首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dysfunction of endothelial progenitor cells (EPCs) contributes to diabetic vascular disease. MicroRNAs (miRs) have emerged as key regulators of diverse cellular processes including angiogenesis. We recently reported that miR-126, miR-130a, miR-21, miR-27a, and miR-27b were downregulated in EPCs from type II diabetes mellitus (DM) patients, and downregulation of miR-126 impairs EPC function. The present study further explored whether dysregulated miR-130a were also related to EPC dysfunction. EPCs were cultured from peripheral blood mononuclear cells of diabetic patients and healthy controls. Assays on EPC function (proliferation, migration, differentiation, apoptosis, and colony and tubule formation) were performed. Bioinformatics analyses were used to identify the potential targets of miR-130a in EPCs. Gene expression of miR-103a and Runx3 was measured by real-time PCR, and protein expression of Runx3, extracellular signal-regulated kinase (ERK), vascular endothelial growth factor (VEGF) and Akt was measured by Western blotting. Runx3 promoter activity was measured by luciferase reporter assay. A miR-130a inhibitor or mimic and lentiviral vectors expressing miR-130a, or Runx3, or a short hairpin RNA targeting Runx3 were transfected into EPCs to manipulate miR-130a and Runx3 levels. MiR-130a was decreased in EPCs from DM patients. Anti-miR-130a inhibited whereas miR-130a overexpression promoted EPC function. miR-130a negatively regulated Runx3 (mRNA, protein and promoter activity) in EPCs. Knockdown of Runx3 expression enhanced EPC function. MiR-130a also upregulated protein expression of ERK/VEGF and Akt in EPCs. In conclusion, miR-130a plays an important role in maintaining normal EPC function, and decreased miR-130a in EPCs from DM contributes to impaired EPC function, likely via its target Runx3 and through ERK/VEGF and Akt pathways.  相似文献   

2.
MicroRNAs (miRNAs, miR) are of critical importance in growth and metastasis of cancer cells; however, the underlying functions of miRNAs in osteosarcoma (OS) remain largely unknown. This study was aimed to elucidate the role of miR-221 in regulating the biological behavior of OS cells. The proliferation ability was examined by cell counting kit-8 (CCK-8) and cell cycle assay. The abilities of cell migration, invasion, and apoptosis were monitored by transwell assay and flow cytometry, respectively. The effect of miR-221 on cyclin-dependent kinase inhibitor 1B (CDKN1B) expression was evaluated by luciferase assays, real-time polymerase chain reaction, and Western blot analysis. We found that miR-221 was elevated in OS cell lines compared with the normal osteoblastic cell line. Transfection of the miR-221 inhibitor into MG63 and U-2OS cell lines obviously suppressed cell proliferation, migration, and invasion, which is accompanied with cell cycle arrest in G0/G1 phase. Furthermore, luciferase reporter assays indicated that CDKN1B is directly targeted by miR-221 in OS cells. Knockdown of CDKN1B inhibited the effects of miR-221 inhibitor, along with decreased Bax and caspase-3 and increased cyclin E, cyclin D1, Bcl-2, Snail, and Twist1 expression. The results suggested that miR-221 might act as a potentially useful target for treatment of OS.  相似文献   

3.
微小RNA(microRNAs, miRNAs,)是一类强大的基因表达调控子,可在转录及转录后水平负调控靶基因的表达来参与生物学过程。沉默信息调节因子1 (silent information regulator1, SIRT1)底物众多,可通过去乙酰化作用参与多种细胞生命活动进程。尽管如此,SIRT1与非编码RNA如miRNA的表达调控关系仍有待深入研究。本文利用荧光定量PCR 检测发现,SIRT1与miR-221和miR-222的表达呈正相关:干扰SIRT1后,miR-221/222呈低水平表达;而过表达SIRT1则促进miR-221/222的表达。将miR-221/222基因簇启动子区序列插入pEZX-GA01构建双荧光素酶报告载体,与SIRT1过表达质粒或干扰序列共转至细胞。结果显示,SIRT1可显著提高miR-221/222启动子区活性,提示SIRT1可在转录水平调节miR-221/222的表达。进一步运用Western 印迹研究发现,在HEK293细胞中过表达miR-221/222可促进细胞的自噬能力,而抑制miR-221/222的表达可减弱自噬。此外,过表达SIRT1的同时抑制miR-221/222 的表达可减弱SIRT1的自噬诱导作用。综上所述,SIRT1可通过诱导miR-221/222的表达促进细胞自噬,其具体作用机制有待进一步探讨。  相似文献   

