0%). The 28S and cox2 of P. angusticolle were sequenced for the first time. Our molecular evidence supported the validity of both P. angusticolle and P. depressum. The newly obtained genetic data are helpful for further studies of DNA-based taxonomy, population genetics and phylogeny of the genus of Porrocaecum.  相似文献   

10.
The mitochondrial genome (mitogenome) has been extensively used in phylogenetics and species-level evolutionary investigations. The lepidopteran family Tortricidae (leaf-roller moths), including the genus Grapholita, contains numerous species of economic importance, but for the majority of Grapholita species, their mitogenomes remain poorly studied. Here, we sequence and annotate the full mitogenome of Grapholita delineana, an important pest of hemp worldwide and compare it with the mitogenomes of two congeneric species available from GenBank. The G. delineana mitogenome is 15,599 bp long, including 37 typical mitochondrial genes and an A + T-rich region. Gene content, order and orientation are identical to other reported tortricid mitogenomes. Analyses of nucleotide diversity, Ka/Ks, genetic distance and number of variable sites together suggest that nad6 is the fastest-evolving gene among the mitochondrial PCGs of Grapholita. Our analyses indicate that Grapholita, as presently defined, is not monophyletic, confirming previous morphological and multiple-gene studies, using mitogenomic evidence. Our study provides information on comparative mitogenomics of Tortricidae especially Grapholita.  相似文献   

11.
To characterize aphid mitochondrial genome (mitogenome) features, we sequenced the complete mitogenome of the Russian wheat aphid, Diuraphis noxia. The 15,784-bp mitogenome with a high A + T content (84.76%) and strong C skew (− 0.26) was arranged in the same gene order as that of the ancestral insect. Unlike typical insect mitogenomes, D. noxia possessed a large tandem repeat region (644 bp) located between trnE and trnF. Sequencing partial mitogenome of the cotton aphid (Aphis gossypii) further confirmed the presence of the large repeat region in aphids, but with different repeat length and copy number. Another motif (58 bp) tandemly repeated 2.3 times in the control region of D. noxia. All repeat units in D. noxia could be folded into stem-loop secondary structures, which could further promote an increase in copy numbers. Characterization of the D. noxia mitogenome revealed distinct mitogenome architectures, thus advancing our understanding of insect mitogenomic diversities and evolution.  相似文献   

12.
A simple electrochemical biosensor was developed for the detection of the mitochondrial NADH dehydrogenase 6 gene (MT-ND6) and its enzymatic digestion by BamHI enzyme. This biosensor was fabricated by modification of a glassy carbon electrode with gold nanoparticles (AuNPs/GCE) and a probe oligonucleotide (ssDNA/AuNPs/GCE). The probe, which is a thiolated segment of the MT-ND6 gene, was deposited by self-assembling immobilization on AuNPs/GCE. Two indicators including methylene blue (MB) and neutral red (NR) were used as the electroactive indicators and the electrochemical response of the modified electrode was measured by differential pulse voltammetry. The proposed biosensor can detect the complementary sequences of the MT-ND6 gene. Also the modified electrode was used for the detection of an enzymatic digestion process by BamHI enzyme. The electrochemical biosensor can detect the MT-ND6 gene and its enzymatic digestion in polymerase chain reaction (PCR)-amplified DNA extracted from human blood. Also the biosensor was used directly for detection of the MT-ND6 gene in all of the human genome.  相似文献   

13.
The Omei wood frog (Rana omeimontis), endemic to central China, belongs to the family Ranidae. In this study, we achieved detail knowledge about the mitogenome of the species. The length of the genome is 20,120 bp, including 13 protein‐coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a noncoding control region. Similar to other amphibians, we found that only nine genes (ND6 and eight tRNA genes) are encoded on the light strand (L) and other genes on the heavy strand (H). Totally, The base composition of the mitochondrial genome included 27.29% A, 28.85% T, 28.87% C, and 15.00% G, respectively. The control regions among the Rana species were found to exhibit rich genetic variability and A + T content. R. omeimontis was clustered together with R. chaochiaoensis in phylogenetic tree. Compared to R. amurensis and R. kunyuensi, it was more closely related to R. chaochiaoensis, and a new way of gene rearrangement (ND6‐trnE‐Cytb‐D‐loop‐trnL2 (CUN)‐ND5‐D‐loop) was also found in the mitogenome of R. amurensis and R. kunyuensi. Our results about the mitochondrial genome of R. omeimontis will contribute to the future studies on phylogenetic relationship and the taxonomic status of Rana and related Ranidae species.  相似文献   

