首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of a family of collagen-binding microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) from Gram-positive bacteria are established virulence factors in several infectious diseases models. Here, we report that these adhesins also can bind C1q and act as inhibitors of the classical complement pathway. Molecular analyses of Cna from Staphylococcus aureus suggested that this prototype MSCRAMM bound to the collagenous domain of C1q and interfered with the interactions of C1r with C1q. As a result, C1r2C1s2 was displaced from C1q, and the C1 complex was deactivated. This novel function of the Cna-like MSCRAMMs represents a potential immune evasion strategy that could be used by numerous Gram-positive pathogens.  相似文献   

2.
Triggering receptor expressed on myeloid cells-2 (TREM-2) is rapidly emerging as a key regulator of the innate immune response via its regulation of macrophage inflammatory responses. Here we demonstrate that proximal TREM-2 signaling parallels other DAP12-based receptor systems in its use of Syk and Src-family kinases. However, we find that the linker for activation of T cells (LAT) is severely reduced as monocytes differentiate into macrophages and that TREM-2 exclusively uses the linker for activation of B cells (LAB encoded by the gene Lat2−/−) to mediate downstream signaling. LAB is required for TREM-2-mediated activation of Erk1/2 and dampens proximal TREM-2 signals through a novel LAT-independent mechanism resulting in macrophages with proinflammatory properties. Thus, Lat2−/− macrophages have increased TREM-2-induced proximal phosphorylation, and lipopolysaccharide stimulation of these cells leads to increased interleukin-10 (IL-10) and decreased IL-12p40 production relative to wild type cells. Together these data identify LAB as a critical, LAT-independent regulator of TREM-2 signaling and macrophage development capable of controlling subsequent inflammatory responses.  相似文献   

3.
Sarcolemmal membrane-associated protein (SLMAP) is a tail-anchored protein involved in fundamental cellular processes, such as myoblast fusion, cell cycle progression, and chromosomal inheritance. Further, SLMAP misexpression is associated with endothelial dysfunctions in diabetes and cancer. SLMAP is part of the conserved striatin-interacting phosphatase and kinase (STRIPAK) complex required for specific signaling pathways in yeasts, filamentous fungi, insects, and mammals. In filamentous fungi, STRIPAK was initially discovered in Sordaria macrospora, a model system for fungal differentiation. Here, we functionally characterize the STRIPAK subunit PRO45, a homolog of human SLMAP. We show that PRO45 is required for sexual propagation and cell-to-cell fusion and that its forkhead-associated (FHA) domain is essential for these processes. Protein-protein interaction studies revealed that PRO45 binds to STRIPAK subunits PRO11 and SmMOB3, which are also required for sexual propagation. Superresolution structured-illumination microscopy (SIM) further established that PRO45 localizes to the nuclear envelope, endoplasmic reticulum, and mitochondria. SIM also showed that localization to the nuclear envelope requires STRIPAK subunits PRO11 and PRO22, whereas for mitochondria it does not. Taken together, our study provides important insights into fundamental roles of the fungal SLMAP homolog PRO45 and suggests STRIPAK-related and STRIPAK-unrelated functions.  相似文献   

4.
The production of reactive oxygen species (ROS) plays important roles in the life cycle and in the stress response and defence mechanisms of plants. Various enzyme systems are involved in the formation of ROS in the apoplast, including plasmalemma NADPH oxidase and apoplastic peroxidases. The production of O 2 ·? and apoplastic peroxidase and exogenous NADH oxidation activities are all strongly dependent on the age of roots??the younger the root, the greater the activity. Apoplastic production of ROS is shown in the root by using specific histochemical probes, this ROS production is growing zone dependent. In the present study, using olive seedlings, differences were also observed between cultivars, especially in O 2 ·? production by the Verdial cultivar which was well above that of other cultivars studied. In all the cultivars, treatment of roots with methyl jasmonate (MeJA) or methyl salicylate (MeSA) increased O 2 ·? production. Similar results were observed for peroxidase activity, but not for the oxidation of exogenous NADH which was either unaffected (MeJA) or even partially inhibited (MeSA). A conclusion was that MeJA or MeSA induced apoplastic production of ROS does not use exogenous NADH. Treatment with diphenylene iodonium (DPI) reduced the formation of O 2 ·? , but affected neither peroxidase nor NADH oxidation activities. Cyanide inhibited O 2 ·? production and peroxidase and NADH oxidation activities. Treatment with MnCl2 had a strong stimulatory effect on peroxidase and NADH oxidation activities, but much less on O 2 ·? production. Finally, azide greatly reduced all activities, but especially O 2 ·? production. Together, these results indicate a relationship between oxidative activities and the processes of root growth, and that those activities are also dependent on the cultivar, as well as an involvement of peroxidases and plasmalemma NADPH oxidase in apoplast ROS production which is sensitive to DPI, azide, and cyanide but relatively insensitive to MnCl2, while exogenous NADH oxidation is linked to peroxidase activity.  相似文献   

