首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Melatonin (Mel) has been reported to alleviate early brain injury (EBI) following subarachnoid hemorrhage (SAH). The activation of silent information regulator 1 (Sirt1), a histone deacetylase, has been suggested to be beneficial in SAH. However, the precise role of Sirt1 in Mel-mediated protection against EBI following SAH has not been elucidated. The present study aims to evaluate the role of melatonin receptor/Sirt1/nuclear factor-kappa B (NF-κB) in this process. The endovascular perforation SAH model was used in male C57BL/6J mice, and melatonin was administrated intraperitoneally (150 mg/kg). The mortality, SAH grade, neurological score, brain water content, and neuronal apoptosis were evaluated. The expression of Sirt1, acetylated-NF-κB (Ac-NF-κB), Bcl-2, and Bax were detected by western blot. To study the underlying mechanisms, melatonin receptor (MR) antagonist luzindole and Sirt1 small interfering RNA (siRNA) were administrated to different groups. The results suggest that Mel improved the neurological deficits and reduced the brain water content and neuronal apoptosis. In addition, Mel enhanced the expression of Sirt1 and Bcl-2 and decreased the expression of Ac-NF-κB and Bax. However, the protective effects of Mel were abolished by luzindole or Sirt1 siRNA. In conclusion, our results demonstrate that Mel attenuates EBI following SAH via the MR/Sirt1/NF-κB signaling pathway.  相似文献   

2.
TGF-β-activated kinase 1 (TAK1) is a key kinase in mediating Toll-like receptors (TLRs) and interleukin-1 receptor (IL-1R) signaling. Although TAK1 activation involves the phosphorylation of Thr-184 and Thr-187 residues at the activation loop, the molecular mechanism underlying the complete activation of TAK1 remains elusive. In this work, we show that the Thr-187 phosphorylation of TAK1 is regulated by its C-terminal coiled-coil domain-mediated dimerization in an autophosphorylation manner. Importantly, we find that TAK1 activation in mediating downstream signaling requires an additional phosphorylation at Ser-412, which is critical for TAK1 response to proinflammatory stimuli, such as TNF-α, LPS, and IL-1β. In vitro kinase and shRNA-based knockdown assays reveal that TAK1 Ser-412 phosphorylation is regulated by cAMP-dependent protein kinase catalytic subunit α (PKACα) and X-linked protein kinase (PRKX), which is essential for proper signaling and proinflammatory cytokine induction by TLR/IL-1R activation. Morpholino-based in vivo knockdown and rescue studies show that the corresponding site Ser-391 in zebrafish TAK1 plays a conserved role in NF-κB activation. Collectively, our data unravel a previously unknown mechanism involving TAK1 phosphorylation mediated by PKACα and PRKX that contributes to innate immune signaling.  相似文献   

3.
Following traumatic brain injury (TBI) neuroinflammatory processes promote neuronal cell loss. Alpha-melanocyte-stimulating hormone (α-MSH) is a neuropeptide with immunomodulatory properties, which may offer neuroprotection. Due to short half-life and pigmentary side-effects of α-MSH, the C-terminal tripeptide α-MSH(11–13) may be an anti-inflammatory alternative. The present study investigated the mRNA concentrations of the precursor hormone proopiomelanocortin (POMC) and of melanocortin receptors 1 and 4 (MC1R/MC4R) in naive mice and 15 min, 6, 12, 24, and 48 h after controlled cortical impact (CCI). Regulation of POMC and MC4R expression did not change after trauma, while MC1R levels increased over time with a 3-fold maximum at 12 h compared to naive brain tissue. The effect of α-MSH(11–13) on secondary lesion volume determined in cresyl violet stained sections (intraperitoneal injection 30 min after insult of 1 mg/kg α-MSH(11–13) or 0.9% NaCl) showed a considerable smaller trauma in α-MSH(11–13) injected mice. The expression of the inflammatory markers TNF-α and IL-1β as well as the total amount of Iba-1 positive cells were not reduced. However, cell branch counting of Iba-1 positive cells revealed a reduced activation of microglia. Furthermore, tripeptide injection reduced neuronal apoptosis analyzed by cleaved caspase-3 and NeuN staining. Based on the results single α-MSH(11–13) administration offers a promising neuroprotective property by modulation of inflammation and prevention of apoptosis after traumatic brain injury.  相似文献   

