共查询到20条相似文献,搜索用时 0 毫秒
1.
根据肿瘤分类检测模型的特点,提出了一种新的算法,该算法结合使用了基因选择和数据抽取的有效方法,并在此基础上使用支持向量机对基因表达数据进行分类或者检测。其中乳腺癌的分类交叉验证结果由88.46%提高到100.0%,急性白血病的也由71.05%提高至100.0%。实验结果说明了这一方法的有效性,为在大量的基因表达数据中提高检测癌症的准确性提出了一种比较通用的方法。 相似文献
2.
The vast amount and diversity of the content shared on social media can pose a challenge for any business wanting to use it to identify potential customers. In this paper, our aim is to investigate the use of both unsupervised and supervised learning methods for target audience classification on Twitter with minimal annotation efforts. Topic domains were automatically discovered from contents shared by followers of an account owner using Twitter Latent Dirichlet Allocation (LDA). A Support Vector Machine (SVM) ensemble was then trained using contents from different account owners of the various topic domains identified by Twitter LDA. Experimental results show that the methods presented are able to successfully identify a target audience with high accuracy. In addition, we show that using a statistical inference approach such as bootstrapping in over-sampling, instead of using random sampling, to construct training datasets can achieve a better classifier in an SVM ensemble. We conclude that such an ensemble system can take advantage of data diversity, which enables real-world applications for differentiating prospective customers from the general audience, leading to business advantage in the crowded social media space. 相似文献
3.
S. Parfait P.M. Walker G. Créhange X. Tizon J. Mitéran 《Biomedical signal processing and control》2012,7(5):499-508
Prostate cancer is the most common cancer in men over 50 years of age and it has been shown that nuclear magnetic resonance spectra are sensitive enough to distinguish normal and cancer tissues. In this paper, we propose a classification technique of spectra from magnetic resonance spectroscopy. We studied automatic classification with and without quantification of metabolite signals. The dataset is composed of 22 patient datasets with a biopsy-proven cancer, from which we extracted 2464 spectra from the whole prostate and of which 1062 were localised in the peripheral zone. The spectra were manually classed into 3 different categories by a spectroscopist with 4 years experience in clinical spectroscopy of prostate cancer: undetermined, healthy and pathologic. We used different preprocessing methods (module, phase correction only, phase correction and baseline correction) as input for Support Vector Machine and for Multilayer Perceptron, and we compared the results with those from the expert. If we class only healthy and pathologic spectra we reach a total error rate of 4.51%. However, if we class all spectra (undetermined, healthy and pathologic) the total error rate rises to 11.49%. We have shown in this paper that the best results are obtained using the pre-processed spectra without quantification as input for the classifiers and we confirm that Support Vector Machine are more efficient than Multilayer Perceptron in processing high dimensional data. 相似文献
4.
支持向量机在害虫发生量预测中的应用 总被引:6,自引:0,他引:6
害虫发生量与其影响因子之间具有复杂的非线性和时滞性关系,传统方法不能很好的分析和拟合高度非线性的害虫发生量变化规律,导致预测精度不理想。为了有效构建害虫发生量与其影响因子之间复杂的非线性关系模型,提高害虫发生量预测精度,提出一种基于支持向量机的害虫发生量预测方法。该方法首先通过F测验对害虫发生量的最佳时滞阶数进行确定,并利用最佳时滞阶数对样本进行重构;然后利用前向浮动因子筛选法对害虫发生量的影响因子进行筛选,筛选出对预测结果贡献大的影响因子;最后采用10折交叉验证得到害虫发生量的最优预测模型。采用粘虫的幼虫发生密度数据在Mat-lab7.0平台下对该方法进行测试与分析,实验结果表明,相对于其它预测方法,支持向量机提高了害虫发生量的预测精度,克服了传统方法的缺陷,更适合于非线性、小样本的害虫发生量预测。 相似文献
5.
