首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
围封对植被处于近自然恢复状态的退化草地有一定的修复作用,开展轻度退化草地围封过程中生物与非生物因素的协同互作研究是完整地认识草地生态系统结构和功能的基础.本试验对围栏封育10年的轻度退化草地的土壤化学计量特征进行了研究,同时采用高通量基因测序技术并结合Biolog-Eco方法,调查了土壤微生物多样性和功能的变化.结果表明:轻度退化草地实施围封后,土壤铵态氮含量显著升高,全钾含量显著降低,土壤有机碳、全氮、全磷、硝态氮、速效磷和速效钾则无明显变化.高寒草甸土壤微生物碳和氮在轻度退化和围栏封育草地间差异不显著;围栏封育后草地土壤微生物碳氮比显著高于轻度退化草地.随培养时间的延长,高寒草甸不同土层土壤微生物碳代谢强度均显著升高,土壤微生物碳代谢指数在轻度退化和围栏封育草地间差异不显著.高寒草甸土壤细菌OTUs显著高于真菌,轻度退化与围栏封育草地土壤微生物相似度为27.0%~32.7%.围封后,土壤真菌子囊菌门、接合菌门和球壶菌门相对丰富度显著升高,担子菌门显著降低,土壤细菌酸杆菌门显著低于轻度退化草地.土壤真菌和细菌群落组成在不同土层间差异较大,在轻度退化和围栏封育草地间仅有表层土壤真菌群落组成表现出较大差异.土壤细菌多样性受土壤全氮和速效钾影响较大,真菌多样性受地上生物量影响较大.土壤微生物对碳源利用能力主要受土壤速效钾影响.综上,长期围封禁牧对轻度退化草地土壤养分和土壤微生物无明显影响,且会造成牧草资源浪费,适度放牧可以保持草地资源的可持续利用.  相似文献   

2.
海南东寨港红树林不同植被土壤微生物群落结构比较   总被引:4,自引:1,他引:3  
任健  阎冰  洪葵 《微生物学报》2012,52(6):736-743
【目的】比较不同植被下红树林土壤细菌和古菌的多样性及群落结构,认识红树林土壤微生物资源多样性。【方法】直接提取红树林土壤总DNA,采用细菌通用引物27F/1492R和古菌通用引物Arch21F/Arch958R进行PCR扩增,构建细菌和古菌16S rRNA基因文库,对海南东寨港自然保护区秋茄林、无瓣海桑林和无红树林裸滩土壤的细菌和古菌多样性和群落结构进行分析和比较。【结果】3种土壤样品的细菌类群包括变形细菌门(Proteobacteria)等16个类群,其中变形细菌门(Proteobacteria)与绿屈挠菌门(Chloroflexi)是优势类群;古菌包括6个嗜泉古菌界(Crenarchaeota)类群和7个广域古菌界(Euryarchaeota)类群,分别以Marine Benthic Group C、Marine Benthic Group D为优势类群。多样性指数(H’)和物种丰富度指数(Schao1)表明,本地种秋茄林下土壤细菌和古菌的多样性指数最高,外来种无瓣海桑显著低于秋茄林,甚至明显低于相邻无红树林裸滩沉积物;不同植被下土壤细菌和古菌群落结构存在显著差异,秋茄林土壤微生物群落结构和无红树林裸滩沉积物更相似。【结论】红树林土壤微生物类群丰富,不同植被下土壤细菌和古菌多样性和群落结构存在显著差异。  相似文献   

