首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Current regimens for induction therapy of pediatric acute lymphoblastic leukemia (ALL), or for re-induction post relapse, use a combination of vincristine (VCR), a glucocorticoid, and L-asparaginase (ASP) with or without an anthracycline. With cure rates now approximately 80%, robust pre-clinical models are necessary to prioritize active new drugs for clinical trials in relapsed/refractory patients, and the ability of these models to predict synergy/antagonism with established therapy is an essential attribute. In this study, we report optimization of an induction-type regimen by combining VCR, dexamethasone (DEX) and ASP (VXL) against ALL xenograft models established from patient biopsies in immune-deficient mice. We demonstrate that the VXL combination was synergistic in vitro against leukemia cell lines as well as in vivo against ALL xenografts. In vivo, VXL treatment caused delays in progression of individual xenografts ranging from 22 to >146 days. The median progression delay of xenografts derived from long-term surviving patients was 2-fold greater than that of xenografts derived from patients who died of their disease. Pharmacokinetic analysis revealed that systemic DEX exposure in mice increased 2-fold when administered in combination with VCR and ASP, consistent with clinical findings, which may contribute to the observed synergy between the 3 drugs. Finally, as proof-of-principle we tested the in vivo efficacy of combining VXL with either the Bcl-2/Bcl-xL/Bcl-w inhibitor, ABT-737, or arsenic trioxide to provide evidence of a robust in vivo platform to prioritize new drugs for clinical trials in children with relapsed/refractory ALL.  相似文献   

2.
Chronic myeloid leukemia (CML) is a myeloproliferative disease characterized by the overproduction of granulocytes, which leads to high white blood cell counts and splenomegaly in patients. Based on clinical symptoms and laboratory findings, CML is classified into three clinical phases, often starting with a chronic phase, progressing to an accelerated phase and ultimately ending in a terminal phase called blast crisis. Blast crisis phase of CML is clinically similar to an acute leukemia; in particular, B-cell acute lymphoblastic leukemia (B-ALL) is a severe form of acute leukemia in blast crisis, and there is no effective therapy for it yet. CML is induced by the BCR-ABL oncogene, whose gene product is a BCR-ABL tyrosine kinase. Currently, inhibition of BCR-ABL kinase activity by its kinase inhibitor such as imatinib mesylate (Gleevec) is a major therapeutic strategy for CML. However, the inability of BCR-ABL kinase inhibitors to completely kill leukemia stem cells (LSCs) indicates that these kinase inhibitors are unlikely to cure CML. In addition, drug resistance due to the development of BCR-ABL mutations occurs before and during treatment of CML with kinase inhibitors. A critical issue to resolve this problem is to fully understand the biology of LSCs, and to identify key genes that play significant roles in survival and self-renewal of LSCs. In this review, we will focus on LSCs in CML by summarizing and discussing available experimental results, including the original studies from our own laboratory.  相似文献   

3.
Sulforaphane is a dietary isothiocyanate found in cruciferous vegetables showing antileukemic activity. With the purpose of extending the potential clinical impact of sulforaphane in the oncological field, we investigated the antileukemic effect of sulforaphane on blasts from patients affected by different types of leukemia and, taking into account the intrinsically hypoxic nature of bone marrow, on a leukemia cell line (REH) maintained in hypoxic conditions. In particular, we tested sulforaphane on patients with chronic lymphocytic leukemia, acute myeloid leukemia, T-cell acute lymphoblastic leukemia, B-cell acute lymphoblastic leukemia, and blastic NK cell leukemia. Sulforaphane caused a dose-dependent induction of apoptosis in blasts from patients diagnosed with acute lymphoblastic or myeloid leukemia. Moreover, it was able to cause apoptosis and to inhibit proliferation in hypoxic conditions on REH cells. As to its cytotoxic mechanism, we found that sulforaphane creates an oxidative cellular environment that induces DNA damage and Bax and p53 gene activation, which in turn helps trigger apoptosis. On the whole, our results raise hopes that sulforaphane might set the stage for a novel therapeutic principle complementing our growing armature against malignancies and advocate the exploration of sulforaphane in a broader population of leukemic patients.  相似文献   

