首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
番茄斑萎病毒属(Tospovirus)是布尼亚病毒科(Bunyaviridae)中植物病毒组成的一个属,病毒粒子为球状,直径80~110nm,粒体外层由一层脂质包裹。基因组属于负单链RNA,由三个片段组成,分别被称为L RNA、M RNA、和S RNA。L RNA为负链、含单个开放阅读框架(ORF),M RNA和S RNA均为双义R  相似文献   

2.
K. Chen    Z. Xu    L. Yan    G. Wang 《Journal of Phytopathology》2007,155(3):178-181
A new strain of Capsicum chlorosis virus (CaCV) from peanut (Arachis hypogaea L.) in China, designated CaCV‐CP, was characterized. CaCV‐CP causes yellow spots and necrosis on the leaves of affected peanut plants. Of 31 plant species inoculated mechanically, 24 were susceptible to this strain. Quasi‐spherical virions were present in ultrathin section of diseased leaves. The complete sequence of S RNA of CaCV‐CP consisted of 3399 nucleotides (nts). The NSs and N genes of the virus contained 1320 nts and 828 nts, respectively; these two open reading frames were in an ambisense arrangement. The N gene of CaCV‐CP shared 84.7–86.4% and 92.4–93.1% identity with that of CaCV strains from Thailand and Australia at nt and amino acid levels, respectively (the GenBank accession number of the sequence reported in this study is DQ355974 ).  相似文献   

3.
The family Bunyaviridae is the most diversified family of RNA viruses. We describe a novel prototypic bunyavirus, tentatively named Gouléako virus, isolated from various mosquito species trapped in Côte d''Ivoire. The S segment comprised 1,087 nucleotides (nt), the M segment 3,188 nt, and the L segment 6,358 nt, constituting the shortest bunyavirus genome known so far. The virus had shorter genome termini than phleboviruses and showed no evidence of encoded NSs and NSm proteins. An uncharacterized 105-amino-acid (aa) putative open reading frame (ORF) was detected in the S segment. Genetic equidistance to other bunyaviruses (74 to 88% aa identity) and absence of serological cross-reactivity with phleboviruses suggested a proposed novel Bunyaviridae genus.  相似文献   

4.
Rift Valley fever virus (RVFV; family Bunyaviridae) is a clinically important, mosquito-borne pathogen of both livestock and humans, which is found mainly in sub-Saharan Africa and the Arabian Peninsula. RVFV has a trisegmented single-stranded RNA (ssRNA) genome. The L and M segments are negative sense and encode the L protein (viral polymerase) on the L segment and the virion glycoproteins Gn and Gc as well as two other proteins, NSm and 78K, on the M segment. The S segment uses an ambisense coding strategy to express the nucleocapsid protein, N, and the nonstructural protein, NSs. Both the NSs and NSm proteins are dispensable for virus growth in tissue culture. Using reverse genetics, we generated a recombinant virus, designated r2segMP12, containing a two-segmented genome in which the NSs coding sequence was replaced with that for the Gn and Gc precursor. Thus, r2segMP12 lacks an M segment, and although it was attenuated in comparison to the three-segmented parental virus in both mammalian and insect cell cultures, it was genetically stable over multiple passages. We further show that the virus can stably maintain an M-like RNA segment encoding the enhanced green fluorescent protein gene. The implications of these findings for RVFV genome packaging and the potential to develop multivalent live-attenuated vaccines are discussed.  相似文献   

5.
6.
The nucleotide and amino acid sequences of the movement protein (NSm) genes of five isolates of Groundnut bud necrosis virus (GBNV) originating from different hosts and parts of India such as cowpea and tomato from Kerala, groundnut from Tamil Nadu, and potato from Madhya Pradesh and Rajasthan were determined and compared to the known NSm sequences. Sequence analysis revealed that the NSm genes of GBNV isolates were identical in length (924 bp encoding 307 amino acids). GBNV isolates shared maximum identity (98–100%) at amino acid levels with GBNV‐Type isolate, while 82–83% and 34–65% amino acid sequence identities were observed with Watermelon silver mottle virus and other Tospoviruses respectively. The NSm genes among GBNV isolates originating from different hosts and locations appeared highly conserved (93–100%), suggesting their common origin.  相似文献   