3.
不同森林恢复类型对土壤微生物群落的影响   总被引:42,自引:4,他引:42  
为了评价不同森林恢复类型与方式对南方红壤丘陵区退化生态系统土壤微生物群落的影响,借助氯仿熏蒸法、平板涂抹法和BIOLOG检测法,比较研究了4种森林恢复类型土壤微生物的群落特征.结果表明,4种森林恢复类型土壤微生物生物量碳、细菌数量差异显著,2项指标均以天然次生林土壤最高,人工林次之,荒地最差;碳源平均颜色变化率(AWCD法)和微生物代谢多样性指数(丰富度和多样性)在5种植被类型的土壤中也有明显差异,其趋势与微生物量碳、细菌数量基本相同;天然次生林土壤微生物群落利用碳源的整体能力和功能多样性比人工林和荒地强.相关分析表明,0~20和20~40cm土壤微生物的代谢多样性与根系生物量紧密相关(r=0.933,P<0.05;r=0.925,P<0.05).自然恢复更有利于改善土壤微生物的结构和功能.  相似文献   

4.
土壤微生物群落结构沿海拔梯度的变异是微生物生物地理学分异和群落空间分布的重要内容,然而,热带森林土壤微生物多样性及其群落特征的海拔模式尚不明确。研究海南省尖峰岭自然保护区0—20cm和20—40cm土壤细菌多样性和群落组成沿海拔梯度(400—1410m)的变化及其与环境因子的关系。结果表明:在0—20cm土壤微生物生物量碳、生物量氮和生物量磷随海拔升高(峰顶降低)而增加,20—40cm土壤微生物生物量碳、生物量氮和生物量磷随海拔升高呈先升高后降低趋势;整体上,变形菌门、放线菌门、酸杆菌门、拟杆菌门、厚壁菌门在0—20cm中占优势,丰度总和占该层细菌总量的88.17%;变形菌门、放线菌门、酸杆菌门、厚壁菌门、绿弯菌门在20—40cm中占优势,丰度总和占该层细菌总量的90.82%;随海拔增加,0—20cm细菌多样性线性减少,20—40cm细菌多样性变化不显著;沿海拔梯度,0—20cm细菌群落组成可分为低(409—1018m),中(1018—1357m)和高(1410m)三个海拔聚集群落,20—40cm细菌群落组成随海拔无显著性变化;两土层细菌多样性与土壤pH显著正相关,土壤细菌群落组成在0...  相似文献   

5.
宁夏荒漠草原不同植物群落微斑块内土壤微生物区系特征   总被引:3,自引:0,他引:3  
植物群落斑块化是天然放牧草地最基本的特征之一.为探索植物群落斑块化对土壤微生物群落组成及多样性的影响,本研究以宁夏荒漠草原为研究对象,采用磷脂脂肪酸(PLFA)法对比分析了不同植物群落微斑块内土壤微生物生物量和群落结构特征的变化.结果表明: 1) 4种植物群落微斑块内土壤微生物种类丰富,且都表现为细菌含量最高,真菌和放线菌含量较少,革兰氏阳性菌含量高于革兰氏阴性菌;2)4种植物群落中,甘草微斑块的土壤微生物总量显著高于猪毛蒿、苦豆子和黄芪;3)冗余分析表明,磷脂脂肪酸总量、革兰氏阳性菌、革兰氏阴性菌、真菌、厌氧菌、真菌/细菌均与土壤有机碳呈显著正相关,与pH呈显著负相关,表明土壤有机碳、pH是荒漠草原土壤微生物生长和发育的重要影响因素.  相似文献   

6.
To address the link between soil microbial community composition and soil processes, we investigated the microbial communities in forest floors of two forest types that differ substantially in nitrogen availability. Cedar-hemlock (CH) and hemlock-amabilis fir (HA) forests are both common on northern Vancouver Island, B.C., occurring adjacently across the landscape. CH forest floors have low nitrogen availability and HA high nitrogen availability. Total microbial biomass was assessed using chloroform fumigation-extraction and community composition was assessed using several cultivation-independent approaches: denaturing gradient gel electrophoresis (DGGE) of the bacterial communities, ribosomal intergenic spacer analysis (RISA) of the bacterial and fungal communities, and phospholipid fatty acid (PLFA) profiles of the whole microbial community. We did not detect differences in the bacterial communities of each forest type using DGGE and RISA, but differences in the fungal communities were detected using RISA. PLFA analysis detected subtle differences in overall composition of the microbial community between the forest types, as well as in particular groups of organisms. Fungal PLFAs were more abundant in the nitrogen-poor CH forests. Bacteria were proportionally more abundant in HA forests than CH in the lower humus layer, and Gram-positive bacteria were proportionally more abundant in HA forests irrespective of layer. Bacterial and fungal communities were distinct in the F, upper humus, and lower humus layers of the forest floor and total biomass decreased in deeper layers. These results indicate that there are distinct patterns in forest floor microbial community composition at the landscape scale, which may be important for understanding nutrient availability to forest vegetation.  相似文献   