4.
Recently, miR-221-3p expression has been reported to be down-regulated in medulloblastoma (MB), but its functional effects remains unclear. In this study, quantitative real-time PCR (qRT-PCR) revealed significantly decreased miR-221-3p in MB cell lines. Transfection of miR-221-3p mimics reduced, or inhibitor increased cell proliferation in MB cells using MTT assay. Flow cytometry analysis indicated miR-221-3p overexpression promoted, while knockdown alleviated G0/G1 arrest and apoptosis. Luciferase reporter assay confirmed miR-221-3p directly targets the EIF5A2 gene. Moreover, restoration of EIF5A2 in the miR-221-3p-overexpressing DAOY cells significantly alleviated the suppressive effects of miR-221-3p on cell proliferation, cell cycle and apoptosis. Furthermore, miR-221-3p overexpression decreased CDK4, Cyclin D1 and Bcl-2 and increased Bad expression, which was reversed by EIF5A2 overexpression. These results uncovered the tumor suppressive role of miR-221-3p in MB cell proliferation at least in part via targeting EIF5A2, suggesting that miR-221-3p might be a potential candidate target for diagnosis and therapeutics of MB.  相似文献   

5.

Background

Endothelial progenitor cells (EPCs) play a fundamental role in not only blood vessel development but also post-natal vascular repair. Currently EPCs are defined as early and late EPCs based on their biological properties and their time of appearance during in vitro culture. Both EPC types assist angiogenesis and have been linked to ischemia-related disorders, including coronary artery disease (CAD).

Results

We found late EPCs are more mobile than early EPCs and matured endothelial cells (ECs). To pinpoint the mechanism, microRNA profiles of early EPCs late EPCs, and ECs were deciphered by small RNA sequencing. Obtained signatures made up of both novel and known microRNAs, in which anti-angiogenic microRNAs such as miR-221 and miR-222 are more abundant in matured ECs than in late EPCs. Overexpression of miR-221 and miR-222 resulted in the reduction of genes involved in hypoxia response, metabolism, TGF-beta signalling, and cell motion. Not only hamper late EPC activities in vitro, both microRNAs (especially miR-222) also hindered in vivo vasculogenesis in a zebrafish model. Reporter assays showed that miR-222, but not miR-221, targets the angiogenic factor ETS1. In contrast, PIK3R1 is the target of miR-221, but not miR-222 in late EPCs. Clinically, both miR-221-PIK3R1 and miR-222-ETS1 pairs are deregulated in late EPCs of CAD patients.

Conclusions

Our results illustrate EPCs and ECs exploit unique miRNA modalities to regulate angiogenic features, and explain why late EPC levels and activities are reduced in CAD patients. These data will further help to develop new plasma biomarkers and therapeutic approaches for ischemia-related diseases or tumor angiogenesis.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-802) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
8.
MicroRNA-142-3p (miR-142-3p) was previously investigated in various cancers, whereas, it's role in breast cancer (BC) remains far from understood. In this study, we found that miR-142-3p was markedly decreased both in cell lines and BC tumor tissues. Elevated miR-142-3p expression suppressed growth and metastasis of BC cell lines via gain-of-function assay in vitro and in vivo. Mechanistically, miR-142-3p could regulate the ras-related C3 botulinum toxin substrate 1 (RAC1) expression in protein level, which simultaneously suppressed the epithelial-to-mesenchymal transition related protein levels and the activity of PAK1 phosphorylation, respectively. In addition, rescue experiments revealed RAC1 overexpression could reverse tumor-suppressive role of miR-142-3p. Our results showed miR-142-3p could function as a tumor suppressor via targeting RAC1/PAK1 pathway in BC, suggesting a potent therapeutic target for BC treatment.  相似文献   

9.
MicroRNAs (miRNAs) are small RNAs that fulfill diverse functions by negatively regulating gene expression. Here, we investigated the involvement of miRNAs in the chondrogenic differentiation of chick limb mesenchymal cells and found that the expression of miR-221 increased upon chondrogenic inhibition. Blockade of miR-221 via peanut agglutinin-based antisense oligonucleotides reversed the chondro-inhibitory actions of a JNK inhibitor on the proliferation and migration of chondrogenic progenitors as well as the formation of precartilage condensations. We determined that mdm2 is a relevant target of miR-221 during chondrogenesis. miR-221 was necessary and sufficient to down-regulate Mdm2 expression, and this down-modulation of Mdm2 by miR-221 prevented the degradation of (and consequently up-regulated) the Slug protein, which negatively regulates the proliferation of chondroprogenitors. These results indicate that miR-221 contributes to the regulation of cell proliferation by negatively regulating Mdm2 and thereby inhibiting Slug degradation during the chondrogenesis of chick limb mesenchymal cells.  相似文献   

