首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escape manoeuvres of schooling Clupea harengus   总被引:1,自引:0,他引:1  
The escape behaviour of schooling herring startled by an artificial sound stimulus was observed by means of high speed video filming. Response latencies showed two distinct peaks, at 30 ms and c . 100 ms. Escape responses belonging to the two latency groups showed different turning rates during the first stage of the response, and showed different escape trajectories. We suggest that long latency escapes may be responses to startled neighbours or simply weak responses to the sound stimulus. In addition, the different contraction rates during the C-bend formation seen in the two latency groups may imply differences in the neuronal commands. The escape responses of herring were directed away from the stimulus more often than towards it (88% of the total). These away responses were more common in long latency responses, suggesting that the latter enable herring to be more accurate in discerning the direction of the threat. Startled fish contracting their body towards the stimulus (performing a towards response) appear to correct their escape course, since their escape trajectory distribution is non-uniformty distributed around 360° and directed away from the stimulus. We hypothesize that when herring are schooling, the ability of each fish to correct its trajectory following turns towards the stimulus is enhanced.  相似文献   

2.
The outcome of predator-prey encounters is determined by a number of factors related to the locomotor and sensory performance of the animals. Escape responses can be triggered visually, i.e. by the magnifying retinal image of an approaching object (i.e. a predator), called the looming effect, and calculated as the rate of change of the angle subtended by the predator frontal profile as seen by the prey. A threshold of looming angle (ALT, the Apparent Looming Threshold) determines the reaction distance of a startled fish, which is proportional to the attack speed of the predator and its apparent frontal profile. Optimal tactics for predator attacks as well as consideration on their functional morphology are discussed in relation to ALT. Predator optimal attack speeds depend on predator morphology as well as the prey ALT. Predictions on the scaling of ALT suggest that ALT may increase (i.e. implying a decrease in reaction distance) with prey size in cases in which predator attack speeds are high (i.e. > 4 L/s in a 1-m long predator), while it may be relatively independent of prey size when predators attack at lower speeds. The issue of scaling of ALT is discussed using examples from field and laboratory studies. While the timing of the escape is a crucial issue for avoiding being preyed upon, the direction of escape manoeuvres may also determine the success of the escape. A simple theoretical framework for optimal escape trajectories is presented here and compared with existing data on escape trajectories of fish reacting to startling stimuli.  相似文献   

3.
Variation in Escape Behavior of Red and Green Clones of the Pea Aphid   总被引:4,自引:0,他引:4  
Many insect species have evolved a number of antipredator tactics among which the animal can choose when attacked by a natural enemy. While it is known that individuals may differ in how the antipredator tactics are employed, quantitative studies are rare. In the pea aphid, it has been suggested that different clones differ in their propensity to escape from a predator and that this propensity is linked to the body color of the aphid. We tested clonal variation in the escape behavior in red and green clones of the pea aphid. In three experiments the responses of clones to artificial stimuli and a natural predator were quantified. The results indicate that (1) clones differ considerably in their propensity to show escape behavior, (2) red clones are more likely to drop off the host plant when subjected to an artificial stimulus than green clones are, and (3) the patterns of clonal variation in the escape behavior were not consistent through all three experiments, as clones did not differ in their behavior when attacked by a real predator. The differences in the responses of a clone toward different stimuli supposed to mimic predator attack suggest that extrapolating from laboratory experiments to a field situation may be difficult.  相似文献   