4.
In vitro antileukemic activity of five glucocorticoids and their cross-resistance pattern in childhood acute lymphoblastic and non-lymphoblastic leukemia were determined by means of the MTT assay in 25 leukemia cell samples of childhood acute leukemias. The equivalent antileukemic concentrations of the drugs tested were: 34 microM hydrocortisone (HC), 8 microM prednisolone (PRE), 1.5 microM methylprednisolone (MPR), 0.44 microM dexamethasone (DX) and 0.22 microM betamethasone (BET). In comparison with initial ALL cell samples, the relapsed ALL group was more resistant to PRE (38-fold, p = 0.044), DX (> 34-fold, p = 0.04), MPR (38-fold), BET (45-fold) and HC (33-fold). The AML cell samples were even more resistant to: PRE (> 85-fold, p = 0.001), DX (> 34-fold, p = 0.004), MPR (> 69-fold, p = 0.036), BET (> 69-fold, p = 0.038) and HC (54-fold, p = 0.059) when compared with ALL on initial diagnosis. A significant cross-resistance among all the glucocorticoids used was found. Only in some individual cases the cross-resistance was less pronounced.  相似文献   

5.
Chronic myeloid leukemia (CML) and Ph+ acute lymphoblastic leukemia (ALL) are characterized by the presence of the BCR-ABL oncoprotein, which leads to activation of a plethora of pro-mitogenic and pro-survival pathways, including the mTOR signaling cascade. We provide evidence that in BCR-ABL expressing cells, treatment with tyrosine kinase inhibitors (TKIs) results in upregulation of mRNA levels and protein expression of sestrin3 (SESN3), a unique cellular inhibitor of mTOR complex 1 (mTORC1). Such upregulation appears to be mediated by regulatory effects on mTOR, as catalytic inhibition of the mTOR kinase also induces SESN3. Catalytic mTOR inhibition also results in upregulation of SESN3 expression in cells harboring the TKI-insensitive T315I-BCR-ABL mutant, which is resistant to imatinib mesylate. Overexpression of SESN3 results in inhibitory effects on different Ph+ leukemic cell lines including KT-1-derived leukemic precursors, indicating that SESN3 mediates anti-leukemic responses in Ph+ cells. Altogether, our findings suggest the existence of a novel mechanism for the generation of antileukemic responses in CML cells, involving upregulation of SESN3 expression.  相似文献   

6.
As cure rates in childhood acute lymphoblastic leukemia reach 80%, emphasis is increasingly placed on the accurate identification of drug-resistant cases, the elucidation of the mechanisms involved in drug resistance and the development of new therapeutic strategies targeted toward the pivotal molecular lesions. Pharmacodynamic and pharmacogenomic studies have provided rational criteria for individualizing therapy to enhance efficacy and reduce acute toxicity and late sequelae. Currently, assessment of the early response to treatment by measurement of minimal residual disease (MRD) is the most powerful independent prognostic indicator. MRD is affected by both the drug sensitivity of leukemic cells and the pharmacodynamic and pharmacogenetic properties of the host cells. Rapid advances in biotechnology and bioinformatics should ultimately facilitate the development of molecular diagnostic assays that can be used to optimize antileukemic therapy and elucidate the mechanisms of leukemogenesis. In the interim, prospective clinical trials have provided valuable clues that are further increasing the cure rate of childhood acute lymphoblastic leukemia.  相似文献   

7.
Role of Src kinases in acute lymphoblastic leukaemia has been recently demonstrated in leukaemia mouse model. Retained activation of Src kinases by the BCR-ABL oncoprotein in leukaemic cells following inhibition of BCR-ABL kinase activity by imatinib indicates that Src activation by BCR-ABL is independent of BCR-ABL kinase activity and provides an explanation for reduced effectiveness of the BCR-ABL kinase activity inhibitors in Philadelphia chromosome-positive acute lymphoblastic leukaemia. Simultaneous inhibition of kinase activity of both BCR-ABL and Src kinases results in long-term survival of mice with acute lymphoblastic leukaemia. Leukaemic stem cells exist in acute lymphoblastic leukaemia, and complete eradication of this group of cells would provide a curative therapy for this disease.  相似文献   

