首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Fluoroquinolones are a class of antibacterial agents used clinically to treat a wide array of bacterial infections and target bacterial type-II topoisomerases (DNA gyrase and topoisomerase IV). Fluoroquinolones, however potent, are susceptible to bacterial resistance with prolonged use, which limits their use in the clinic. Quinazoline-2,4-diones also target bacterial type-II topoisomerases and are not susceptible to bacterial resistance similar to fluoroquinolones, however, their potency pales in comparison to fluoroquinolones. To meet the increasing demand for antibacterial development, nine modified quinazoline-2,4-diones were developed to probe quinazoline-2,4-dione structure modification for possible new binding contacts with the bacterial type-II topoisomerase, DNA gyrase. Evaluation of compounds for inhibition of the supercoiling activity of DNA gyrase revealed a novel ethyl 5,6-dihydropyrazolo[1,5-c]quinazoline-1-carboxylate derivative as a modest inhibitor of DNA gyrase, having an IC50 of 3.5 μM. However, this ethyl 5,6-dihydropyrazolo[1,5-c]quinazoline-1-carboxylate does not trap the catalytic intermediate like fluoroquinolones or typical quinazoline-2,4-diones do. Thus, the ethyl 5,6-dihydropyrazolo[1,5-c]quinazoline-1-carboxylate derivative discovered in this work acts as a catalytic inhibitor of DNA gyrase and therefore represents a new structural type of catalytic inhibitor of DNA gyrase.  相似文献   

2.
3.
The twisted 'life' of DNA in the cell: bacterial topoisomerases   总被引:11,自引:2,他引:9  
DNA topoisomerases are essential to the cell for the regulation of DNA supercoiling levels and for chromosome decatenation. The proposed mechanisms for these reactions are essentially the same, except that a change in supercoiling is due to an intramolecular event, while decatenation requires an intermolecular event. The characterized bacterial topoisomerases appear capable of both types of reaction in vitro. Four DNA topoisomerases have been identified in Escherichia coli. Topoisomerase I, gyrase, and topoisomerase IV normally appear to have distinct essential functions within the cell, Gyrase and topoisomerase I are responsible for the regulation of DNA supercoiling. Both gyrase and topoisomerase IV are necessary for chromosomal decatenation. Multiple topoisomerases with distinct functions may give the cell more precise control over DNA topology by allowing tighter regulation of the principal enzymatic activities of these different proteins.  相似文献   

4.
5.
6.
7.
DNA topoisomerases inter-convert different DNA topoisomers in the cell. They catalyze the introduction or relaxation of DNA supercoils, as well as catenation and decatenation. Members of the type I topoisomerase family cleave a single strand of their double-stranded DNA substrate, whereas enzymes of the type II family cleave both DNA strands. Bacterial DNA gyrase, a type II topoisomerase, catalyzes the introduction of negative supercoils into DNA in an ATP-dependent reaction. Gyrase is not present in humans, and constitutes an attractive drug target for the treatment of bacterial and parasite infections. DNA supercoiling by gyrase is believed to occur by a strand passage mechanism, in which one segment of the double-stranded DNA substrate is passed through a (transient) break in a second segment. This mechanism requires the coordinated opening and closing of three protein interfaces, so-called gates, to ensure the directionality of strand passage toward negative supercoiling.Single molecule fluorescence resonance energy transfer experiments are ideally suited to investigate conformational changes during the catalytic cycle of DNA topoisomerases. In this review, we summarize the current knowledge on the cascade of DNA- and nucleotide-induced conformational changes in gyrase that lead to strand passage and negative supercoiling of DNA. We discuss how these conformational changes couple ATP hydrolysis to DNA supercoiling in gyrase, and how the common mechanistic principle of coordinated gate opening and closing is modulated to allow for the catalysis of different reactions by different type II topoisomerases.  相似文献   