4.
Many prey signal to predators with the intention of deterring further pursuits. In the lizard Psammodromus algirus, individuals sometimes escape with noisy long runs on dry leaves, whereas on many other occasions they escape quietly and with short flights. We hypothesised that the duration of this noisy display might be considered as an auditory signal of their alertness and ability to escape directed to predators. We examined in the field the escape behaviour of the lizard P. algirus in response to a human observer acting as a predator and tested a series of predictions to analyse this hypothesis. During a noisy escape response, lizards escaped sooner and ran further and for a longer time, while passing potential refuges before hiding. Production of noise was not entirely dependent on environmental factors, such as temperature or microhabitat, and was not directed to warn conspecifics because most individuals were solitary. Lizards still made noise when concealed and in response to successive approaches, which might be interpreted as a signal of alertness to the predator approach. In addition, condition of individuals with noisy responses could be assessed from their ability to run further and for a longer time, and because, in contrast to quiet responses, speed and distance were not positively correlated with environmental temperature. Thus, they might be in a better condition or internal state because they were able to run at high speed under unfavourable conditions. We suggest that lizards with noisy escape responses might be honestly signalling their alertness and ability to escape to avoid being chased. Received: 7 February 2000 / Received in revised form: 25 May 2000 / Accepted: 30 May 2000  相似文献   

5.
The speed with which individuals can learn to identify and react appropriately to predation threats when transitioning to new life history stages and habitats will influence their survival. This study investigated the role of chemical alarm cues in both anti-predator responses and predator identification during a transitional period in a newly settled coral reef damselfish, Pomacentrus amboinensis. Individuals were tested for changes in seven behavioural traits in response to conspecific and heterospecific skin extracts. Additionally, we tested whether fish could learn to associate a previously novel chemical cue (i.e. simulated predator scent) with danger, after previously being exposed to a paired cue combining the conspecific skin extract with the novel scent. Fish exposed to conspecific skin extracts were found to significantly decreased their feeding rate whilst those exposed to heterospecific and control cues showed no change. Individuals were also able to associate a previously novel scent with danger after only a single previous exposure to the paired conspecific skin extract/novel scent cue. Our results indicate that chemical alarm cues play a large role in both threat detection and learned predator recognition during the early post-settlement period in coral reef fishes.  相似文献   

6.
Wintering birds increase their fat reserves throughout the day, and impaired escape performance is often considered to be an important cost of fat reserves. Since lifting a larger mass requires more energy, if birds escape at maximum power output, an increase in mass will impair the escape flight. In this study we did not find support for mass-dependent escape performance for yellowhammers, Emberiza citrinella, and greenfinches, Carduelis chloris, with natural daily mass increases of 7-8%. This suggests either that the birds were not performing at maximum output at dawn, when light, or that maximum power output was higher at dusk, when heavy. Either way, the birds seemed to be able to put more effort into their escape flight when heavier. In both species, when alarmed, birds took off significantly faster and at a steeper angle than when not alarmed. Yellowhammers escaped at a higher speed and angle than greenfinches, and reacted faster to the predator model. This suggests that predator escape is more than just Newtonian physics, and may be influenced by behavioural, as well as morphological, adjustments. Different species may have evolved different responses to predation risk. Our results seem to be in disagreement with recent ideas about mass-dependent predation risk. However, to build up reserves, birds have to increase exposure time, which increases predation risk. This cost may be more important than impaired escape performance when relatively small, daily, changes in body mass are considered. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

7.
Chemical cues from predators (kairomones) are used by many aquatic and terrestrial animals when deciding on behavioral responses to predation threats. These responses may also be affected by the animal’s physiological state (e.g., nutrition level, parasitism, or prior injury), which could alter normal responses to kairomones. In this study, we examined effects of leg autotomy (the voluntary sacrifice of a leg) on subsequent responses to predator chemical cues in females of the riparian-zone wolf spider Pardosa valens. In a fully-crossed design, spiders with all legs intact or with one leg removed were exposed to one of two cue treatments for 90 min: a control (no predator cue) or one with chemical cues (silk and excreta) from a larger sympatric wolf spider, Rabidosa santrita. We then introduced an R. santrita into each container, and recorded subsequent survival of P. valens. Survivorship was significantly higher for individuals previously exposed to predator cues than for those in the control group; however, autotomy had no effect on survivorship, which was similar for both intact and autotomized spiders in both the predator-cue and control treatments. In addition, although P. valens were more likely to be found off the substrate than on it when the predator was added in each of the four treatment pairings, this initial position did not influence survivorship. These results therefore indicate that P. valens can behaviorally respond to predator kairomones in ways that reduce their risk of predation, but that this response is unaffected by the prior sacrifice of a leg.  相似文献   