10.
11.
Development of effective therapeutic drugs for Parkinson's disease (PD) is of great importance. Aberrant microRNA (miRNA) expression has been identified in postmortem human PD brain samples, in vitro and in vivo PD models. However, the role of miR-342-3p in PD has been understudied. The study explores the effects of miR-342-3p on expression of glutamate (Glu) transporter, and dopaminergic neuron apoptosis and proliferation by targeting p21-activated kinase 1 (PAK1) through the Wnt signaling pathway in PD mice. After establishment of PD mouse models, gain- or loss-of-function assay was performed to explore the functional role of miR-342-3p in PD. Number of apoptotic neurons and Glu concentration was then determined. Subsequently, PC12 cells were treated with miR-342-3p mimic, miR-342-3p inhibitor, dickkopf-1 (DKK1), and miR-342-3p inhibitor + DKK1. The expression of miR-342-3p, PAK1, the Wnt signaling pathway-related and apoptosis-related genes, Glutamate transporter subtype 1 (GLT-1), l -glutamate/ l -aspartate transporter (GLAST), tyrosine hydroxylase (TH) was measured. Also, cell viability and apoptosis were evaluated. PD mice exhibited increased miR-342-3p, while decreased expression of PAK1, GLT-1, GLAST, TH, and the Wnt signaling pathway-related and antiapoptosis genes. miR-342-3p downregulation could promote expression of PAK1, the Wnt signaling pathway-related and antiapoptosis genes. GLT-1, GLAST, and TH as well as cell viability, but reduce cell apoptosis rate. The results indicated that suppression of miR-342-3p improves expression of Glu transporter and promotes dopaminergic neuron proliferation while suppressing apoptosis through the Wnt signaling pathway by targeting PAK1 in mice with PD.  相似文献   

12.
Severe acute pancreatitis (SAP) is a condition associated with high rates of mortality and lengthy hospital stays. In the current study, SAP mouse models were established in BALB/c wild-type and P21-activated kinase 1 (PAK1) knockdown mice with the objective of determining the expression of microRNA-542-5p (miR-542-5p) and the subsequent elucidation of the mechanism by which it influences acute lung injury (ALI) by mediating mitogen-activated protein kinase (MAPK) signaling and binding to PAK1. The targeting relationship between miR-542-5p and PAK1 was verified using the bioinformatics prediction website and by the means of a dual-luciferase reporter assay. Following the SAP model establishment, the mice were assigned into various groups with the introduction of different mimic and inhibitors in an attempt to investigate the effects involved with miR-542-5p on inflammatory reactions among mice with SAP-associated ALI. Our results indicated that PAK1 was targeted and negatively mediated by miR-542-5p. Mice with SAP-associated ALI exhibited an increased wet-to-dry weight ratio, myeloperoxidase activity, serum amylase activity, TNF-α, interleukin-1 beta (IL-1β), and intercellular adhesion molecule-1 (ICAM-1) contents, p-p38MAPK, p-ERK1/2, and p-JNK protein levels as well as PAK1 positive expression, while decreased miR-542-5p levels were observed. Functionally, overexpression of miR-542-5p improves ALI in mice with SAP via inhibition of the MAPK signaling pathway by binding to PAK1.Based on the evidence from experimental models, miR-542-5p was shown to improve ALI among mice with SAP, while suggesting that the effect may be related to the inactivation of the MAPK signaling pathway and downregulation of PAK1 gene. Thus, miR-542-5p could serve as a promising target for ALI treatment.  相似文献   

13.
14.
目的:探讨miR-221对甲状腺乳头癌生物学特性的影响。方法:培养人甲状腺乳头癌细胞株BCPAP、K1、TPC-1和正常甲状腺细胞株Nthy-ori 3-1。将实验分为四组:A:miR-221模拟物组;B组:miR-221抑制物组;C:无关序列组;D:空白对照组。RT-q PCR的方法检测miR-221在各个细胞中的表达以及转染后各组细胞的表达;MTT实验检测转染后各组细胞的增殖;划痕实验检测转染后各组细胞的迁移能力;流式细胞仪检测转染后各组细胞的凋亡情况。结果:RT-qPCR检测miR-221在三个细胞株的表达情况显示,miR-221甲状腺乳头癌细胞株TPC-1的表达最高,因此选择TPC-1作为后续的研究;miR-221在转染后各组细胞的表达量显示,转染miR221模拟物的miR221的表达显著高于空白对照组,转染miR221抑制物的miR221的表达显著低于空白对照组(P0.001);MTT实验结果显示,转染miR-221模拟物组细胞的增殖速度最快,转染miR-221抑制物组细胞的增殖速度最慢,miR-221模拟物组和miR-221抑制物组细胞从第三天开始与空白对照组有显著差异(P0.01),无关对照组与空白对照组无显著差异(P0.05);划痕实验结果显示,转染miR-221模拟物组细胞的迁移数显著高于空白对照组,转染miR-221抑制物组细胞的迁移数显著低于空白对照组(P0.01),无关对照组与空白对照组无显著差异(P0.05);流式细胞仪结果显示,转染miR-221模拟物组细胞凋亡率显著低于空白对照组(P0.01),转染miR-221抑制组细胞凋亡率显著高于空白对照组(P0.001),转染无关对照对细胞凋亡无影响(P0.05)。结论:过表达miR-221可促进细胞增殖、迁移,抑制细胞凋亡。抑制miR-221表达可降低细胞增殖、迁移,增加细胞凋亡。  相似文献   