14.
Phodopus roborovskii (subfamily Cricetinae) is widely distributed in the northern arid regions of China. This study reports its complete mitochondrial genome (mitogenome) for the first time. The complete sequence was 16,273 bp long, including 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and 1 major noncoding region. The base composition and codon usage were described. The putative origin of replication for the light strand (OL) of P. roborovskii was approximately 45 bp long and was highly conserved in the stem-loop and adjacent sequences, but the starting sequence of replication varied between genera among Rodentia. We analyzed the three domains of the D-loop region, and the results indicated that the central domain had higher G + C content and lower A + T content than two peripheral domains. Phylogenetic analyses indicated high resolution in four main divergent clades using mitogenomes data within Cricetidae. Within Cricetinae clade, P. roborovskii was at basal position which was in line with previous researches, and it shared a common ancestor with other extant hamsters. This work validated previous molecular and karyotype researches using mitogenomes data, and provided a set of useful data on phylogeny and molecular evolution in Cricetidae species.  相似文献   

15.
16.
Samia cynthia ricini is a commercial silk-producing insect that is now reared year-round in Korea, with the expectation of being utilized for diverse purposes. In this report, we present the complete mitochondrial genome (mitogenome) of S. c. ricini. The 15,384-bp long S. cynthia ricini mitogenome was amplified into 26 short fragments using three long overlapping fragments using primers designed from reported lepidopteran mitogenome sequences. The genome comprises 37 genes (13 protein-coding genes, two rRNA genes, and 22 tRNA genes), and one large non-coding region termed the A + T-rich region. The A/T content of the third codon position was 91.7%, which was 18.8% and 21.6% higher than those of first and second codon positions, respectively. The high A/T content in the genome is reflected in codon usage, accounting for 39.5% of A/T-composed codons (TTA, ATT, TTT, and ATA). Unlike a previous report on the start codon for the COI gene, the S. c. ricini COI gene commences with a typical ATT codon. A total of 221 bp of non-coding sequences are dispersed in 17 regions, ranging in size from 1 to 54 bp, which comprise 1.4% of the total genome. One of the non-coding sequence located between tRNAGln and ND2 (54 bp) has 77% sequence homology with the 5′-sequence of the neighboring ND2 gene, suggesting partial duplication of the sequence during evolution. The 361-bp long A + T-rich region contains an 18 bp-long poly-T stretch, ATAGA motif, ATTTA element, microsatellite-like A/T sequence, poly-A stretch and one tRNA-like sequence, as typically found in Lepidoptera including Bombycoidea.  相似文献   

17.

Background

The mitochondrial genomes (mitogenomes) of flatfishes (Pleuronectiformes) exhibit highly diversified types of large-scale gene rearrangements. We have reported that the mitogenomes of Crossorhombus azureus (Bothidae), Samariscus latus (Samaridae) and Cynoglossus fishes (Cynoglossidae) show different types of gene rearrangements.

Results

In the present study, the complete mitogenomes of two Symphurus species (Cynoglossidae), Symphurus plagiusa and Symphurus orientalis, were determined. The gene order in the S. plagiusa mitogenome is the same as that of a typical vertebrate (without any gene rearrangements). Surprisingly, large-scale gene rearrangements have occurred in S. orientalis. In the rearranged fragment from the control region (CR) to the WANCY tRNA cluster (tRNA cluster of tRNA-W, tRNA-A, tRNA-N, tRNA-C and tRNA-Y) in the S. orientalis mitogenome, tRNA-V and tRNA-M have been translocated to the 3’ end of the 16S rRNA gene, with six large intergenic spacers over 20 bp in length. In addition, an origin for light-strand replication (OL) structure that is typically located in the WANCY region was absent in both the S. plagiusa and S. orientalis mitogenomes. It is generally recognized that a sequence in the WANCY region that encodes tRNAs forms a hairpin structure (OL-like structure) and can act as the OL when the typical locus is lost. Moreover, an additional OL-like structure was identified near the control region in the S. plagiusa mitogenome.