8.
Bahamas mosquitofish (Gambusia hubbsi) colonized blue holes during the past approximately 15 000 years and exhibit relatively larger caudal regions in blue holes that contain piscivorous fish. It is hypothesized that larger caudal regions enhance fast-start escape performance and thus reflect an adaptation for avoiding predation. Here I test this hypothesis using a three-pronged, experimental approach. First, G. hubbsi from blue holes with predators were found to possess both greater fast-start performance and greater survivorship in the presence of predatory fish. Second, using individual-level data to investigate the morphology–performance–fitness pathway, I found that (i) fish with larger caudal regions produced higher fast-start performance and (ii) fish with higher fast-start performance enjoyed greater survivorship in the presence of fish predators—trends consistently observed across both predator regimes. Finally, I found that morphological divergence between predator regimes at least partially reflects genetic differentiation, as differences were retained in fish raised in a common laboratory environment. These results suggest that natural selection favours increased fast-start performance in the presence of piscivorous fish, consequently driving the evolution of larger caudal regions. Combined with previous work, this provides functional insight into body shape divergence and ecological speciation among Bahamian blue holes.  相似文献   

9.
Responses of rainbowfish ( Melanotaenia duboulayi ) from two populations towards a) an active and a passive predatory fish and b) a novel trawl apparatus, were compared. Predator-sympatric fish avoided the fish predators and showed stronger avoidance behaviour in response to the active predator. These fish used predator inspection excursions to rapidly assess the potential risk and their escape responses were consistently effective. In contrast the predator-naive fish ignored the passive predator but were continually drawn towards the active predator possibly due to generalized curiosity and the absence of significant negative feedback from the predator, which was restrained by a clear Perspex partition. Despite this attraction, the predator-naive fish did not display typical predator inspection behaviour and showed very poor escape performance when initially confronted by the trawl apparatus. Many of these fish, however, showed rapid improvement in their escape performance through learning. These results suggest that predator-sympatric rainbowfish have the capacity to assess the level of threat posed by a predator and predator-naive rainbowfish learn to implement appropriate escape strategies when forced to evade a threat.  相似文献   

10.
Prey must balance gains from activities such as foraging and social behavior with predation risk. Optimal escape theory has been successful in predicting escape behavior of prey under a range of risk and cost factors. The optimal approach distance, the distance from the predator at which prey should begin to flee, occurs when risk equals cost. Optimal escape theory predicts that for a fixed cost, the approach distance increases as risk increases. It makes no predictions about approach distance for prey in refuges that provide only partial protection or about escape variables other than approach distance, such as the likelihood of stopping before entering refuge and escape speed. By experimentally simulating a predator approaching keeled earless lizards, Holbrookia propinqua, the predictions of optimal escape theory for two risk factors, predator approach speed and directness of approach were tested. In addition, predictions that the likelihood of fleeing into refuge without stopping and the speed of escape runs increase with risk, in this case predator approach speed, and that lizards in incompletely protective refuges permit closer approach than lizards not in refuges were also tested. Approach distance increased with predator approach speed and directness of approach, confirming predictions of optimal escape theory. Lizards were more likely to enter refuge and ran faster when approached rapidly, verifying that predation risk affects escape decisions by the lizards for escape variables not included in optimal escape theory. They allowed closer approach when in incompletely protective refuges than when in the open, confirming the prediction that risk affects escape decisions while in refuge. Optimal escape theory has been highly successful, but testing it has led to relative neglect of important aspects of escape other than approach distance.  相似文献   