4.
Transforming growth factor β-activated protein kinase 1 (TAK1)-binding protein 2 (TAB2) and its close homolog TAB3 are initially characterized as adapter proteins essential for TAK1 activation in response to interleukin-1β and tumour necrosis factor-α. However, the physiological roles of TAB2 and TAB3 are still not fully understood. Here we report that TAB2 and TAB3 bind to Beclin1 and colocalize in the cytoplasm. TAB2 also interacts with ATG13 and is phosphorylated by ULK1. Overexpression of TAB2 or TAB3 induces punctate localization of ATG5 under the normal culture condition. Knockdown of TAB2 and TAB3 results in the decrease in endogenous protein level of p62/SQSTM1 under the normal culture condition, while overexpression of TAB2 results in the accumulation of p62/SQSTM1 independently of TAK1. The decrease of p62/SQSTM1 induced by the knockdown of TAB2 and TAB3 is largely dependent on ATG5. These results suggest that TAB2 and TAB3 negatively regulate autophagy independently of TAK1 activity.  相似文献   

5.
Tang  Xiangming  Yan  Kunning  Wang  Yingge  Wang  Yaping  Chen  Hongmei  Xu  Jiang  Lu  Yaoyao  Wang  Xiaohong  Liang  Jingyan  Zhang  Xinjiang 《Neurochemical research》2020,45(4):837-850
Neurochemical Research - Brain injury has been proposed as the major cause of the poor outcomes associated with intracerebral hemorrhage (ICH). Emerging evidence indicates that the nuclear...  相似文献   

6.
Transforming growth factor β-activated kinase 1 (TAK1) kinase is an indispensable signaling intermediate in tumor necrosis factor (TNF), interleukin 1, and Toll-like receptor signaling pathways. TAK1-binding protein 2 (TAB2) and its closely related protein, TAB3, are binding partners of TAK1 and have previously been identified as adaptors of TAK1 that recruit TAK1 to a TNF receptor signaling complex. TAB2 and TAB3 redundantly mediate activation of TAK1. In this study, we investigated the role of TAB2 by analyzing fibroblasts having targeted deletion of the tab2 gene. In TAB2-deficient fibroblasts, TAK1 was associated with TAB3 and was activated following TNF stimulation. However, TAB2-deficient fibroblasts displayed a significantly prolonged activation of TAK1 compared with wild type control cells. This suggests that TAB2 mediates deactivation of TAK1. We found that a TAK1-negative regulator, protein phosphatase 6 (PP6), was recruited to the TAK1 complex in wild type but not in TAB2-deficient fibroblasts. Furthermore, we demonstrated that both PP6 and TAB2 interacted with the polyubiquitin chains and this interaction mediated the assembly with TAK1. Our results indicate that TAB2 not only activates TAK1 but also plays an essential role in the deactivation of TAK1 by recruiting PP6 through a polyubiquitin chain-dependent mechanism.  相似文献   

7.
Tumor necrosis factor receptor-associated factor 6 (TRAF6) and TGFβ-activated kinase 1 (TAK1) are considered as key intermediates in Toll-like receptor (TLR) signaling. However, the role of TRAF6 and TAK1 in C-type lectin receptors (CLRs) in response to fungal infection has not been studied. In this study, we have utilized macrophages derived from TRAF6 knock-out mice and myeloid-specific TAK1-deficient mice and determined the role of TRAF6 and TAK1 in CLR-induced signal transduction events. We demonstrate that TRAF6 and TAK1 are required for NF-κB and JNK activation, and expression of proinflammatory cytokines in response to Candida albicans infection. Our results highlight TRAF6 and TAK1 as key components in the signaling cascade downstream of C-type lectin receptors and as critical mediators of the anti-fungal immune response. Therefore, our studies provide a mechanistic understanding of the host immune response to C. albicans, which has a significant impact for the development of anti-fungal therapeutics and in understanding risk-factors and determining susceptibility to C. albicans infection.  相似文献   