7.
Grassland ecosystems support large communities of aboveground herbivores that are known to directly and indirectly affect belowground properties such as the microbial community composition, richness, or biomass. Even though multiple species of functionally different herbivores coexist in grassland ecosystems, most studies have only considered the impact of a single group, i.e., large ungulates (mostly domestic livestock) on microbial communities. Thus, we investigated how the exclusion of four groups of functionally different herbivores affects bacterial community composition, richness, and biomass in two vegetation types with different grazing histories. We progressively excluded large, medium, and small mammals as well as invertebrate herbivores using exclosures at 18 subalpine grassland sites (9 per vegetation type). We assessed the bacterial community composition using terminal restriction fragment length polymorphism (T-RFLP) at each site and exclosure type during three consecutive growing seasons (2009–2011) for rhizosphere and mineral soil separately. In addition, we determined microbial biomass carbon (MBC), root biomass, plant carbon:nitrogen ratio, soil temperature, and soil moisture. Even though several of these variables were affected by herbivore exclusion and vegetation type, against our expectations, bacterial community composition, richness, or MBC were not. Yet, bacterial communities strongly differed between the three growing seasons as well as to some extent between our study sites. Thus, our study indicates that the spatiotemporal variability in soil microclimate has much stronger effects on the soil bacterial communities than the grazing regime or the composition of the vegetation in this high-elevation ecosystem.  相似文献   

8.
藏北古露高寒草地生态系统对短期围封的响应   总被引:1,自引:0,他引:1  
过度放牧导致高寒草地生态系统退化,围封是生态保护和恢复的管理手段。以青藏高原那曲县古露镇过牧退化高寒草地为对象,系统分析了高寒草地生态系统的植被特征及土壤理化特性、土壤酶活性、土壤微生物生物量和群落结构对围封的响应。结果表明,短期围封后,(1)植被平均高度、盖度和地上生物量均有极显著增加(P0.01),而生物多样性指数则显著降低(P0.01);(2)土壤的水溶性有机碳含量、土壤物理结构(沙土与粉土的比例)及pH有显著变化(P0.05);(3)土壤酶活性没有明显改善;(4)土壤微生物生物量(细菌、放线菌、真菌)均呈显著增加(P0.05);(5)土壤中细菌的多样性有增加的趋势,其群落组成在门水平上也发生了变化;(6)Manteltest分析显示与土壤细菌群落结构的呈正相关性的环境因子主要为土壤有机碳含量(TOC)、总氮含量(TN)、碳磷比(C/P)与氮磷比(N/P)(P0.05)。这表明围栏封育有利于藏北草地植被、土壤理化特性的恢复,还能维持土壤微生物多样性,促进高寒草地生态系统的可持续发展。  相似文献   

9.
以中国科学院沈阳生态试验站的长期定位试验为平台,研究了不同施肥和土壤管理对潮棕壤微生物生物量碳、氮和群落结构的影响。结果表明,裸地和农田处理的微生物生物量碳、氮较低,但是农田处理下施肥增加了微生物生物量,其中NPK+M效果最明显。DGGE图谱显示,处理间细菌条带分布较相似,其中裸地的细菌多样性最高;长期施肥和土壤管理改变了土壤真菌群落结构,施肥增加了真菌多样性,且有机肥的影响大于化肥;不同处理间氨氧化细菌群落结构差异显著,NPK+M显著增加了氨氧化细菌多样性,且无机肥和有机肥对氨氧化细菌群落影响不同。施肥和土壤管理对细菌影响较小,但显著改变了真菌和氨氧化细菌的群落结构。聚类分析结果显示,土壤管理措施较施肥对细菌、真菌和氨氧化细菌群落的影响更为显著。  相似文献   