Choosing an appropriate kernel is very important and critical when classifying a new problem with Support Vector Machine. So far, more attention has been paid on constructing new kernels and choosing suitable parameter values for a specific kernel function, but less on kernel selection. Furthermore, most of current kernel selection methods focus on seeking a best kernel with the highest classification accuracy via cross-validation, they are time consuming and ignore the differences among the number of support vectors and the CPU time of SVM with different kernels. Considering the tradeoff between classification success ratio and CPU time, there may be multiple kernel functions performing equally well on the same classification problem. Aiming to automatically select those appropriate kernel functions for a given data set, we propose a multi-label learning based kernel recommendation method built on the data characteristics. For each data set, the meta-knowledge data base is first created by extracting the feature vector of data characteristics and identifying the corresponding applicable kernel set. Then the kernel recommendation model is constructed on the generated meta-knowledge data base with the multi-label classification method. Finally, the appropriate kernel functions are recommended to a new data set by the recommendation model according to the characteristics of the new data set. Extensive experiments over 132 UCI benchmark data sets, with five different types of data set characteristics, eleven typical kernels (Linear, Polynomial, Radial Basis Function, Sigmoidal function, Laplace, Multiquadric, Rational Quadratic, Spherical, Spline, Wave and Circular), and five multi-label classification methods demonstrate that, compared with the existing kernel selection methods and the most widely used RBF kernel function, SVM with the kernel function recommended by our proposed method achieved the highest classification performance. 相似文献
6.
启动子预测是研究基因转录调控的重要环节,但现有算法的预测正确率偏低.在深入分析启动子生物特征的基础上,提出了一种基于支持向量机的枯草杆菌启动子预测算法,在启动子序列的组成特征、信号特征和结构特征中选取9种典型特征作为预测的依据,对于信号特征,除了利用保守模式的一致序列,还考虑了间隔距离的分布信息.首先通过特征描述模型分别计算每种特征在启动子序列和非启动子序列中的得分,将特征得分组合成9维特征向量,再利用支持向量机在特征向量集上进行训练和判别.对实际数据集进行的刀切法测试验证了算法的有效性.对σ启动予的预测,平均正确率达到了90.7%;对几种其它σ因子启动子的预测,平均正确率也超过了80%.算法不但有广泛的适用性,还有良好的可扩展性,能够方便的容纳新特征,使识别性能不断提高. 相似文献
7.
8.
Ana Lisa V. Gomes Lawrence J. K. Wee Asif M. Khan Laura H. V. G. Gil Ernesto T. A. Marques Jr Carlos E. Calzavara-Silva Tin Wee Tan 《PloS one》2010,5(6)
Background
Symptomatic infection by dengue virus (DENV) can range from dengue fever (DF) to dengue haemorrhagic fever (DHF), however, the determinants of DF or DHF progression are not completely understood. It is hypothesised that host innate immune response factors are involved in modulating the disease outcome and the expression levels of genes involved in this response could be used as early prognostic markers for disease severity.Methodology/Principal Findings
mRNA expression levels of genes involved in DENV innate immune responses were measured using quantitative real time PCR (qPCR). Here, we present a novel application of the support vector machines (SVM) algorithm to analyze the expression pattern of 12 genes in peripheral blood mononuclear cells (PBMCs) of 28 dengue patients (13 DHF and 15 DF) during acute viral infection. The SVM model was trained using gene expression data of these genes and achieved the highest accuracy of ∼85% with leave-one-out cross-validation. Through selective removal of gene expression data from the SVM model, we have identified seven genes (MYD88, TLR7, TLR3, MDA5, IRF3, IFN-α and CLEC5A) that may be central in differentiating DF patients from DHF, with MYD88 and TLR7 observed to be the most important. Though the individual removal of expression data of five other genes had no impact on the overall accuracy, a significant combined role was observed when the SVM model of the two main genes (MYD88 and TLR7) was re-trained to include the five genes, increasing the overall accuracy to ∼96%.Conclusions/Significance
Here, we present a novel use of the SVM algorithm to classify DF and DHF patients, as well as to elucidate the significance of the various genes involved. It was observed that seven genes are critical in classifying DF and DHF patients: TLR3, MDA5, IRF3, IFN-α, CLEC5A, and the two most important MYD88 and TLR7. While these preliminary results are promising, further experimental investigation is necessary to validate their specific roles in dengue disease. 相似文献9.