8.
9.
10.
Glycogen synthase kinase 3β (GSK3β) participates in many cellular processes, and its dysregulation has been implicated in a wide range of diseases such as obesity, type 2 diabetes, cancer, and Alzheimer disease. Inactivation of GSK3β by phosphorylation at specific residues is a primary mechanism by which this constitutively active kinase is controlled. However, the regulatory mechanism of GSK3β is not fully understood. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) has multiple biological functions that occur as the result of phosphorylation of diverse proteins that are involved in metabolism, synaptic function, and neurodegeneration. Here we show that GSK3β directly interacts with and is phosphorylated by Dyrk1A. Dyrk1A-mediated phosphorylation at the Thr356 residue inhibits GSK3β activity. Dyrk1A transgenic (TG) mice are lean and resistant to diet-induced obesity because of reduced fat mass, which shows an inverse correlation with the effect of GSK3β on obesity. This result suggests a potential in vivo association between GSK3β and Dyrk1A regarding the mechanism underlying obesity. The level of Thr(P)356-GSK3β was higher in the white adipose tissue of Dyrk1A TG mice compared with control mice. GSK3β activity was differentially regulated by phosphorylation at different sites in adipose tissue depending on the type of diet the mice were fed. Furthermore, overexpression of Dyrk1A suppressed the expression of adipogenic proteins, including peroxisome proliferator-activated receptor γ, in 3T3-L1 cells and in young Dyrk1A TG mice fed a chow diet. Taken together, these results reveal a novel regulatory mechanism for GSK3β activity and indicate that overexpression of Dyrk1A may contribute to the obesity-resistant phenotype through phosphorylation and inactivation of GSK3β.  相似文献   

11.
B cell development and activation are regulated by combined signals mediated by the B cell receptor (BCR), receptors for the B-cell activating factor of the tumor necrosis factor family (BAFF-R) and the innate receptor, Toll-like receptor 9 (TLR9). However, the underlying mechanisms by which these signals cooperate in human B cells remain unclear. Our aim was to elucidate the key signaling molecules at the crossroads of BCR, BAFF-R and TLR9 mediated pathways and to follow the functional consequences of costimulation.Therefore we stimulated purified human B cells by combinations of anti-Ig, B-cell activating factor of the tumor necrosis factor family (BAFF) and the TLR9 agonist, CpG oligodeoxynucleotide. Phosphorylation status of various signaling molecules, B cell proliferation, cytokine secretion, plasma blast generation and the frequency of IgG producing cells were investigated. We have found that BCR induced signals cooperate with BAFF-R- and TLR9-mediated signals at different levels of cell activation. BCR and BAFF- as well as TLR9 and BAFF-mediated signals cooperate at NFκB activation, while BCR and TLR9 synergistically costimulate mitogen activated protein kinases (MAPKs), ERK, JNK and p38. We show here for the first time that the MAP3K7 (TGF beta activated kinase, TAK1) is responsible for the synergistic costimulation of B cells by BCR and TLR9, resulting in an enhanced cell proliferation, plasma blast generation, cytokine and antibody production. Specific inhibitor of TAK1 as well as knocking down TAK1 by siRNA abrogates the synergistic signals. We conclude that TAK1 is a key regulator of receptor crosstalk between BCR and TLR9, thus plays a critical role in B cell development and activation.  相似文献   