11.
Previous research on predator-induced phenotypic plasticity mostly focused on responses in morphology, developmental time and/or behaviour during early life stages, but the potential significance of anticipatory parental responses has been investigated less often. In this study I examined behavioural and maternal responses of gravid female smooth newts, Lissotriton vulgaris, in the presence of chemical cues originating from invertebrate predators, Acilius sulcatus water beetles and Aeshna cyanea dragonfly larvae. More specifically, I tested the extent of oviposition preference, plasticity in egg-wrapping behaviour and plasticity in egg size when females had the possibility to lay eggs at oviposition sites with and without predator cues during overnight trials. I found that individuals did not avoid laying eggs in the environment with predator cues; however, individuals that deposited eggs into both environments adjusted the size of the laid eggs to the perceived environment. Females deposited larger eggs earlier in the season but egg size decreased with time in the absence of predator cues, whereas individuals laid eggs of average size throughout the investigated reproductive period when such cues were present. Also, egg size was found to be positively related to hatching success. Individuals did not adjust their wrapping behaviour to the presence of predator cues, but females differed in the extent of egg-wrapping between ponds. Females’ body mass and tail depth were also different between ponds, whereas their body size was positively associated with egg size. According to these results, female smooth newts have the potential to exhibit activational plasticity and invest differently into eggs depending on temporal and environmental factors. Such an anticipatory response may contribute to the success of this caudate species under a wide range of predator regimes at its natural breeding habitats.  相似文献   

12.
Models of different sizes, shapes, and colours evoked, oriented escape responses in schools of Chromis cyanea in their natural coral-reef habitat. Divers filmed these responses; from the films, the distance of the school from the model at the instant of response (reaction distance) was calculated. For a given model, reaction distance was independent of the speed of the model's approach. Darker coloured models were more effective in causing escape (yielded greater reaction distance) than lighter coloured models, suggesting contrast as an important feature of the stimulus. Larger models were more effective than smaller ones. Habituation to repeated stimuli was absent for inter-trial intervals from 0·5 to 4 min. Natural behaviour of Chromis suggests that cues such as sound, vibration, and details of shape, colours, and motion also play a role in triggering escape.  相似文献   

13.
The pre‐eminent model of flight initiation distance assumes that the function relating predation risk to distance between predator and prey is constant. However, the risk–distance function can change dramatically during approaches by predators. Changes in predator behavior during approach and in availability of benefits (e.g. food or potential mates) may alter risks and/or costs during encounters. Thus, prey should be able to respond appropriately to changes in cues to risk, such as predator approach speed. Under the assumption that prey assess risk in real time, it was predicted that flight initiation distance (distance between predator and prey when escape begins) decreases when approach speed increases and increases when approach speed decreases during an encounter. Effects of single, abrupt changes from slower to faster approach or the reverse were studied in a lizard, Anolis lineatopus. Flight initiation distances were determined solely by final approach speed, being nearly identical for: (1) continuously fast approaches and approaches initially at the slower and finally at the faster speed and (2) for continuously slower approaches and approaches initially at faster and finally at slower speed. Escape should be adjusted to match changes in risk and cost caused by changes in predator behavior, ability to escape, and costs of escape as attacks unfold. A recent model by Broom and Ruxton [Behavioural Ecology (2004) vol. 16, pp. 534—540] predicts that cryptic prey should stay motionless until detected, then flee immediately. Our results suggest that current escape models can be applied to prey escape strategies when cues to risk change, by assuming that prey base decisions on the current relationship between risk and distance. Empirical studies are needed to test predictions concerning continuous risk assessment.  相似文献   

14.
Individuals differ in personality and immediate behavioural plasticity. While developmental environment may explain this group diversity, the effect of parental environment is still unexplored—a surprising observation since parental environment influences mean behaviour. We tested whether developmental and parental environments impacted personality and immediate plasticity. We raised two generations of Physa acuta snails in the laboratory with or without developmental exposure to predator cues. Escape behaviour was repeatedly assessed on adult snails with or without predator cues in the immediate environment. On average, snails were slower to escape if they or their parents had been exposed to predator cues during development. Snails were also less plastic in response to immediate predation risk on average if they or their parents had been exposed to predator cues. Group diversity in personality was greater in predator-exposed snails than unexposed snails, while parental environment did not influence it. Group diversity in immediate plasticity was not significant. Our results suggest that only developmental environment plays a key role in the emergence of group diversity in personality, but that parental environment influences mean behavioural responses to the environmental change. Consequently, although different, both developmental and parental cues may have evolutionary implications on behavioural responses.  相似文献   