7.
We determined the complete nucleotide sequence of the small (S) RNA segment of Uukuniemi virus, the prototype of the Uukuvirus genus within the Bunyaviridae family. The RNA, which is 1,720 nucleotides long, contains two nonoverlapping open reading frames. The 5' end of one strand (complementary to the viral strand) encodes the nonstructural protein NSs (273 residues; molecular weight, 32,019), whereas the 5' end of the viral-sense strand encodes the nucleocapsid protein N (254 residues; molecular weight, 28,508). Thus, the S RNA uses an ambisense coding strategy previously described for the S segment of two phleboviruses and the arenaviruses. The localization of the N protein within the S RNA sequence was confirmed by amino-terminal sequence analysis of all five possible cyanogen bromide fragments obtained from purified N protein. Northern (RNA) blot analyses with strand-specific probes showed that the N and NSs proteins are translated from subgenomic mRNAs about 800 and 850 nucleotides long, respectively. These mRNAs are apparently transcribed from full-length S RNAs of opposite polarities. The two mRNA species were also detected in virus-infected cells. Interestingly, highly purified virions contained full-length S RNA copies of both polarities at a ratio of about 10:1. In contrast, virions contained exclusively negative-strand copies of the M RNA segment. The possible significance of these results for viral infection is discussed. The amino acid sequence of the N protein showed 35 and 32% homology (identity) with the N protein of Punta Toro and sandfly fever Sicilian viruses, two members of the Phlebovirus genus. The NSs proteins were much less related (about 15% identity). In addition, the extreme 5' and 3' ends of the S RNA, which are complementary to each other, also showed a high degree of conservation with the two phleboviruses. These results indicate that the uukuviruses and phleboviruses are evolutionarily related and suggest that the two genera could be merged into a single genus within the Bunyaviridae family.  相似文献   

8.

Background

Emerging tospoviruses cause significant yield losses and quality reduction in vegetables, ornamentals, and legumes throughout the world. So far, eight tospoviruses were reported in China. Tomato fruits displaying necrotic and concentric ringspot symptoms were found in Guizhou province of southwest China.

Finding

ELISA experiments showed that crude saps of the diseased tomato fruit samples reacted with antiserum against Tomato zonate spot virus (TZSV). Electron microscopy detected presence of quasi-spherical, enveloped particles of 80–100 nm in such saps. The putative virus isolate was designated 2009-GZT. Mechanical back-inoculation showed that 2009-GZT could infect systemically some solanaceous crop and non-crop plants including Capiscum annuum, Datura stramonium, Nicotiana benthamiana, N. rustica, N. tabacum and Solanum lycopersicum. The 3012 nt full-length sequence of 2009-GZT S RNA shared 68.2% nt identity with that of Calla lily chlorotic spot virus (CCSV), the highest among all compared viruses. This RNA was predicted to encode a non-structural protein (NSs) (459 aa, 51.7 kDa) and a nucleocapsid protein (N) (278 aa, 30.3 kDa). The N protein shared 85.8% amino acid identity with that of CCSV. The NSs protein shared 82.7% amino acid identity with that of Tomato zonate spot virus(TZSV).

Conclusion

Our results indicate that the isolate 2009-GZT is a new species of Tospovirus, which is named Tomato necrotic spot virus (TNSV). This finding suggests that a detailed survey in China is warranted to further understand the occurrence and distribution of tospoviruses.
  相似文献   