5.
In most bacteria, two tRNAs decode the four arginine CGN codons. One tRNA harboring a wobble inosine (tRNAArgICG) reads the CGU, CGC and CGA codons, whereas a second tRNA harboring a wobble cytidine (tRNAArgCCG) reads the remaining CGG codon. The reduced genomes of Mycoplasmas and other Mollicutes lack the gene encoding tRNAArgCCG. This raises the question of how these organisms decode CGG codons. Examination of 36 Mollicute genomes for genes encoding tRNAArg and the TadA enzyme, responsible for wobble inosine formation, suggested an evolutionary scenario where tadA gene mutations first occurred. This allowed the temporary accumulation of non-deaminated tRNAArgACG, capable of reading all CGN codons. This hypothesis was verified in Mycoplasma capricolum, which contains a small fraction of tRNAArgACG with a non-deaminated wobble adenosine. Subsets of Mollicutes continued to evolve by losing both the mutated tRNAArgCCG and tadA, and then acquired a new tRNAArgUCG. This permitted further tRNAArgACG mutations with tRNAArgGCG or its disappearance, leaving a single tRNAArgUCG to decode the four CGN codons. The key point of our model is that the A-to-I deamination activity had to be controlled before the loss of the tadA gene, allowing the stepwise evolution of Mollicutes toward an alternative decoding strategy.  相似文献   

6.
7.
During (bacterio)chlorophyll biosynthesis of many photosynthetically active organisms, dark operative protochlorophyllide oxidoreductase (DPOR) catalyzes the two-electron reduction of ring D of protochlorophyllide to form chlorophyllide. DPOR is composed of the subunits ChlL, ChlN, and ChlB. Homodimeric ChlL2 bearing an intersubunit [4Fe-4S] cluster is an ATP-dependent reductase transferring single electrons to the heterotetrameric (ChlN/ChlB)2 complex. The latter contains two intersubunit [4Fe-4S] clusters and two protochlorophyllide binding sites, respectively. Here we present the crystal structure of the catalytic (ChlN/ChlB)2 complex of DPOR from the cyanobacterium Thermosynechococcus elongatus at a resolution of 2.4 Å. Subunits ChlN and ChlB exhibit a related architecture of three subdomains each built around a central, parallel β-sheet surrounded by α-helices. The (ChlN/ChlB)2 crystal structure reveals a [4Fe-4S] cluster coordinated by an aspartate oxygen alongside three cysteine ligands. Two equivalent substrate binding sites enriched in aromatic residues for protochlorophyllide substrate binding are located at the interface of each ChlN/ChlB half-tetramer. The complete octameric (ChlN/ChlB)2(ChlL2)2 complex of DPOR was modeled based on the crystal structure and earlier functional studies. The electron transfer pathway via the various redox centers of DPOR to the substrate is proposed.  相似文献   

8.
Apoptosis-inducing factor (AIF) and AIF-homologous mitochondrion-associated inducer of death (AMID) are both mitochondrial flavoproteins that trigger caspase-independent apoptosis. Phylogenetic analysis suggests that these two proteins evolutionarily diverge back from their common prokaryote ancestor. Compared with AIF, the proapoptotic nature of AMID and its mode of action are much less clarified. Here, we show that overexpression of yeast AMID homologue internal NADH dehydrogenase (NDI1), but not external NADH dehydrogenase (NDE1), can cause apoptosis-like cell death, and this effect can be repressed by increased respiration on glucose-limited media. This result indicates that the regulatory network of energy metabolism, in particular the cross-talk between mitochondria and the rest of the cell, is involved in Ndi1p-induced yeast cell apoptosis. The apoptotic effect of NDI1 overexpression is associated with increased production of reactive oxygen species (ROS) in mitochondria. In addition, NDI1 overexpression in sod2 background causes cell lethality in both fermentable and semifermentable media. Interruption of certain components in the electron transport chain can suppress the growth inhibition from Ndi1p overexpression. We finally show that disruption of NDI1 or NDE1 decreases ROS production and elongates the chronological life span of yeast, accompanied by the loss of survival fitness. Implication of these findings for Ndi1p-induced apoptosis is discussed.  相似文献   