10.
贺兰山不同海拔典型植被带土壤微生物多样性   总被引:26,自引:14,他引:26  
刘秉儒  张秀珍  胡天华  李文金 《生态学报》2013,33(22):7211-7220
土壤微生物多样性在海拔梯度的分布格局研究近年来受到和植物动物一样的重视程度,但是干旱风沙区微生物多样性在海拔梯度上的多样性分布规律尚未揭示。本研究以处于干旱风沙区的贺兰山不同海拔的六个典型植被带(荒漠草原带、山地旱生灌丛带、温性针叶林带、针阔混交林带、寒温性针叶林带和亚高山草甸带)土壤为研究对象,利用Biolog微平板法和磷脂脂肪酸甲酯法(FAMEs)系统研究微生物多样性群落特征以及在不同植被带分布规律。结果表明:土壤微生物功能多样性随海拔增加发生变化,且微生物群落结构存在显著差异。Biolog分析显示土壤微生物群落代谢活性依次是:亚高山草甸>寒温性针叶林>针阔混交林>温性针叶林>山地旱生灌丛>荒漠草原,随海拔的升高土壤微生物群落物种丰富度指数(H)和均匀度指数(E)总体上均表现出增大的趋势,差异显著(P<0.05);FAMEs分析表明不同海拔的微生物区系发生了一定程度的变化,寒温性针叶林土壤微生物磷酸脂肪酸生物标记的数量和种类均最高,且细菌、真菌特征脂肪酸相对含量也最高;土壤微生物群落结构多样性次序是:寒温性针叶林带>针阔混交林带>温性针叶林带>亚高山草甸>山地旱生灌丛>荒漠草原。本研究结果表明贺兰山海拔梯度的微生物多样性分布规律不同于已有的植物多样性“中部膨胀”研究结果,这说明在高海拔地区有更多的适合该生境的微生物存在,这对维持干旱风沙区的生态系统功能稳定性具有重要意义。  相似文献   

11.
As the Third Pole of the world, the Tibetan Plateau provides a typical alpine grassland environment for soil bacteria with its unique frigid and arid climate. Owing to clear changes in spatial moisture and increased grazing intensity, moisture and livestock grazing have become key factors influencing the microbial communities. Accordingly, we investigated the diversity and composition of soil bacteria in a selected alpine grassland within the dual gradients of moisture and grazing using high-throughput sequencing. Our results showed that grazing changed the soil bacterial diversity and composition, whereas moisture only influenced the relative abundance of the segmental community at the small spatial scale. Species richness was found to be increased by moderate grazing compared with that by high or low-grazing intensity. The relative abundance of dominant species and β-diversity of soil bacteria both showed differences with heavy, moderate, and low grazing. Some dominant bacteria were altered with the moisture content. However, there were no significant differences according to the moisture gradient in terms of the overall bacterial β diversity and composition. These results might be taken account into the small spatial scale as well as the compensation of grazing to moisture on this scale. This work provides new insights into the soil bacterial response to moisture gradients and grazing intensity in alpine steppe habitat.  相似文献   