8.
ONC201, founding member of the imipridone class of small molecules, is currently being evaluated in advancer cancer clinical trials. We explored single agent and combinatorial efficacy of ONC201 in preclinical models of hematological malignancies. ONC201 demonstrated (GI50 1–8 µM) dose- and time-dependent efficacy in acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic myelogenous leukemia (CML), chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), Burkitt's lymphoma, anaplastic large cell lymphoma (ALCL), cutaneous T-cell lymphoma (CTCL), Hodgkin's lymphoma (nodular sclerosis) and multiple myeloma (MM) cell lines including cells resistant to standard of care (dexamethasone in MM) and primary samples. ONC201 induced caspase-dependent apoptosis that involved activation of the integrated stress response (ATF4/CHOP) pathway, inhibition of Akt phosphorylation, Foxo3a activation, downregulation of cyclin D1, IAP and Bcl-2 family members. ONC201 synergistically reduced cell viability in combination with cytarabine and 5-azacytidine in AML cells. ONC201 combined with cytarabine in a Burkitt's lymphoma xenograft model induced tumor growth inhibition that was superior to either agent alone. ONC201 synergistically combined with bortezomib in MM, MCL and ALCL cells and with ixazomib or dexamethasone in MM cells. ONC201 combined with bortezomib in a Burkitt's lymphoma xenograft model reduced tumor cell density and improved CHOP induction compared to either agent alone. These results serve as a rationale for ONC201 single-agent trials in relapsed/refractory acute leukemia, non-Hodgkin's lymphoma, MM and combination trial with dexamethasone in MM, provide pharmacodynamic biomarkers and identify further synergistic combinatorial regimens that can be explored in the clinic.  相似文献   

9.
The human BCR-ABL oncogenes encoded by the Philadelphia chromosome (Ph) affect the pathogenesis of diverse types of leukemia and yet are rarely associated with T-lymphoid leukemia. To determine whether BCR-ABL kinases are inefficient in transforming T lymphocytes, BCR-ABL-expressing retroviruses were injected intrathymically into mice. Thymomas that expressed BCR-ABL kinase developed after a relatively long latent period. In most thymomas, deletion of 3' proviral sequences resulted in loss of tk-neo and occasionally caused expression of kinase-active carboxy-terminally truncated BCR-ABL oncoprotein. In contrast, deletion of 3' proviral sequences was not observed in thymomas induced with Abelson murine leukemia virus (A-MuLV). BCR-ABL viruses induced distinct patterns of disease and involved different thymocyte subsets than A-MuLV and Moloney murine leukemia virus (Mo-MuLV). While Mo-MuLV only induced Thy-1+ thymomas, v-abl- and BCR-ABL-induced thymomas often contained mixed populations of B220+ and Thy-1+ lymphocytes in the same tumor. In most v-abl and BCR-ABL tumors, Thy-1+ lymphoid cells expressed CD8 and a continuum of CD4 ranging from negative to positive. Conversely, Mo-MuLV thymomas contained distinct populations of CD4+ cells that were either CD8+ or CD8-. A-MuLV-transformed T-lymphoid cells did not express the CD3/T-cell receptor complex, while BCR-ABL tumors were CD3+. Thus, BCR-ABL viruses preferentially induce somewhat more differentiated T lymphocytes than are transformed by A-MuLV. Furthermore, rare B220+ lymphocytes may represent preferred v-abl and BCR-ABL transformation targets in the thymus.  相似文献   