9.
The NSs protein of Watermelon silver mottle virus (WSMoV) is the RNA silencing suppressor and pathogenicity determinant. In this study, serial deletion and point-mutation mutagenesis of conserved regions (CR) of NSs protein were performed, and the silencing suppression function was analyzed through agroinfiltration in Nicotiana benthamiana plants. We found two amino acid (aa) residues, H113 and Y398, are novel functional residues for RNA silencing suppression. Our further analyses demonstrated that H113 at the common epitope (CE) (109KFTMHNQ117), which is highly conserved in Asia type tospoviruses, and the benzene ring of Y398 at the C-terminal β-sheet motif (397IYFL400) affect NSs mRNA stability and protein stability, respectively, and are thus critical for NSs RNA silencing suppression. Additionally, protein expression of other six deleted (ΔCR1-ΔCR6) and five point-mutated (Y15A, Y27A, G180A, R181A and R212A) mutants were hampered and their silencing suppression ability was abolished. The accumulation of the mutant mRNAs and proteins, except Y398A, could be rescued or enhanced by co-infiltration with potyviral suppressor HC-Pro. When assayed with the attenuated Zucchini yellow mosaic virus vector in squash plants, the recombinants carrying individual seven point-mutated NSs proteins displayed symptoms much milder than the recombinant carrying the wild type NSs protein, suggesting that these aa residues also affect viral pathogenicity by suppressing the host silencing mechanism.  相似文献   

10.
The complete genome sequence and the gene organization of a novel insect picorna-like virus, Spodoptera exigua virus (SeV), were determined. The genomic RNA of the SeV was 9501 nt in length excluding the poly(A) tail and contained a single, large open reading frame (nt 392–9424) encoding a 3010 aa polyprotein. Sequence comparisons with other viral polyproteins revealed that the consensus sequences for picornavirus RNA helicase, cysteine protease, and RNA-dependent RNA polymerase (RdRp) proteins are found on the genome in that order from the 5′ to the 3′ end. In terms of sequence similarity, identity, and genome organization, SeV resembled insect picorna-like viruses belonging to the genus Iflavirus. A phylogenetic analysis based on the eight conserved domains in the RdRp sequence showed that SeV was most closely related to the Perina nuda virus and Ectropis obliqua picorna-like virus, suggesting that these three insect picorna-like viruses might share a common ancestor.  相似文献   

11.
Natural infection of tospoviruses on three cucurbitaceous (Cucumis sativus, cucumber; Luffa acutangula, ridge gourd; Citrullus lanatus, watermelon) and three fabaceous (Vigna unguiculata, cowpea; Phaseolus vulgaris, French bean; Dolichos lablab, sem) vegetable crops in India was identified on the basis of nucleocapsid protein (NP) gene characteristics. The complete NP gene of the cowpea isolate from Kerala and the sem isolate from Tamil Nadu was 831 nucleotides long, encoding a protein of 276 amino acids. For other Tospovirus isolates from cucumber, French bean, ridge gourd and watermelon, the partial NP gene (291 nt) was sequenced. Comparative NP gene sequence analyses revealed that fabaceous isolates shared maximum identity both at the nucleotide (92–97%) and amino acid (93–97%) levels with the corresponding region of Groundnut bud necrosis virus (GBNV), whereas cucurbitaceous isolates shared maximum identity both at nucleotide (93–99%) and amino acid (95–98%) levels with the corresponding region of Watermelon bud necrosis virus (WBNV), results suggesting that the Tospovirus isolates infecting fabaceous hosts should be regarded as strain of GBNV, whereas those infecting cucurbitaceous hosts as a strain of WBNV. Nucleocapsid protein gene was conserved both in GBNV and WBNV isolates originating from different hosts and locations.  相似文献   

12.
Groundnut bud necrosis virus (GBNV), a member of genus Tospovirus in the family Bunyaviridae, infects a large number of leguminosae and solanaceae plants in India. With a view to elucidate the function of nonstructural protein, NSs encoded by the small RNA genome (S RNA), the NSs protein of GBNV- tomato (Karnataka) [1] was over-expressed in E. coli and purified by Ni-NTA chromatography. The purified rNSs protein exhibited an RNA stimulated NTPase activity. Further, this activity was metal ion dependent and was inhibited by adenosine 5′ (β, γ imido) triphosphate, an ATP analog. The rNSs could also hydrolyze dATP. Interestingly, in addition to the NTPase and dATPase activities, the rNSs exhibited ATP independent 5′ RNA/DNA phosphatase activity that was completely inhibited by AMP. The 5′ α phosphate could be removed from ssDNA, ssRNA, dsDNA and dsRNA thus confirming that rNSs has a novel 5′ α phosphatase activity. K189A mutation in the Walker motif A (GxxxxGKT) resulted in complete loss of ATPase activity, but the 5′ phosphatase activity was unaffected. On the other hand, D159A mutation in the Walker motif B (DExx) resulted in partial loss of both the activities. These results demonstrate for the first time that NSs is a bifunctional enzyme, which could participate in viral movement, replication or in suppression of the host defense mechanism.  相似文献   