15.
16.
MicroRNAs (miRNAs) are small non-coding RNAs that control protein expression through translational inhibition or mRNA degradation. MiRNAs have been implicated in diverse biological processes such as development, proliferation, apoptosis and differentiation. Upon treatment with nerve growth factor (NGF), rat pheochromocytoma PC12 cells elicit neurite outgrowth and differentiate into neuron-like cells. NGF plays a critical role not only in neuronal differentiation but also in protection against apoptosis. In an attempt to identify NGF-regulated miRNAs in PC12 cells, we performed miRNA microarray analysis using total RNA harvested from cells treated with NGF. In response to NGF treatment, expression of 8 and 12 miRNAs were up- and down-regulated, respectively. Quantitative RT-PCR analysis of 11 out of 20 miRNAs verified increased expression of miR-181a, miR-221 and miR-326, and decreased expression of miR-106b, miR-126, miR-139-3p, miR-143, miR-210 and miR-532-3p after NGF treatment, among which miR-221 was drastically up-regulated. Functional annotation analysis of potential target genes of 7 out of 9 miRNAs excluding the passenger strands (*) revealed that NGF may regulate expression of various genes by controlling miRNA expression, including those whose functions and processes are known to be related to NGF. Overexpression of miR-221 induced neuronal differentiation of PC12 cells in the absence of NGF treatment, and also enhanced neuronal differentiation caused by low-dose NGF. Furthermore, miR-221 potentiated formation of neurite network, which was associated with increased expression of synapsin I, a marker for synapse formation. More importantly, knockdown of miR-221 expression by antagomir attenuated NGF-mediated neuronal differentiation. Finally, miR-221 decreased expression of Foxo3a and Apaf-1, both of which are known to be involved in apoptosis in PC12 cells. Our results suggest that miR-221 plays a critical role in neuronal differentiation as well as protection against apoptosis in PC12 cells.  相似文献   

17.
Cisplatin resistance is one of the main limitations in the treatment of ovarian cancer, and its mechanism has not been fully understood. The objectives of this study were to determine the role of miR-221/222 and its underlying mechanism in chemoresistance of ovarian cancer. We demonstrated that miR-221/222 expression levels were higher in A2780/CP cells compared with A2780 S cells. An in vitro cell viability assay showed that downregulation of miR-221/222 sensitized A2780/CP cells to cisplatin-induced cytotoxicity. Moreover, we found that knockdown of miR-221/222 by its specific inhibitors promoted the cisplatin-induced apoptosis in A2780/CP cells. Using bioinformatic analysis and luciferase reporter assay, miR-221/222 were found to directly target PTEN. Moreover, knockdown of miR-221/222 in A2780/CP cells significantly upregulated PTEN and downregulated PI3KCA and p-Akt expression. In conclusion, our results demonstrated that miR-221/222 induced cisplatin resistance by targeting PTEN mediated PI3K/Akt pathway in A2780/CP cells, suggesting that miR-221/222/PTEN/PI3K/Akt may be a promising prognostic and therapeutic target to overcome cisplatin resistance and treat ovarian cancer in the future.  相似文献   

18.
19.
Angiogenesis requires coordination of distinct cell behaviors between tip and stalk cells. Although this process is governed by regulatory interactions between the vascular endothelial growth factor (Vegf) and Notch signaling pathways, little is known about the potential role of microRNAs. Through deep sequencing and functional screening in zebrafish, we find that miR-221 is essential for angiogenesis. miR-221 knockdown phenocopied defects associated with loss of the tip cell-expressed Flt4 receptor. Furthermore, miR-221 was required for tip cell proliferation and migration, as well as tip cell potential in mosaic blood vessels. miR-221 knockdown also prevented "hyper-angiogenesis" defects associated with Notch deficiency and miR-221 expression was inhibited by Notch signaling. Finally, miR-221 promoted tip cell behavior through repression of two targets: cyclin dependent kinase inhibitor 1b (cdkn1b) and phosphoinositide-3-kinase regulatory subunit 1 (pik3r1). These results identify miR-221 as an important regulatory node through which tip cell migration and proliferation are controlled during angiogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号