9.
In Lactococcus lactis IL1403, 14 genes are under the control of the copper-inducible CopR repressor. This so-called CopR regulon encompasses the CopR regulator, two putative CPx-type copper ATPases, a copper chaperone, and 10 additional genes of unknown function. We addressed here the function of one of these genes, ytjD, which we renamed cinD (copper-induced nitroreductase). Copper, cadmium, and silver induced cinD in vivo, as shown by real-time quantitative PCR. A knockout mutant of cinD was more sensitive to oxidative stress exerted by 4-nitroquinoline-N-oxide and copper. Purified CinD is a flavoprotein and reduced 2,6-dichlorophenolindophenol and 4-nitroquinoline-N-oxide with kcat values of 27 and 11 s−1, respectively, using NADH as a reductant. CinD also exhibited significant catalase activity in vitro. The X-ray structure of CinD was resolved at 1.35 Å and resembles those of other nitroreductases. CinD is thus a nitroreductase which can protect L. lactis against oxidative stress that could be exerted by nitroaromatic compounds and copper.Lactococcus lactis IL1403 is a Gram-positive lactic acid bacterium which is used for the manufacture of food and dairy products but also for an increasing number of biotechnological applications. Given the economical importance of this microorganism, it is often used as a model for molecular studies. Its genome has been sequenced (4), and its proteome has been extensively characterized (11). When applied to industrial processes, this bacterium has to face various stress conditions, such as low pH, high temperature, osmotic shock, and metal stress (44). For instance, in traditional cheese making in Switzerland, L. lactis is exposed to copper released from the copper vats.Copper is an essential micronutrient for both prokaryotes and eukaryotes. The two oxidation states of copper, Cu+ and Cu2+, allow its participation in many important biological functions. More than 30 enzymes are known to use copper as a cofactor, such as superoxide dismutase (SOD), cytochrome c oxidase, or lysyl oxidase (20). The redox activity of copper can also lead to the generation of free radicals, which cause cellular damage (42, 43). Recently, alternative copper toxicity mechanisms have been demonstrated in bacteria in which copper interferes with the formation of catalytic iron-sulfur clusters (6, 22). Whatever the mechanism of copper toxicity, maintenance of copper homeostasis by controlling the uptake, accumulation, detoxification, and removal of copper is critical for living organisms.Copper homeostasis in L. lactis has not yet been investigated in great detail but appears to resemble the well-characterized copper homeostatic system of Enterococcus hirae (34). L. lactis possesses a copRZA operon, which provides copper resistance. It encodes the CopA copper export ATPase, the CopR copper-inducible repressor, and the CopZ copper chaperone (23). CopR regulates not only the copRZA operon but also an additional 11 genes. This so-called CopR regulon also includes copB, encoding a second putative copper ATPase; lctO, encoding lactate oxidase; and the ydiDE, yahCD-yaiAB, and ytjDBA operons of unknown function. Of all the genes and operons constituting the CopR regulon, the ytjDBA operon was most strongly induced by copper (23). Based on sequence comparison, the first gene of this operon, ytjD, encodes an oxygen-insensitive nitroreductase, which we renamed cinD for copper-induced nitroreductase.Nitroreductases are called oxygen insensitive when they can catalyze the two-electron reduction of nitro compounds in the presence of oxygen. Such enzymes are widespread in nature and are able to reduce a wide range of substrates, such as furazones, nitroaromatic compounds, flavins, and ferricyanide, using NADH or NADPH as the reductant. They are flavoproteins of 22 to 24 kDa and form homodimers with one flavin mononucleotide cofactor per monomer. Although oxygen-insensitive nitroreductases have been extensively studied, their in vivo function remains largely unknown. The closest relative of CinD, which has functionally been studied, is FRP of Vibrio harveyi, with 29% sequence identity to CinD. FRP is not a typical nitroreductase but appears to function as an NADH flavin oxidoreductase which provides reduced flavin to luciferase (19). The next closest relative of CinD, NfsA of Escherichia coli, with 23% sequence identity, exhibits the broad substrate specificity typical of most nitroreductases (48). The structure of this enzyme has been solved at a resolution of 1.7 Å (17). It closely resembles the structures of other enzymes which belong to the oxygen-insensitive nitroreductase family. NfsA has recently been shown to participate in the degradation of 2,4,6-trinitrotoluene (10). This suggests that an important function of nitroreductases could be the metabolism of xenobiotics.We investigated here the structure and function of CinD of L. lactis. CinD was induced by copper, cadmium, and silver and protected L. lactis from oxidative stress exerted by 4-nitroquinoline-N-oxide (NQO). The purified enzyme is a flavoprotein and exhibited nitroreductase activity on NQO and a variety of other substrates, using NADH as the reductant. CinD also possesses catalase activity and is thus able to defend cells against oxidative stress exerted by hydrogen peroxide, xenobiotics, or copper. The three-dimensional structure of CinD was resolved at a 1.35-Å resolution and exhibits a typical nitroreductase structure.  相似文献   