10.
The cellular targets of primary mutations and malignant transformation remain elusive in most cancers. Here, we show that clinically and genetically different subtypes of acute lymphoblastic leukemia (ALL) originate and transform at distinct stages of hematopoietic development. Primary ETV6-RUNX1 (also known as TEL-AML1) fusions and subsequent leukemic transformations were targeted to committed B-cell progenitors. Major breakpoint BCR-ABL1 fusions (encoding P210 BCR-ABL1) originated in hematopoietic stem cells (HSCs), whereas minor BCR-ABL1 fusions (encoding P190 BCR-ABL1) had a B-cell progenitor origin, suggesting that P190 and P210 BCR-ABL1 ALLs represent largely distinct tumor biological and clinical entities. The transformed leukemia-initiating stem cells in both P190 and P210 BCR-ABL1 ALLs had, as in ETV6-RUNX1 ALLs, a committed B progenitor phenotype. In all patients, normal and leukemic repopulating stem cells could successfully be separated prospectively, and notably, the size of the normal HSC compartment in ETV6-RUNX1 and P190 BCR-ABL1 ALLs was found to be unaffected by the expansive leukemic stem cell population.  相似文献   

11.
The effectiveness of allogeneic graft-versus-leukemia (GVL) activity in control of acute lymphoblastic leukemia is generally regarded as poor. One possible factor is dynamic adaptation of the leukemia cell to the allogeneic environment. This work tested the hypothesis that the pattern of gene expression in acute lymphoblastic leukemia cells in an allogeneic environment would differ from that in a non-allogeneic environment. Expression microarray studies were performed in murine B lineage acute lymphoblastic leukemia cells recovered from mice that had undergone allogeneic MHC-matched but minor histocompatibility antigen mismatched transplants. A limited number of genes were found to be differentially expressed in ALL cells surviving in the allogeneic environment. Functional analysis demonstrated that genes related to immune processes, antigen presentation, ubiquitination and GTPase function were significantly enriched. Several genes with known immune activities potentially relevant to leukemia survival (Ly6a/Sca-1, TRAIL and H2-T23) were examined in independent validation experiments. Increased expression in vivo in allogeneic hosts was observed, and could be mimicked in vitro with soluble supernatants of mixed lymphocyte reactions or interferon-gamma. The changes in gene expression were reversible when the leukemia cells were removed from the allogeneic environment. These findings suggest that acute lymphoblastic leukemia cells respond to cytokines present after allogeneic transplantation and that these changes may reduce the effectiveness of GVL activity.  相似文献   

12.
The BCR-ABL translocation is found in chronic myeloid leukemia (CML) and in Ph+ acute lymphoblastic leukemia (ALL) patients. Although imatinib and its analogues have been used as front-line therapy to target this mutation and control the disease for over a decade, resistance to the therapy is still observed and most patients are not cured but need to continue the therapy indefinitely. It is therefore of great importance to find new therapies, possibly as drug combinations, which can overcome drug resistance. In this study, we identified eleven candidate anti-leukemic drugs that might be combined with imatinib, using three approaches: a kinase inhibitor library screen, a gene expression correlation analysis, and literature analysis. We then used an experimental search algorithm to efficiently explore the large space of possible drug and dose combinations and identified drug combinations that selectively kill a BCR-ABL+ leukemic cell line (K562) over a normal fibroblast cell line (IMR-90). Only six iterations of the algorithm were needed to identify very selective drug combinations. The efficacy of the top forty-nine combinations was further confirmed using Ph+ and Ph- ALL patient cells, including imatinib-resistant cells. Collectively, the drug combinations and methods we describe might be a first step towards more effective interventions for leukemia patients, especially those with the BCR-ABL translocation.  相似文献   

13.
Summary Immunostimulators such as Corynebacterium parvum (C. parvum), Bacillus Calmette-Guerin (BCG), pyran copolymer, and glucan were examined in the guinea pig L 2 C lymphoblastic leukemia model to determine their capacity for therapeutic modulation of the immune response of the host toward controlling leukemic cell proliferation. The dose, route, and frequency of administration of the stimulators were also evaluated as a function of time in order to obtain an optimal antileukemic effect. Results indicated that only C. parvum and BCG were capable of significantly increasing host survival when given 1 day after an inoculation of 1.5×10 4 viable leukemic cells. Administration of BCG or C. parvum, alone or in combination with irradiated blast cells on either days 4 or 7, was totally ineffective in prolonging survival. In the majority of cases, enhanced leukemic growth was observed on these days. The combination of BCG and/or C. parvum with irradiated syngeneic blast cells given 24 h after leukemia inoculation promoted a synergistic response with a significant increase in median survival time and a number of long-term survivors.This work was supported by contract N01-CP-53566 within the Virus Cancer Program of the National Cancer Institute  相似文献   