Lipid–protein interactions play a vital role in various biological processes, which are involved in cellular functions and can affect the stability, folding and the function of peptides and proteins. In this study, a sequence-based method by using support vector machine and position specific scoring matrix (PSSM) was proposed to predict lipid-binding sites. Considering the influence of surrounding residues of one amino acid, a sliding window was chosen to encode the PSSM profiles. By incorporating the evolutionary information and the local features of residues surrounding one lipid-binding site, the method yielded a high accuracy of 80.86% and the Matthew’s Correlation Coefficient of 0.58 by using fivefold cross validation test. The good result indicates the applicability of the method. 相似文献
10.
Xiaomei Zhong Jianping Li Huacheng Dou Shijun Deng Guofei Wang Yu Jiang Yongjie Wang Zebing Zhou Li Wang Fei Yan 《PloS one》2013,8(7)
Currently, remote sensing technologies were widely employed in the dynamic monitoring of the land. This paper presented an algorithm named fuzzy nonlinear proximal support vector machine (FNPSVM) by basing on ETM+ remote sensing image. This algorithm is applied to extract various types of lands of the city Da’an in northern China. Two multi-category strategies, namely “one-against-one” and “one-against-rest” for this algorithm were described in detail and then compared. A fuzzy membership function was presented to reduce the effects of noises or outliers on the data samples. The approaches of feature extraction, feature selection, and several key parameter settings were also given. Numerous experiments were carried out to evaluate its performances including various accuracies (overall accuracies and kappa coefficient), stability, training speed, and classification speed. The FNPSVM classifier was compared to the other three classifiers including the maximum likelihood classifier (MLC), back propagation neural network (BPN), and the proximal support vector machine (PSVM) under different training conditions. The impacts of the selection of training samples, testing samples and features on the four classifiers were also evaluated in these experiments. 相似文献
11.
Advances in next-generation sequencing technologies have enabled the identification of multiple rare single nucleotide polymorphisms involved in diseases or traits. Several strategies for identifying rare variants that contribute to disease susceptibility have recently been proposed. An important feature of many of these statistical methods is the pooling or collapsing of multiple rare single nucleotide variants to achieve a reasonably high frequency and effect. However, if the pooled rare variants are associated with the trait in different directions, then the pooling may weaken the signal, thereby reducing its statistical power. In the present paper, we propose a backward support vector machine (BSVM)-based variant selection procedure to identify informative disease-associated rare variants. In the selection procedure, the rare variants are weighted and collapsed according to their positive or negative associations with the disease, which may be associated with common variants and rare variants with protective, deleterious, or neutral effects. This nonparametric variant selection procedure is able to account for confounding factors and can also be adopted in other regression frameworks. The results of a simulation study and a data example show that the proposed BSVM approach is more powerful than four other approaches under the considered scenarios, while maintaining valid type I errors. 相似文献
12.
支持向量回归机(Support vector regressio,SVR)模型的拟合精度和泛化能力取决于其相关参数的选择,其参数选择实质上是一个优化搜索过程。根据启发式广度优先搜索(Heuristic Breadth first Search,HBFS)算法在求解优化问题上高效的特点,提出了一种以k-fold交叉验证的最小化误差为目标,HBFS为寻优策略的SVR参数选择方法,通过3个基准数据集对该模型进行了仿真实验,结果表明该方法在保证预测精度前提下,大幅度的缩短了训练建模时间,为大样本的SVR参数选择提供了一种新的有效解决方案。 相似文献
13.
14.
将63例II型糖尿病患者以及140例正常人皮肤的自体荧光光谱分为训练集和测试集两类,针对常用的四种核函数,运用交叉验证、网格寻优法计算最优分类参数,然后结合训练集建模并对测试集分类,结果显示使用径向基核函数时分类效果相对最佳。在此基础上,构建了一种基于线性核函数与径向基核函数的混合核函数,该核函数对人体皮肤自体荧光光谱的分类效果较之于径向基核函数更优,其分类正确率为82.61%,敏感性为69.57%,特异性为95.65%。研究结果表明支持向量机可用于人体皮肤自体荧光光谱的分类,有助于提高糖尿病筛查的正确率。 相似文献
15.