15.
A prey's body orientation relative to a predator's approach path may affect risk of fleeing straight ahead. Consequently, prey often turn before fleeing. Relationships among orientation, turn, and escape angles and between these angles and predation risk have not been studied in terrestrial vertebrates and have rarely been studied in the field. Escape angles are expected to lead away from predators and be highly variable to avoid being predictable by predators. Using approach speed as a risk factor, we studied these issues in the zebra‐tailed lizard, Callisaurus draconoides. Lizards fled away from human simulated predators, but most did not flee straight away. Escape angles were variable, as expected under the unpredictability hypothesis, and had modes at nearly straight away (i.e., 0°) and nearly perpendicular to the predator's approach path (90°). The straight away mode suggests maximal distancing from the predator; the other mode suggests maintaining ability to monitor the predator or possibly an influence of habitat features such as obstacles and refuges that differ among directions. Turn angles were larger when orientation was more toward the predator, and escape angles were closer to straight away when turn angles were larger. Turning serves to reach a favorable fleeing direction. When orientation angle was more toward the predator, escape angle was unaffected, suggesting that turn angle compensates completely for increased risk of orientation toward the predator. When approached more rapidly, lizards fled more nearly straight away, as expected under greater predation risk. Turn angles were unrelated to approach speed.  相似文献   

16.
To forecast biological responses to changing environments, we need to understand how a species''s physiology varies through space and time and assess how changes in physiological function due to environmental changes may interact with phenotypic changes caused by other types of environmental variation. Amphibian larvae are well known for expressing environmentally induced phenotypes, but relatively little is known about how these responses might interact with changing temperatures and their thermal physiology. To address this question, we studied the thermal physiology of grey treefrog tadpoles (Hyla versicolor) by determining whether exposures to predator cues and an herbicide (Roundup) can alter their critical maximum temperature (CTmax) and their swimming speed across a range of temperatures, which provides estimates of optimal temperature (Topt) for swimming speed and the shape of the thermal performance curve (TPC). We discovered that predator cues induced a 0.4°C higher CTmax value, whereas the herbicide had no effect. Tadpoles exposed to predator cues or the herbicide swam faster than control tadpoles and the increase in burst speed was higher near Topt. In regard to the shape of the TPC, exposure to predator cues increased Topt by 1.5°C, while exposure to the herbicide marginally lowered Topt by 0.4°C. Combining predator cues and the herbicide produced an intermediate Topt that was 0.5°C higher than the control. To our knowledge this is the first study to demonstrate a predator altering the thermal physiology of amphibian larvae (prey) by increasing CTmax, increasing the optimum temperature, and producing changes in the thermal performance curves. Furthermore, these plastic responses of CTmax and TPC to different inducing environments should be considered when forecasting biological responses to global warming.  相似文献   

17.
Waterborne chemical cues are an important source of information for many aquatic organisms, in particular when assessing the current risk of predation. The ability to use chemical cues to detect and respond to potential predators before an actual encounter can improve prey chances of survival. We investigated predator recognition and the impact of chemical cues on predator avoidance in the freshwater isopod Asellus aquaticus. This isopod has recently colonised a novel habitat and diverged into two distinct ecotypes, which encounter different predator communities. Using laboratory-based choice experiments, we have quantified behavioural responses to chemical cues from predators typical of the two predator communities (larval dragonflies in the ancestral habitat, perch in the newly colonised habitat) in wild-caught and lab-reared Asellus of the two ecotypes. Individuals with prior experience of predators showed strong predator avoidance to cues from both predator types. Both ecotypes showed similar antipredator responses, but sexes differed in terms of threat-sensitive responses with males avoiding areas containing predator cues to a larger extent than females. Overall, chemical cues from fish elicited stronger predator avoidance than cues from larval dragonflies. Our results indicate that in these isopods, prior exposure to predators is needed to develop antipredator behaviour based on waterborne cues. Furthermore, the results emphasise the need to analyse predator avoidance in relation to waterborne cues in a sex-specific context, because of potential differences between males and females in terms of vulnerability and life history strategies.  相似文献   