12.
TGF-β1 can regulate osteoblast differentiation not only positively but also negatively. However, the mechanisms of negative regulation are not well understood. We previously established the reproducible model for studying the suppression of osteoblast differentiation by repeated or high dose treatment with TGF-β1, although single low dose TGF-β1 strongly induced osteoblast differentiation. The mRNA expression and protein level of insulin-like growth factor-1 (IGF-1) were remarkably decreased by repeated TGF-β1 administration in human periodontal ligament cells, human mesenchymal stem cells, and murine preosteoblast MC3T3-E1 cells. Repeated TGF-β1 administration subsequently decreased alkaline phosphatase (ALP) activity and mRNA expression of osteoblast differentiation marker genes, such as RUNX2, ALP, and bone sialoprotein (BSP). Additionally, repeated administration significantly reduced the downstream signaling pathway of IGF-1, such as Akt phosphorylation in these cells. Surprisingly, exogenous and overexpressed IGF-1 recovered ALP activity and mRNA expression of osteoblast differentiation marker genes even with repeated TGF-β1 administration. These facts indicate that the key mechanism of inhibition of osteoblast differentiation induced by repeated TGF-β1 treatment is simply due to the down-regulation of IGF-1 expression. Inhibition of IGF-1 signaling using small interfering RNA (siRNA) against insulin receptor substrate-1 (IRS-1) suppressed mRNA expression of RUNX2, ALP, BSP, and IGF-1 even with single TGF-β1 administration. This study showed that persistence of TGF-β1 inhibited osteoblast differentiation via suppression of IGF-1 expression and subsequent down-regulation of the PI3K/Akt pathway. We think this fact could open the way to use IGF-1 as a treatment tool for bone regeneration in prolonged inflammatory disease.  相似文献   

13.
Abstract

The 2′-deoxy and ara derivatives of 1-β-(D-ribofuranosyl)-1,2-dihydropyrimidin-2-one (zebularine) were synthesized by improved routes and tested for their inhibitory properties against cytidine deaminase. It was shown that the Ki′s of both compounds were comparable to that of the parent zebularine in inhibition studies with purified enzyme. In contrast to zebularine, 2′-deoxy and ara zebularine showed only nominal cytotoxicity against MOLT-4 and L1210 cells in vitro. A model compound for the inhibition of deoxycytidylate deaminase, 2′-deoxyzebularine 5′-monophosphate (6), was also prepared.  相似文献   

14.
Adenosine monophosphate-activated protein (AMP)-activated kinase (AMPK) is a highly conserved kinase that plays a key role in energy homeostasis. Activation of AMPK was shown to reduce inflammation in response to lipolysaccharide in vitro and in vivo. 5-Aminoimidazole-4-carbox-amide-1-β-d-ribofuranoside (AICAR) is intracellularly converted to the AMP analog ZMP, which activates AMPK. Lipoteichoic acid (LTA) is a major component of the cell wall of Gram-positive bacteria that can trigger inflammatory responses. In contrast to lipopolysaccharide, little is known on the effects of AMPK activation in LTA-triggered innate immune responses. Here, we studied the potency of AMPK activation to reduce LTA-induced inflammation in vitro and in lungs in vivo. Activation of AMPK in vitro reduced cytokine production in the alveolar macrophage cell line MH-S. In vivo, AMPK activation reduced LTA-induced neutrophil influx, as well as protein leak and cytokine/chemokine levels in the bronchoalveolar space. In conclusion, AMPK activation inhibits LTA-induced lung inflammation in mice.  相似文献   

15.
Abstract

Members of a series of α,ω-di(adenosin- N 6-yl)alkanes, comprising two adenosine residues linked with alkyl bridges from 1 to 14 methylene units in length, were found to be inhibitors of rat liver and BHK cell adenosine kinase. The inhibition was competitive with respect to adenosine and non-competitive with respect to ATP. The corresponding α,ω-di(cytidin-N 4-yl) alkanes were not inhibitors and N 6-alkyladenosines inhibited only weakly.  相似文献   