10.
Yeast is a facultative anaerobe and uses diverse electron acceptors to maintain redox-regulated import of cysteine-rich precursors via the mitochondrial intermembrane space assembly (MIA) pathway. With the growing diversity of substrates utilizing the MIA pathway, understanding the capacity of the intermembrane space (IMS) to handle different types of stress is crucial. We used MS to identify additional proteins that interacted with the sulfhydryl oxidase Erv1 of the MIA pathway. Altered inheritance of mitochondria 32 (Aim32), a thioredoxin-like [2Fe-2S] ferredoxin protein, was identified as an Erv1-binding protein. Detailed localization studies showed that Aim32 resided in both the mitochondrial matrix and IMS. Aim32 interacted with additional proteins including redox protein Osm1 and protein import components Tim17, Tim23, and Tim22. Deletion of Aim32 or mutation of conserved cysteine residues that coordinate the Fe-S center in Aim32 resulted in an increased accumulation of proteins with aberrant disulfide linkages. In addition, the steady-state level of assembled TIM22, TIM23, and Oxa1 protein import complexes was decreased. Aim32 also bound to several mitochondrial proteins under nonreducing conditions, suggesting a function in maintaining the redox status of proteins by potentially targeting cysteine residues that may be sensitive to oxidation. Finally, Aim32 was essential for growth in conditions of stress such as elevated temperature and hydroxyurea, and under anaerobic conditions. These studies suggest that the Fe-S protein Aim32 has a potential role in general redox homeostasis in the matrix and IMS. Thus, Aim32 may be poised as a sensor or regulator in quality control for a broad range of mitochondrial proteins.  相似文献   

11.
12.
13.
The potato (Solanum tuberosum) disease resistance protein Rx has a modular arrangement that contains coiled-coil (CC), nucleotide-binding (NB), and leucine-rich repeat (LRR) domains and mediates resistance to potato virus X. The Rx N-terminal CC domain undergoes an intramolecular interaction with the Rx NB-LRR region and an intermolecular interaction with the Rx cofactor RanGAP2 (Ran GTPase-activating protein 2). Here, we report the crystal structure of the Rx CC domain in complex with the Trp-Pro-Pro (WPP) domain of RanGAP2. The structure reveals that the Rx CC domain forms a heterodimer with RanGAP2, in striking contrast to the homodimeric structure of the CC domain of the barley disease resistance protein MLA10. Structure-based mutagenesis identified residues from both the Rx CC domain and the RanGAP2 WPP domain that are crucial for their interaction and function in vitro and in vivo. Our results reveal the molecular mechanism underlying the interaction of Rx with RanGAP2 and identify the distinct surfaces of the Rx CC domain that are involved in intramolecular and intermolecular interactions.  相似文献   

14.
The widely expressed DNA-protective protein from starved-cells (Dps) family proteins are considered major contributors to prokaryotic resistance to stress. We show here that Porphyromonas gingivalis Dps (PgDps), previously described as an iron-storage and DNA-binding protein, also mediates heme sequestration. We determined that heme binds strongly to PgDps with an apparent Kd of 3.7 × 10−8 m and is coordinated by a single surface-located cysteine at the fifth axial ligand position. Heme and iron sequestered in separate sites by PgDps provide protection of DNA from H2O2-mediated free radical damage and were found to be important for growth of P. gingivalis under excess heme as the only iron source. Conservation of the heme-coordinating cysteine among Dps isoforms from the Bacteroidales order suggests that this function may be a common feature within these anaerobic bacteria.  相似文献   