14.
Almost two decades ago, the sequencing of the human genome and high throughput technologies came to revolutionize the clinical and therapeutic approaches of patients with complex human diseases. In acute lymphoblastic leukemia (ALL), the most frequent childhood malignancy, these technologies have enabled to characterize the genomic landscape of the disease and have significantly improved the survival rates of ALL patients. Despite this, adverse reactions from treatment such as toxicity, drug resistance and secondary tumors formation are still serious consequences of chemotherapy, and the main obstacles to reduce ALL-related mortality. It is well known that germline variants and somatic mutations in genes involved in drug metabolism impact the efficacy of drugs used in oncohematological diseases therapy. So far, a broader spectrum of clinically actionable alterations that seems to be crucial for the progression and treatment response have been identified. Although these results are promising, it is necessary to put this knowledge into the clinics to help physician make medical decisions and generate an impact in patients’ health. This review summarizes the gene variants and clinically actionable mutations that modify the efficacy of antileukemic drugs. Therefore, knowing their genetic status before treatment is critical to reduce severe adverse effects, toxicities and life-threatening consequences in ALL patients.  相似文献   

15.
Somatically acquired genetic alterations play an important role in the pathogenesis of acute lymphoblastic leukemia. The molecular analysis of these alterations has increased our understanding of the mechanisms of leukemogenesis. In addition, this information has led to improvements in our abilities to predict treatment response and to deliver the optimal intensity of treatment to individual patients. For example, the prognosis for patients with acute lymphoblastic leukemia whose leukemic cells express the TEL-AML1 fusion is favorable when they are treated on modem chemotherapy protocols, whereas patients whose leukemic lymphoblasts contain the MLL-AF4 or the BCR-ABL fusion sometimes require allogeneic hematopoietic stem cell transplantation for cure. Molecular techniques are also used to detect minimal residual disease and genetic polymorphisms that are important in optimizing drug therapy.  相似文献   

16.
Chronic myeloid leukemia (CML) is a clonal disorder characterized by proliferation of hematopoietic cells that possess the BCR-ABL fusion gene resulting in the production of a 210 kDa chimeric tyrosine kinase protein. CML, when left untreated, progresses to a blast phase during which the disease turns aggressive and shows poor response to known treatment regimens. We have studied a Siddha herbal agent, Semecarpus anacardium Linn. nut milk extract (SA) for its antileukemic activity and its effect on the changes in energy metabolism in leukemic mice. Leukemia was induced in BALB/c mice by tail vein injection of BCR-ABL(+) 12B1 murine leukemia cell line. This resulted in an aggressive leukemia, similar to CML in blast crisis, myeloid subtype, confirmed by histopathological study and RT-PCR for the p210 mRNA in the peripheral blood, spleen and liver. Leukemia-bearing mice showed a significant increase in lipid peroxides, glycolytic enzymes, a decrease in gluconeogenic enzymes and significant decrease in the activities of TCA cycle and respiratory chain enzymes as compared to control animals. SA treatment was compared with standard drug imatinib mesylate. SA administration to leukemic animals resulted in clearance of the leukemic cells from the bone marrow and internal organs on histopathological examination and this was confirmed by RT-PCR for the p210 mRNA. Treatment with SA significantly reversed the changes seen in the levels of the lipid peroxides, the glycolytic enzymes, the gluconeogenic enzymes and the mitochondrial enzymes. These effects are probably due to the flavonoids, polyphenols and other compounds present in SA which result in total regression of leukemia and correction of the alterations in energy metabolism. Study of animals treated with SA alone did not reveal any adverse effects. On the basis of the observed results, SA can be considered as a readily accessible, promising and novel antileukemic chemotherapeutic agent.  相似文献   