18.
Aggregation is commonly thought to improve animals'' security. Within aquatic ecosystems, group-living prey can learn about immediate threats using cues perceived directly from predators, or from collective behaviours, for example, by reacting to the escape behaviours of companions. Combining cues from different modalities may improve the accuracy of prey antipredatory decisions. In this study, we explored the sensory modalities that mediate collective antipredatory responses of herring (Clupea harengus) when in a large school (approximately 60 000 individuals). By conducting a simulated predator encounter experiment in a semi-controlled environment (a sea cage), we tested the hypothesis that the collective responses of herring are threat-sensitive. We investigated whether cues from potential threats obtained visually or from the perception of water displacement, used independently or in an additive way, affected the strength of the collective avoidance reactions. We modified the sensory nature of the simulated threat by exposing the herring to 4 predator models differing in shape and transparency. The collective vertical avoidance response was observed and quantified using active acoustics. The combination of sensory cues elicited the strongest avoidance reactions, suggesting that collective antipredator responses in herring are mediated by the sensory modalities involved during threat detection in an additive fashion. Thus, this study provides evidence for magnitude-graded threat responses in a large school of wild-caught herring which is consistent with the “threat-sensitive hypothesis”.  相似文献   

19.
Animals use chemical cues to find food, locate mates, and detect potential predators. Detecting cues in a risky environment can induce behavioral changes to increase survival. Rusty crayfish (Orconectes rusticus) reduce activity, increase refuge use, and make defensive displays after detecting fish predator cues. However, no studies have introduced amphibian cues. We investigated crayfish responses to hellbender salamander (Cryptobranchus alleganiensis, a dominant predator of crayfish) cues and compared these to responses to largemouth bass (Micropterus salmoides) cues. Largemouth bass occur sympatrically with hellbenders and are known to induce distinct responses in rusty crayfish. We randomly assigned crayfish to predator cue and conspecific alarm cue combinations and recorded frozen behavior, appendage movement, locomotion, and refuge use. We found crayfish increased their proportion of time spent frozen and reduced their proportion of time spent active in the tank when exposed to either predator cue. Moreover, these responses were magnified when crayfish were exposed to predator cues in combination with conspecific alarm cues. Our experiment demonstrates evidence in support of the crayfish’s ability to detect and appropriately respond to predator cues alone and in combination with conspecific alarm cues. Future work should investigate the effects of these behavioral changes on trophic dynamics in a natural system.  相似文献   

20.
Abstract.  1. In cannibalistic populations, smaller individuals are subject to predation by larger conspecifics, and small individuals commonly alter their behaviour in response to cannibals. Little is known, however, about the underlying cues that trigger such responses and how the behavioural responses to conspecific cannibals differ from heterospecific predators.
2. This study tests which cues are used for the detection of conspecific predators in the larva of the dragonfly Plathemis lydia and how the behavioural response to cannibals differed from the response to heterospecific predators.
3. Individuals were exposed to chemical cues, visual cues, and a combination of both cues from conspecifics as well as no predator and heterospecific predator controls during which their activity and feeding rates were observed.
4. Individuals increased their activity, spatial movement and feeding behaviour in response to either visual or chemical cues from conspecific predators, which was opposite to responses displayed with cues from heterospecific predators. Interestingly, the responses to visual and chemical cues from conspecifics combined were weaker than to either cue in isolation and similar to the no cue control.
5. The results clearly indicate that individuals are able to use chemical and visual cues to detect even very subtle differences in phenotype of conspecific predators.
6. The opposite response in behaviour when exposed to conspecific cannibals vs. heterospecific predators suggests that the presence of cannibals will increase the mortality risk of small individuals due to heterospecific predation. This risk-enhancement is likely to have important consequences for the dynamics of predator–prey interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号