12.
镜泊湖岩溶台地不同植被类型土壤微生物群落特征   总被引:6,自引:3,他引:6  
为了探讨不同演替阶段植被类型土壤微生物群落特征,分别选取镜泊湖岩溶台地草本、矮灌木、高灌木、小乔木与灌木混生(简称混生)群落、落叶阔叶林及针阔混交林6种典型植被类型,进行植物群落调查和对土壤微生物生物量、群落结构和多样性指标、土壤物理化学性质的测定。结果表明:从土壤微生物量、土壤微生物群落组成、土壤微生物代谢动力学过程和代谢功能多样性的角度来看,各种植被类型土壤微生物群落具有明显的差异。演替前期的草本群落土壤微生物量碳氮、细菌生物量、真菌生物量,代谢活性及丰富度指数均最低,但Shannon-Wiener多样性指数和均匀度指数显著(P<0.05)高于其他植被类型。矮灌木土壤微生物群落组成显著受植被类型的影响。高灌木群落和混生(小乔木与灌木混生)群落具有极强的相似性, 但在碳源利用类型上两者表现出一定的差异。落叶阔叶林代谢活性最高,碳源利用能力最强,能利用BIOLOG微孔板中的所有31种碳源,这与其具有较高的微生物量碳氮和细菌生物量一致,其代谢功能丰富度最高。演替后期的针阔混交林下的土壤pH最低,真菌比例升高,在碳源丰富的条件下具有极强的竞争优势(仅次于落叶阔叶林),但在碳源贫瘠的条件下其利用碳源能力较弱(仅高于草本)。植被可能主要通过土壤全磷和有机质影响土壤微生物代谢功能多样性。  相似文献   

13.
Intensive livestock is known to significantly affect soil physical and chemical parameters in steppe ecosystems. However, the effects on soil biological parameters still remain unknown. We hypothesized that intensive grazing would significantly decrease the size and diversity of soil biota due to deterioration of the soil environment and reduction in vegetation cover, while the adapted grazing intensity would improve the biological parameters. Soil samples were collected from five sites with different grazing intensities and history in a semiarid steppe of Inner Mongolia in August 2005. Two sites were long-term ungrazed since 1979 (UG79) and 1999 (UG99), one had been moderately grazed in winter (WG), one continuously grazed moderately (CG) and one long-term site was heavily grazed (HG). Soil microbial biomass carbon (C), basal respiration (BR), catabolic diversity of soil microbial communities, protozoa and nematodes abundance were measured. Soil physicochemical variables were also measured to establish the relationships between soil biological parameters and key soil physical and chemical properties. Soil microbial biomass C, BR, biomass specific respiration (qCO2) and soil protozoa abundance were significantly lower at the HG site compared to the UG79 site, but no clear differences were found in the other sites. However, soil nematodes abundance increased with increasing grazing intensity, and the abundance of soil amoeba were greater in CG than in the other sites. Principal component analysis (PCA) of Biolog data revealed large differences in catabolic capacity of soil microbial communities between UG79, HG and UG99, WG, CG. However, Shannon??s diversity index did not indicate marked effects of grazing intensity on substrate catabolic community structure. In conclusion, heavy grazing negatively affected soil microbial biomass, activity and protozoan abundance, but positively influenced soil nematodes abundance and did not affect soil microbial catabolic diversity. Based on these results, CG may provide an appropriate grazing intensity to be used in the long term in the semiarid steppe of Inner Mongolia.  相似文献   

14.
利用磷脂脂肪酸(PLFA)、群落水平生理活性(CLPPs)和扩增核糖体DNA限制性分析(ARDRA)标记,综合评估低浓度和高浓度甲胺磷连续施用2和4 yr后对土壤微生物群落结构、功能和遗传多样性的影响。结果表明,甲胺磷胁迫使土壤微生物生物量减少而细菌(革兰氏阴性菌)数量增加,同时使微生物群落功能多样性下降而遗传多样性提高;处理2 yr后高浓度甲胺磷胁迫对微生物群落的影响较低浓度胁迫更为明显,处理4 yr后两个浓度胁迫则具有相似的显著影响,表明不同浓度甲胺磷的长期胁迫均能对微生物群落造成严重破坏。  相似文献   

15.

Aims

To study the relationship between changes in soil properties and plant community characters produced by grazing in a meadow steppe grassland and the composition and diversity of spore-producing arbuscular mycorrhizal fungi (AMF).

Methods

A field survey was carried out in a meadow steppe area with a gradient of grazing pressures (a site with four grazing intensities and a reserve closed to grazing). The AMF community composition (characterized by spore abundance) and diversity, the vegetation characters and soil properties were measured, and root colonization by AMF was assessed.