16.
17.
Neprilysin is one of the major amyloid-β peptide (Aβ)-degrading enzymes, the expression of which declines in the brain during aging. The decrease in neprilysin leads to a metabolic Aβ imbalance, which can induce the amyloidosis underlying Alzheimer disease. Pharmacological activation of neprilysin during aging therefore represents a potential strategy to prevent the development of Alzheimer disease. However, the regulatory mechanisms mediating neprilysin activity in the brain remain unclear. To address this issue, we screened for pharmacological regulators of neprilysin activity and found that the neurotrophic factors brain-derived neurotrophic factor, nerve growth factor, and neurotrophins 3 and 4 reduce cell surface neprilysin activity. This decrease was mediated by MEK/ERK signaling, which enhanced phosphorylation at serine 6 in the neprilysin intracellular domain (S6-NEP-ICD). Increased phosphorylation of S6-NEP-ICD in primary neurons reduced the levels of cell surface neprilysin and led to a subsequent increase in extracellular Aβ levels. Furthermore, a specific inhibitor of protein phosphatase-1a, tautomycetin, induced extensive phosphorylation of the S6-NEP-ICD, resulting in reduced cell surface neprilysin activity. In contrast, activation of protein phosphatase-1a increased cell surface neprilysin activity and lowered Aβ levels. Taken together, these results indicate that the phosphorylation status of S6-NEP-ICD influences the localization of neprilysin and affects extracellular Aβ levels. Therefore, maintaining S6-NEP-ICD in a dephosphorylated state, either by inhibition of protein kinases involved in its phosphorylation or by activation of phosphatases catalyzing its dephosphorylation, may represent a new approach to prevent reduction of cell surface neprilysin activity during aging and to maintain physiological levels of Aβ in the brain.  相似文献   

18.
Autophagy is a highly conserved cellular process regulating turnover of cytoplasmic proteins via a lysosome-dependent pathway. Here we show that kidneys from mice deficient in autophagic protein Beclin 1 exhibited profibrotic phenotype, with increased collagen deposition. Reduced Beclin 1 expression, through genetic disruption of beclin 1 or knockdown by specific siRNA in primary mouse mesangial cells (MMC), resulted in increased protein levels of type I collagen (Col-I). Inhibition of autolysosomal protein degradation by bafilomycin A(1) also increased Col-I protein levels and colocalization of Col-I with LC3, an autophagy marker, or LAMP-1, a lysosome marker, whereas treatment with TFP, an inducer of autophagy, resulted in decreased Col-I protein levels induced by TGF-β1, without alterations in Col-I α1 mRNA. Heterozygous deletion of beclin 1 increased accumulation of aggregated Col-I under nonstimulated conditions, and stimulation with TGF-β1 further increased aggregated Col-I. These data indicate that Col-I and aggregated, insoluble procollagen I undergo intracellular degradation via autophagy. A cytoprotective role of autophagy is implicated in kidney injury, and we demonstrate that low-dose carbon monoxide, shown to exert cytoprotection against renal fibrosis, induces autophagy to suppress accumulation of Col-I induced by TGF-β1. We also show that TGF-β1 induces autophagy in MMC via TAK1-MKK3-p38 signaling pathway. The dual functions of TGF-β1, as both an inducer of Col-I synthesis and an inducer of autophagy and Col-I degradation, underscore the multifunctional nature of TGF-β1. Our findings suggest a novel role of autophagy as a cytoprotective mechanism to negatively regulate and prevent excess collagen accumulation in the kidney.  相似文献   