13.
14.

Background

Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors.

Methodology and Principal Findings

Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus.

Conclusions/Significance

In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.  相似文献   

15.
The norovirus genome consists of a single positive-stranded RNA. The mechanism by which this single-stranded RNA genome is replicated is not well understood. To reveal the mechanism underlying the initiation of the norovirus genomic RNA synthesis by its RNA-dependent RNA polymerase (RdRp), we used an in vitro assay to detect the complementary RNA synthesis activity. Results showed that the purified recombinant RdRp was able to synthesize the complementary positive-sense RNA from a 100-nt template corresponding to the 3′-end of the viral antisense genome sequence, but that the RdRp could not synthesize the antisense genomic RNA from the template corresponding to the 5′-end of the positive-sense genome sequence. We also predicted that the 31 nt region at the 3′-end of the RNA antisense template forms a stem-loop structure. Deletion of this sequence resulted in the loss of complementary RNA synthesis by the RdRp, and connection of the 31 nt to the 3′-end of the inactive positive-sense RNA template resulted in the gain of complementary RNA synthesis by the RdRp. Similarly, an electrophoretic mobility shift assay further revealed that the RdRp bound to the antisense RNA specifically, but was dependent on the 31 nt at the 3′-end. Therefore, based on this observation and further deletion and mutation analyses, we concluded that the predicted stem-loop structure in the 31 nt end and the region close to the antisense viral genomic stem sequences are both important for initiating the positive-sense human norovirus genomic RNA synthesis by its RdRp.  相似文献   

16.
17.
18.

Background

Viral small RNAs (vsiRNAs) in the infected host can be generated from viral double-stranded RNA replicative intermediates, self-complementary regions of the viral genome or from the action of host RNA-dependent RNA polymerases on viral templates. The vsiRNA abundance and profile as well as the endogenous small RNA population can vary between different hosts infected by the same virus influencing viral pathogenicity and host response. There are no reports on the analysis of vsiRNAs of Tomato spotted wilt virus (TSWV), a segmented negative stranded RNA virus in the family Bunyaviridae, with two of its gene segments showing ambisense gene arrangement. The virus causes significant economic losses to numerous field and horticultural crops worldwide.

Principal Findings

Tomato spotted wilt virus (TSWV)-specific vsiRNAs were characterized by deep sequencing in virus-infected experimental host Nicotiana benthamiana and a commercial, susceptible host tomato. The total small (s) RNA reads in TSWV-infected tomato sample showed relatively equal distribution of 21, 22 and 24 nt, whereas N. benthamiana sample was dominated by 24 nt total sRNAs. The number of vsiRNA reads detected in tomato was many a magnitude (~350:1) higher than those found in N. benthamiana, however the profile of vsiRNAs in terms of relative abundance 21, 22 and 24 nt class size was similar in both the hosts. Maximum vsiRNA reads were obtained for the M RNA segment of TSWV while the largest L RNA segment had the least number of vsiRNAs in both tomato and N. benthamiana. Only the silencing suppressor, NSs, of TSWV recorded higher antisense vsiRNA with respect to the coding frame among all the genes of TSWV.

Significance

Details of the origin, distribution and abundance of TSWV vsiRNAs could be useful in designing efficient targets for exploiting RNA interference for virus resistance. It also has major implications toward our understanding of the differential processing of vsiRNAs in antiviral defense and viral pathogenicity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号