Results

AMF diversity (richness and evenness) was higher under light to moderate grazing pressure and declined under intense grazing pressures. Results of multiple regressions indicated that soil electrical conductivity was highly associated with AMF diversity. The variation in AMF diversity was partially associated to the density of tillers of the dominant grass (Leymus chinensis), the above and below-ground biomass and the richness of the plant community.

Conclusions

We propose that the relationship between plants and AMF is altered by environmental stress (salinity) which is in turn influenced by animal grazing. Direct and indirect interactions between vegetation, soil properties, and AMF community need to be elucidated to improve our ability to manage these communities.  相似文献   

16.

Arbuscular mycorrhizal fungi (AMF) are important components of the grassland ecosystems in terms of plant phosphorus uptake and accumulation of glomalin-related soil protein (GRSP). Though Mongolian grasslands are seriously degraded by livestock grazing, the effects of grazing on soil AMF and GRSP remain unclear. Here, we examined community composition and diversity of AMF as well as amount of GRSP at three different grazing intensities: lightly grazed (LG), moderately grazed (MG), and heavily grazed (HG) under two different types of grassland, mountain forest steppe at Hustai and desert steppe at Mandalgobi. The diversity and biomass of AMF-host and non-AMF plants strongly affected the overall AMF community composition and its diversity. When we separately analyzed the factors affecting soil AMF diversity at Hustai and Mandalgobi, decrease in the shoot biomass of Poaceae plants at Hustai and decreases in the species number and shoot biomass of AMF-host plants at Mandalgobi were significantly correlated with AMF diversity. GRSP decreased with increasing grazing intensity, which was significantly correlated with soil pH and total root biomass at Hustai. The decrease in plant biomass caused by grazing thus led to GRSP reduction. Our results showed that change in soil AMF community caused by livestock grazing were associated with change in the biomass and diversity of functional vegetation groups such as Poaeceae, AMF-host and non-AMF plants, indicating the importance to focus on such functional vegetation groups to evaluate the effect of grazing on AMF.

  相似文献   

17.
土壤微生物多样性的形成、维持和变化机理是生态学研究的核心内容, 已有大量研究表明土壤微生物群落构建不仅受到土壤环境的深刻影响, 也与植物群落物种多样性密切相关。由于自然群落中土壤环境和植物多样性协同影响土壤微生物, 难以区分和厘清植物多样性和土壤环境对土壤微生物多样性构建的各自影响。该研究基于在青藏高原高寒草地构建的人工草地群落, 比较分析了3种优势禾本科牧草单播和混播及施肥处理13年后, 土壤细菌和真菌物种多样性及其与植物群落和土壤理化因子的关系。主要结果: 1)与各单播处理相比, 3种牧草两两混播一致显著降低了土壤细菌群落的丰富度和多样性, 其中变形菌门和放线菌门相对丰度显著增加, 而酸杆菌门、拟杆菌门和浮霉菌门相对丰度显著减小; 牧草混播对土壤真菌多样性没有显著影响。2)牧草混播显著降低了土壤pH和土壤全氮含量, 增加了土壤全磷含量; 施肥显著降低土壤pH, 增加了土壤速效磷含量; 但这些土壤理化因子的变化不足以解释土壤细菌和真菌多样性在处理间的差异。3)施肥显著提高了植物群落地上生物量, 降低了植物物种丰富度, 土壤细菌多样性随植物物种丰富度增加而减小, 而与植物生物量变化无关。该研究在野外条件下, 通过长期控制实验揭示了高寒草地禾草混播并不增加土壤微生物多样性, 为高寒地区牧草混播人工草地实践提供了科学依据。  相似文献   