15.
The small ubiquitin related modifier (SUMO)-mediated posttranslational protein modification is widely conserved among eukaryotes. Similar to ubiquitination, SUMO modifications are attached to the substrate protein through three reaction steps by the E1, E2 and E3 enzymes. To date, multiple families of SUMO E3 ligases have been reported in yeast and animals, but only two types of E3 ligases have been identified in Arabidopsis: SAP and Miz 1 (SIZ1) and Methyl Methanesulfonate-Sensitivity protein 21 (MMS21)/HIGH PLOIDY 2 (HPY2), hereafter referred to as HPY2. Both proteins possess characteristic motifs termed Siz/PIAS RING (SP-RING) domains, and these motifs are conserved throughout the plant kingdom. Previous studies have shown that loss-of-function mutations in HPY2 or SIZ1 cause dwarf phenotypes and that the phenotype of siz1-2 is caused by the accumulation of salicylic acid (SA). However, we demonstrate here that the phenotype of hpy2-1 does not depend on SA accumulation. Consistently, the expression of SIZ1 driven by the HPY2 promoter does not complement the hpy2-1 phenotypes, indicating that they are not functional homologs. Lastly, we show that the siz1-2 and hpy2-1 double mutant results in embryonic lethality, supporting the hypothesis that they have non-overlapping roles during embryogenesis. Together, these results suggest that SIZ1 and HPY2 function independently and that their combined SUMOylation is essential for plant development.  相似文献   

16.
Tumorigenesis requires the concerted action of multiple pathways, including pathways that stimulate proliferation and metabolism. Epidermal growth factor receptor (EGFR) is a transmembrane receptor-tyrosine kinase that is associated with cancer progression, and the EGFR inhibitors erlotinib/tarceva and tyrphostin/AG-1478 are potent anti-cancer therapeutics. Pgrmc1 (progesterone receptor membrane component 1) is a cytochrome b5-related protein that is up-regulated in tumors and promotes cancer growth. Pgrmc1 and its homologues have been implicated in cell signaling, and we show here that Pgrmc1 increases susceptibility to AG-1478 and erlotinib, increases plasma membrane EGFR levels, and co-precipitates with EGFR. Pgrmc1 co-localizes with EGFR in cytoplasmic vesicles and co-fractionates with EGFR in high density microsomes. The findings have therapeutic potential because a Pgrmc1 small molecule ligand, which inhibits growth in a variety of cancer cell types, de-stabilized EGFR in multiple tumor cell lines. EGFR is one of the most potent receptor-tyrosine kinases driving tumorigenesis, and our data support a role for Pgrmc1 in promoting several cancer phenotypes at least in part by binding EGFR and stabilizing plasma membrane pools of the receptor.  相似文献   

17.
PRC2 (Polycomb repressive complex 2) mediates epigenetic gene silencing by catalyzing the triple methylation of histone H3 Lys-27 (H3K27me3) to establish a repressive epigenetic state. PRC2 is involved in the regulation of many fundamental biological processes and is especially essential for embryonic stem cells. However, how the formation and function of PRC2 are regulated is largely unknown. Here, we show that a microRNA encoded by the imprinted Dlk1-Dio3 region of mouse chromosome 12, miR-323-3p, targets Eed (embryonic ectoderm development) mRNA, which encodes one of the core components of PRC2, the EED protein. Binding of miR-323-3p to Eed mRNA resulted in reduced EED protein abundance and cellular H3K27me3 levels, indicating decreased PRC2 activity. Such regulation seems to be conserved among mammals, at least between mice and humans. We demonstrate that induced pluripotent stem cells with varied developmental abilities had different miR-323-3p as well as EED and H3K27me3 levels, indicating that miR-323-3p may be involved in the regulation of stem cell pluripotency through affecting PRC2 activity. Mouse embryonic fibroblast cells had much higher miR-323-3p expression and nearly undetectable H3K27me3 levels. These findings identify miR-323-3p as a new regulator for PRC2 and provide a new approach for regulating PRC2 activity via microRNAs.  相似文献   