Tae-Kun Seo 《Journal of molecular evolution》2010,71(4):250-267
Species identification is one of the most important issues in biological studies. Due to recent increases in the amount of genomic information available and the development of DNA sequencing technologies, the applicability of using DNA sequences to identify species (commonly referred to as “DNA barcoding”) is being tested in many areas. Several methods have been suggested to identify species using DNA sequences, including similarity scores, analysis of phylogenetic and population genetic information, and detection of species-specific sequence patterns. Although these methods have demonstrated good performance under a range of circumstances, they also have limitations, as they are subject to loss of information, require intensive computation and are sensitive to model mis-specification, and can be difficult to evaluate in terms of the significance of identification. Here, we suggest a new DNA barcoding method in which support vector machine (SVM) procedures are adopted. Our new method is nonparametric and thus is expected to be robust for a wide range of evolutionary scenarios as well as multilocus analyses. Furthermore, we describe bootstrap procedures that can be used to test the significances of species identifications. We implemented a novel conversion technique for transforming sequence data to real-valued vectors, and therefore, bootstrap procedures can be easily combined with our SVM approach. In this study, we present the results of simulation studies and empirical data analyses to demonstrate the performance of our method and discuss its properties. 相似文献
16.
Background
Confident identification of microRNA-target interactions is significant for studying the function of microRNA (miRNA). Although some computational miRNA target prediction methods have been proposed for plants, results of various methods tend to be inconsistent and usually lead to more false positive. To address these issues, we developed an integrated model for identifying plant miRNA–target interactions.Results
Three online miRNA target prediction toolkits and machine learning algorithms were integrated to identify and analyze Arabidopsis thaliana miRNA-target interactions. Principle component analysis (PCA) feature extraction and self-training technology were introduced to improve the performance. Results showed that the proposed model outperformed the previously existing methods. The results were validated by using degradome sequencing supported Arabidopsis thaliana miRNA-target interactions. The proposed model constructed on Arabidopsis thaliana was run over Oryza sativa and Vitis vinifera to demonstrate that our model is effective for other plant species.Conclusions
The integrated model of online predictors and local PCA-SVM classifier gained credible and high quality miRNA-target interactions. The supervised learning algorithm of PCA-SVM classifier was employed in plant miRNA target identification for the first time. Its performance can be substantially improved if more experimentally proved training samples are provided. 相似文献17.
18.
19.
支持向量机与神经网络的关系研究 总被引:2,自引:0,他引:2
支持向量机是一种基于统计学习理论的新颖的机器学习方法,由于其出色的学习性能,该技术已成为当前国际机器学习界的研究热点,该方法已经广泛用于解决分类和回归问题.本文将结构风险函数应用于径向基函数网络学习中,同时讨论了支持向量回归模型和径向基函数网络之间的关系.仿真实例表明所给算法提高了径向基函数网络的泛化性能. 相似文献
20.
The identification of different grapevine varieties, currently attended using visual ampelometry, DNA analysis and very recently, by hyperspectral analysis under laboratory conditions, is an issue of great importance in the wine industry. This work presents support vector machine and artificial neural network’s modelling for grapevine varietal classification from in-field leaf spectroscopy. Modelling was attempted at two scales: site-specific and a global scale. Spectral measurements were obtained on the near-infrared (NIR) spectral range between 1600 to 2400 nm under field conditions in a non-destructive way using a portable spectrophotometer. For the site specific approach, spectra were collected from the adaxial side of 400 individual leaves of 20 grapevine (Vitis vinifera L.) varieties one week after veraison. For the global model, two additional sets of spectra were collected one week before harvest from two different vineyards in another vintage, each one consisting on 48 measurement from individual leaves of six varieties. Several combinations of spectra scatter correction and smoothing filtering were studied. For the training of the models, support vector machines and artificial neural networks were employed using the pre-processed spectra as input and the varieties as the classes of the models. The results from the pre-processing study showed that there was no influence whether using scatter correction or not. Also, a second-degree derivative with a window size of 5 Savitzky-Golay filtering yielded the highest outcomes. For the site-specific model, with 20 classes, the best results from the classifiers thrown an overall score of 87.25% of correctly classified samples. These results were compared under the same conditions with a model trained using partial least squares discriminant analysis, which showed a worse performance in every case. For the global model, a 6-class dataset involving samples from three different vineyards, two years and leaves monitored at post-veraison and harvest was also built up, reaching a 77.08% of correctly classified samples. The outcomes obtained demonstrate the capability of using a reliable method for fast, in-field, non-destructive grapevine varietal classification that could be very useful in viticulture and wine industry, either global or site-specific. 相似文献