Conclusions

The positions of the intergenic spacers and the rearranged genes of the S. orientalis mitogenome strongly indicate that the mechanism underlying the rearrangement of this mitogenome was Tandem Duplication and Random Loss. Additionally, two OL-like regions substituting for the typical locus were found in the S. plagiusa mitogenome. We speculate that the ancestral mitogenomes of S. plagiusa and S. orientalis also had this characteristic, such that if both OL-like structures functioned during mitochondrial replication, they could initiate duplicate replications of the light strand (L-strand), leading to duplication of the region between the two structures. We consider that this mechanism may account for the gene duplication that occurred during the gene rearrangement process in the evolution of the ancestral mitogenome to the S. orientalis mitogenome.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1581-6) contains supplementary material, which is available to authorized users.  相似文献   

18.
The complete mitochondrial genome (mitogenome) of Cerura menciana (Lepidoptera: Notodontidae) was sequenced and analyzed in this study. The mitogenome is a circular molecule of 15,369 bp, containing 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and a A+T-rich region. The positive AT skew (0.031) indicated that more As than Ts were present. All PCGs were initiated by ATN codons, except for the cytochrome c oxidase subunit 1 (cox1) gene, which was initiated by CAG. Two of the 13 PCGs contained the incomplete termination codon T or TA, while the others were terminated with the stop codon TAA. The A+T-rich region was 372 bp in length and consisted of an ‘ATAGA’ motif followed by an 18 bp poly-T stretch, a microsatellite-like (AT)8 and a poly-A element upstream of the trnM gene. Results examining codon usage indicated that Asn, Ile, Leu2, Lys, Tyr and Phe were the six most frequently occurring amino acids, while Cys was the rarest. Phylogenetic relationships, analyzed based on the nucleotide sequences of the 13 PCGs from other insect mitogenomes, confirmed that C. menciana belongs to the Notodontidae family.  相似文献   

19.
To analyze the mitogenome of the amphipod Onisimus nanseni, we amplified the complete mitogenome of O. nanseni using long-PCR and genome walking techniques. The mitogenome of O. nanseni is circular and contains all the typical mt genes (2 rRNAs, 22 tRNAs, and 13 protein-coding genes). It has two peculiar non-coding regions of 148 bp and 194 bp. The latter can be involved in replication and termination processes. The total length of the pooled protein-coding, rRNA, and tRNA genes is shorter than those of other crustaceans. In addition, the intergenic spacers of the O. nanseni mitogenome are considerably shorter in length than those of other crustaceans. Fourteen adjacent genes overlap, resulting in a compact mitogenomic structure. In the O. nanseni mitogenome, the AT composition is elevated, particularly in the control regions (78.9% AT), as has been demonstrated for two other amphipods. The tRNA order is highly rearranged compared to other arthropod mitogenomes, but the order of protein-coding genes and rRNAs is largely conserved. The gene cluster between the CO1 and CO3 genes is completely conserved among all amphipods compared. This provides insights into the evolution and gene structures of crustacean mitochondrial genomes, particularly in amphipods.  相似文献   

20.
The Taiwanese (Formosan) macaque (Macaca cyclopis) is the only nonhuman primate endemic to Taiwan. This primate species is valuable for evolutionary studies and as subjects in medical research. However, only partial fragments of the mitochondrial genome (mitogenome) of this primate species have been sequenced, not mentioning its nuclear genome. We employed next-generation sequencing to generate 2 x 90 bp paired-end reads, followed by reference-assisted de novo assembly with multiple k-mer strategy to characterize the M. cyclopis mitogenome. We compared the assembled mitogenome with that of other macaque species for phylogenetic analysis. Our results show that, the M. cyclopis mitogenome consists of 16,563 nucleotides encoding for 13 protein-coding genes, 2 ribosomal RNAs and 22 transfer RNAs. Phylogenetic analysis indicates that M. cyclopis is most closely related to M. mulatta lasiota (Chinese rhesus macaque), supporting the notion of Asia-continental origin of M. cyclopis proposed in previous studies based on partial mitochondrial sequences. Our work presents a novel approach for assembling a mitogenome that utilizes the capabilities of de novo genome assembly with assistance of a reference genome. The availability of the complete Taiwanese macaque mitogenome will facilitate the study of primate evolution and the characterization of genetic variations for the potential usage of this species as a non-human primate model for medical research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号