18.
The striatin-interacting phosphatase and kinase (STRIPAK) complex is composed of striatin, protein phosphatase PP2A and protein kinases that regulate development in animals and fungi. In the filamentous ascomycete Sordaria macrospora, it is required for fruiting-body development and cell fusion. Here, we report on the presence and function of STRIPAK-associated kinases in ascomycetes. Using the mammalian germinal center kinases (GCKs) MST4, STK24, STK25 and MINK1 as query, we identified the two putative homologs SmKIN3 and SmKIN24 in S. macrospora. A BLASTP search revealed that both kinases are conserved among filamentous ascomycetes. The physical interaction of the striatin homolog PRO11 with SmKIN3 and SmKIN24 were verified by yeast two-hybrid (Y2H) interaction studies and for SmKIN3 by co-Immunoprecipitation (co-IP). In vivo localization found that both kinases were present at the septa and deletion of both Smkin3 and Smkin24 led to abnormal septum distribution. While deletion of Smkin3 caused larger distances between adjacent septa and increased aerial hyphae, deletion of Smkin24 led to closer spacing of septa and to sterility. Although phenotypically distinct, both kinases appear to function independently because the double-knockout strain ΔSmkin3/ΔSmkin24 displayed the combined phenotypes of each single-deletion strain.  相似文献   

19.
Ankyrin repeat domain protein 2 (ANKRD2) translocates from the nucleus to the cytoplasm upon myogenic induction. Overexpression of ANKRD2 inhibits C2C12 myoblast differentiation. However, the mechanism by which ANKRD2 inhibits myoblast differentiation is unknown. We demonstrate that the primary myoblasts of mdm (muscular dystrophy with myositis) mice (pMBmdm) overexpress ANKRD2 and ID3 (inhibitor of DNA binding 3) proteins and are unable to differentiate into myotubes upon myogenic induction. Although suppression of either ANKRD2 or ID3 induces myoblast differentiation in mdm mice, overexpression of ANKRD2 and inhibition of ID3 or vice versa is insufficient to inhibit myoblast differentiation in WT mice. We identified that ANKRD2 and ID3 cooperatively inhibit myoblast differentiation by physical interaction. Interestingly, although MyoD activates the Ankrd2 promoter in the skeletal muscles of wild-type mice, SREBP-1 (sterol regulatory element binding protein-1) activates the same promoter in the skeletal muscles of mdm mice, suggesting the differential regulation of Ankrd2. Overall, we uncovered a novel pathway in which SREBP-1/ANKRD2/ID3 activation inhibits myoblast differentiation, and we propose that this pathway acts as a critical determinant of the skeletal muscle developmental program.  相似文献   

20.
Interleukin-6 (IL-6) is a pleiotropic cytokine that regulates immune and inflammatory responses, and its overproduction is a hallmark of inflammatory diseases. Inhibition of IL-6 signaling with the anti-IL-6 receptor antibody tocilizumab has provided some clinical benefit to patients; however, direct cytokine inhibition may be a more effective option. We used the systematic evolution of ligands by exponential enrichment (SELEX) process to discover slow off-rate modified aptamers (SOMAmers) with hydrophobic base modifications that inhibit IL-6 signaling in vitro. Two classes of IL-6 SOMAmers were isolated from modified DNA libraries containing 40 random positions and either 5-(N-benzylcarboxamide)-2′-deoxyuridine (Bn-dU) or 5-[N-(1-naphthylmethyl)carboxamide]-2′-deoxyuridine (Nap-dU) replacing dT. These modifications facilitate the high affinity binding interaction with IL-6 and provide resistance against degradation by serum endonucleases. Post-SELEX optimization of one Bn-dU and one Nap-dU SOMAmer led to improvements in IL-6 binding (10-fold) and inhibition activity (greater than 20-fold), resulting in lead SOMAmers with sub-nanomolar affinity (Kd = 0.2 nm) and potency (IC50 = 0.2 nm). Although similar in inhibition properties, the two SOMAmers have unique sequences and different ortholog specificities. Furthermore, these SOMAmers were stable in human serum in vitro for more than 48 h. Both SOMAmers prevented IL-6 signaling by blocking the interaction of IL-6 with its receptor and inhibited the proliferation of tumor cells in vitro as effectively as tocilizumab. This new class of IL-6 inhibitor may be an effective therapeutic alternative for patients suffering from inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号