18.
Fertiliser application can not only influence plant communities, but also the soil microbial community dynamics, and consequently soil quality. Specifically, mineral fertilisation can directly or indirectly affect soil chemical properties, microbial abundance and, the structure and diversity of soil microbial communities. We investigated the impact of six different mineral fertiliser regimes in a maize/soybean rotation system: control (CK, without fertilisation), PS (application of phosphorus plus sulphur), NS (application of nitrogen plus S), NP (application of N plus P), NPS (application of N, P plus S) and NPSm (application of N, P, S plus micronutrients). Soil samples were collected at the physiological maturity stage of maize and soybean in March of 2013 and 2014, respectively. Overall, mineral fertilisation resulted in significantly decreased soil pH and increased total organic carbon compared with the control (CK). The analysis of terminal restriction fragment length polymorphism (T‐RFLP) revealed that mineral fertilisers caused a shift in the composition of both bacterial and fungal communities. In 2013, the highest value of Shannon diversity of bacterial terminal restriction fragments (TRFs) was found in control soils. In 2014, NPSm treated soils showed the lowest values of diversity for both bacterial and fungal TRFs. In both crop growing seasons, the analysis of phospholipid fatty acid (PLFA) detected the lowest value of total microbial biomass under CK. As PLFA analysis can be used to evaluate total microbial community, this result suggests that fertilisation increased total microbial biomass. When the bacterial and fungal abundance were examined using real time polymerase chain reaction, the results revealed that mineral fertilisation led to decreased bacterial abundance (16S rRNA), while fungal abundance (18S rRNA) was found to be increased in both crop growing seasons. Our results show that mineral fertiliser application has a significant impact on soil properties, bacterial and fungal abundance and microbial diversity. However, further studies are needed to better understand the mechanisms involved in the changes to microbial communities as a consequence of mineral fertilisation.  相似文献   

19.
Repetitive extraction of DNAs from surface sediments of a coastal wetland in Mai Po Nature Reserve (MP) of Hong Kong and surface Baijiang soils from a rice paddy (RP) in Northeast China was conducted to compare the microbial diversity in this study. Community structures of ammonia/ammonium-oxidizing microorganisms in these samples were analyzed by PCR-DGGE technique. The diversity and abundance of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and anaerobic ammonium-oxidizing (anammox) bacteria were also analyzed based on archaeal and bacterial ammonia monooxygenase subunit A encoding (amoA) and anammox bacterial 16S rRNA genes, respectively. DGGE profiles of archaeal and bacterial amoA and anammox bacterial 16S rRNA genes showed a similar pattern among all five repetitively extracted DNA fractions from both MP and RP, except the anammox bacteria in RP, indicating a more diverse anammox community retrieved in the second to the fifth fractions than the first one. Both soil and marine group AOA were detected while soil and coastal group AOB and Scalindua-anammox bacteria were dominant in MP. Soil group AOA and marine group AOB were dominant in RP, while both Scalindua and Kuenenia species were detected in RP. Pearson correlation analysis showed that the abundance of archaeal and bacterial amoA and anammox bacterial 16S rRNA genes was significantly correlated with the DNA concentrations of the five DNA fractions from MP, but not from RP (except the archaeal amoA gene). Results suggest that anammox bacteria diversity may be biased by insufficient DNA extraction of rice paddy soil samples.  相似文献   

20.
放牧和刈割对内蒙古典型草原大型土壤动物的影响   总被引:1,自引:0,他引:1  
采用连续3年全季节放牧、3种季节性轮牧、秋季刈割和不利用对照6种处理, 研究了内蒙古典型草原大型土壤动物群落特征.调查在春、夏和秋3个季节进行,共捕获大型土壤动物597只,隶属于2门4纲11目,49个类群.结果表明: 全季节放牧导致土壤动物的个体密度、生物量和多样性降低;而刈割的影响相对较轻,土壤动物的个体密度、生物量和多样性甚至有提高趋势.3种季节性轮牧处理中,夏季和秋季放牧2次处理对土壤动物群落个体密度、生物量和多样性等指标的负面影响较轻.刈割管理对退化典型草原大型土壤动物群落的恢复较为有利;夏季和秋季放牧2次处理对大型土壤动物群落的负面影响较轻,是较理想的草地可持续管理措施.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号