19.
The Δ4-3-ketosteroid functionality is present in nearly all steroid hormones apart from estrogens. The first step in functionalization of the A-ring is mediated in humans by steroid 5α- or 5β-reductase. Finasteride is a mechanism-based inactivator of 5α-reductase type 2 with subnanomolar affinity and is widely used as a therapeutic for the treatment of benign prostatic hyperplasia. It is also used for androgen deprivation in hormone-de pend ent prostate carcinoma, and it has been examined as a chemopreventive agent in prostate cancer. The effect of finasteride on steroid 5β-reductase (AKR1D1) has not been previously reported. We show that finasteride competitively inhibits AKR1D1 with low micromolar affinity but does not act as a mechanism-based inactivator. The structure of the AKR1D1·NADP+·finasteride complex determined at 1.7 Å resolution shows that it is not possible for NADPH to reduce the Δ1-2-ene of finasteride because the cofactor and steroid are not proximal to each other. The C3-ketone of finasteride accepts hydrogen bonds from the catalytic residues Tyr-58 and Glu-120 in the active site of AKR1D1, providing an explanation for the competitive inhibition observed. This is the first reported structure of finasteride bound to an enzyme involved in steroid hormone metabolism.The Δ4-3-ketosteroid functionality is present in many important steroid hormones, e.g. testosterone, cortisone, and progesterone. An initial step in steroid hormone metabolism is the reduction of the Δ4-ene, which in humans is mediated by steroid 5α-reductases (SRD5A1, SRD5A2) or steroid 5β-reductase (AKR1D1)3 to yield the corresponding 5α- or 5β-dihydrosteroids, respectively (1, 2). The products of these reactions are not always inactive. 5α-Reductase is responsible for the conversion of testosterone to 5α-dihydrotestosterone (5α-DHT), which is the most potent natural ligand for the androgen receptor. By contrast, in addition to being involved in bile acid biosynthesis, 5β-reductase is responsible for generating 5β-pregnanes, which are natural ligands for the pregnane-X receptor (PXR) in the liver (3, 4). PXR is involved in the induction of CYP3A4, which is responsible for the metabolism of a large proportion of drugs (5, 6). Thus both 5α-reductase and 5β-reductase are involved in the formation of potent ligands for nuclear receptors.Finasteride is a selective 5α-reductase type 2 inhibitor that reduces plasma 5α-dihydrotestosterone levels and shrinks the size of the prostate (7). It is a widely used therapeutic agent in the treatment of benign prostatic hyperplasia (8, 9), it is used in androgen deprivation therapy to treat prostate cancer (10), and it has been examined as a chemopreventive agent for hormone-dependent prostate cancer (11). Finasteride was originally thought to act as a competitive inhibitor with nanomolar affinity for 5α-reductase type 2 (12). More recently, it was found that finasteride acts as a mechanism-based inactivator of this enzyme (13). Subsequent to inhibitor binding, there is hydride transfer from the NADPH cofactor to the Δ1-2-ene double bond of finasteride. The intermediate enolate tautomerizes at the enzyme active site to form a bisubstrate analogue in which dihydrofinasteride is covalently bound to NADP+ (13). The bisubstrate analogue has subnanomolar affinity for 5α-reductase type 2 (Fig. 1). No structural information exists for 5α-reductase type 1 or type 2; therefore, it is not possible to determine how finasteride would bind to the active site of a human steroid double bond reductase in the absence of an experimentally determined crystal structure.Open in a separate windowFIGURE 1.Mechanism-based inactivation of 5α-reductase type 2 by finasteride. Adapted from Bull et al. (13). R = −C(=O)-NH2; PADPR = 2′-phosphoadenosine-5″-diphosphoribose.Human steroid 5β-reductase is a member of the aldo-keto reductase (AKR) superfamily and is formally designated (AKR1D1) (14). The AKRs are soluble NADP(H)-dependent oxidoreductases with monomeric molecular masses of 37 kDa. These enzymes are amenable to x-ray crystallography, and during the last year, we and others have reported crystal structures of ternary complexes of AKR1D1 (1517). The ternary complexes containing steroid substrates include: AKR1D1·NADP+·testosterone (PDB: 3BUR), AKR1D1·NADP+·progesterone (PDB: 3COT), AKR1D1·NADP+·cortisone (PDB: 3CMF), and AKR1D1·NADP+·Δ4-androstene-3,17-dione (PDB: 3CAS) (17). In addition, ternary complexes containing the products 5β-dihydroprogesterone (PDB: 3CAV) and 5β-dihydrotestosterone (PDB: 3DOP) have also been described (16, 18).As part of an ongoing inhibitor screen of AKR1D1, we now report that finasteride acts as a competitive inhibitor with low micromolar affinity. Additionally, we report the x-ray crystal structure of the AKR1D1·NADP+·finasteride complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号