17.
Imatinib mesylate (STI571), a specific inhibitor of the BCR-ABL tyrosine kinase, exhibits potent antileukemic effects in vitro and in vivo. Despite the well established role of STI571 in the treatment of chronic myelogenous leukemia, the precise mechanisms by which inhibition of BCR-ABL tyrosine kinase activity results in generation of antileukemic responses remain unknown. In the present study we provide evidence that treatment of CML-derived BCR-ABL-expressing leukemia cells with STI571 results in activation of the p38 mitogen-activated protein (MAP) kinase signaling pathway. Our data indicate that STI571 induces phosphorylation of the p38 and activation of its kinase domain, in KT-1 cells and other BCR-ABL-expressing cell lines. We also identify the kinases MAP kinase-activated protein kinase-2 and Msk1 as two downstream effectors of p38, activated during inhibition of BCR-ABL activity by STI571. Importantly, pharmacological inhibition of p38 reverses the growth inhibitory effects of STI571 on primary leukemic colony-forming unit granulocyte/macrophage progenitors from patients with CML. Altogether, our data establish that activation of the p38 MAP kinase signaling cascade plays an important role in the generation of the effects of STI571 on BCR-ABL-expressing cells. They also suggest that, in addition to activation of mitogenic pathways, BCR-ABL promotes leukemogenesis by suppressing the function of growth inhibitory signaling cascades.  相似文献   

18.
Relationship between the result of therapy in 48 cases of the acute lymphoblastic leukemia in childhood and character of response to corticosteroids, classified according to BMF group, has been assessed. Follow up period ranged from 13 to 75 months (mean 36 months, median 39 months). In was found, that the probability of survival free from any events, probability of complete remission persistence, and probability of survival after diagnosis have been statistically significantly higher in the group of patients with positive response to corticosteroids in comparison with patients non-responding to these agents. However, there was no significant difference in the number of recurrencies with the involvement of CNS. Authors share the opinion that their results confirm an opinion of Riehm et al. that the response to corticosteroids is of prognostic value in the acute lymphoblastic leukemia in childhood.  相似文献   

19.
We have previously developed a murine model of Philadelphia chromosome-positive acute lymphoblastic leukemia by i.v. injection of a pre-B ALL cell line (BM185) derived from Bcr-Abl-transformed BALB/c bone marrow. We are studying the potential to elicit autologous antileukemic immune responses by introducing genes encoding immunomodulators (CD40 ligand (CD40L), CD80, and GM-CSF) into leukemia cells. BM185 cells expressing CD40L or CD80 alone, when injected into BALB/c mice, were rejected in approximately 25% of mice, whereas cohorts receiving BM185 cells expressing two or more immunomodulator genes rejected challenge 50-76% of the time. The greatest protection was conferred in mice receiving BM185 cells expressing all three immunomodulators. Addition of murine rIL-12 treatments in conjunction with BM185/CD80/CD40L/GM-CSF vaccination allowed rejection of preestablished leukemia. BM185 cell lines expressing CD40L were rejected in BALB/c nu/nu (nude) mice, in contrast to cell lines expressing CD80 and/or GM-CSF. Nude mice depleted of NK cells were no longer protected when challenged with BM185/CD40L, demonstrating a requirement for NK cells. Similarly, NK cell depletion in immunocompetent BALB/c mice resulted in a loss of protection when challenged with BM185/CD40L, confirming the data seen in nude mice. The ability of CD40L to act in a T cell-independent manner may be important for clinical applications in patients with depressed cellular immunity following chemotherapy.  相似文献   

20.
The presence of definite cytoplasmic granulation in at least some of the malignant cells was used as the sole criterion to separate 156 patients with acute leukemia into two groups: 110 with myeloblastic (AML), and 46 with lymphoblastic or stem cell leukemia (ALL). The median survival from the onset of symptoms in patients with AML was 20 weeks, and those with ALL 37 weeks. The difference in survival in these two groups is much greater for patients under the age of 25 than for those over the age of 25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号