8.
DNA topoisomerases inter-convert different DNA topoisomers in the cell. They catalyze the introduction or relaxation of DNA supercoils, as well as catenation and decatenation. Members of the type I topoisomerase family cleave a single strand of their double-stranded DNA substrate, whereas enzymes of the type II family cleave both DNA strands. Bacterial DNA gyrase, a type II topoisomerase, catalyzes the introduction of negative supercoils into DNA in an ATP-dependent reaction. Gyrase is not present in humans, and constitutes an attractive drug target for the treatment of bacterial and parasite infections. DNA supercoiling by gyrase is believed to occur by a strand passage mechanism, in which one segment of the double-stranded DNA substrate is passed through a (transient) break in a second segment. This mechanism requires the coordinated opening and closing of three protein interfaces, so-called gates, to ensure the directionality of strand passage toward negative supercoiling.Single molecule fluorescence resonance energy transfer experiments are ideally suited to investigate conformational changes during the catalytic cycle of DNA topoisomerases. In this review, we summarize the current knowledge on the cascade of DNA- and nucleotide-induced conformational changes in gyrase that lead to strand passage and negative supercoiling of DNA. We discuss how these conformational changes couple ATP hydrolysis to DNA supercoiling in gyrase, and how the common mechanistic principle of coordinated gate opening and closing is modulated to allow for the catalysis of different reactions by different type II topoisomerases.  相似文献   

9.
Stoichiometric amounts of pure reverse gyrase, a type I topoisomerase from the archaebacterium Sulfolobus acidocaldarius were incubated at 75 degrees C with circular DNA containing a single-chain scission. After covalent closure by a thermophilic ligase and removal of bound protein molecules, negatively supercoiled DNA was produced. This finding, obtained in the absence of ATP, contrasts with the ATP-dependent positive supercoiling catalyzed by reverse gyrase and is interpreted as the result of enzyme binding to DNA at high temperature. Another consequence of reverse gyrase stoichiometric binding to DNA is the formation of a cleavable complex which results in the production of single-strand breaks in the presence of detergent. Like eubacterial type I topoisomerase (protein omega), reverse gyrase is tightly attached to the 5' termini of the cleaved DNA. In the light of these results, a comparison is tentatively made between reverse gyrase and the eubacterial type I (omega) and type II (gyrase) topoisomerases.  相似文献   

10.
High-throughput assays for DNA gyrase and other topoisomerases   总被引:2,自引:2,他引:0  
We have developed high-throughput microtitre plate-based assays for DNA gyrase and other DNA topoisomerases. These assays exploit the fact that negatively supercoiled plasmids form intermolecular triplexes more efficiently than when they are relaxed. Two assays are presented, one using capture of a plasmid containing a single triplex-forming sequence by an oligonucleotide tethered to the surface of a microtitre plate and subsequent detection by staining with a DNA-specific fluorescent dye. The other uses capture of a plasmid containing two triplex-forming sequences by an oligonucleotide tethered to the surface of a microtitre plate and subsequent detection by a second oligonucleotide that is radiolabelled. The assays are shown to be appropriate for assaying DNA supercoiling by Escherichia coli DNA gyrase and DNA relaxation by eukaryotic topoisomerases I and II, and E.coli topoisomerase IV. The assays are readily adaptable to other enzymes that change DNA supercoiling (e.g. restriction enzymes) and are suitable for use in a high-throughput format.  相似文献   

11.
The unique DNA topology and DNA topoisomerases of hyperthermophilic archaea   总被引:6,自引:0,他引:6  
Abstract: Hyperthermophilic archaea exhibit a unique pattern of DNA topoisomerase activities. They have a peculiar enzyme, reverse gyrase, which introduces positive superturns into DNA at the expense of ATP. This enzyme has been found in all hyperthermophiles tested so far (including Bacteria) but never in mesophiles. Reverse gyrases are formed by the association of a helicase-like domain and a 5'-type I DNA topoisomerase. These two domains might be located on the same polypeptide. However, in the methanogenic archaeon Methanopyrus kandleri , the topoisomerase domain is divided between two subunits. Besides reverse gyrase, Archaea contain other type I DNA topoisomerases; in particular, M. kandleri harbors the only known procaryotic 3'-type I DNA topoisomerase (Topo V). Hyperthermophilic archaea also exhibit specific type II DNA topoisomerases (Topo II), i.e. whereas mesophilic Bacteria have a Topo II that produces negative supercoiling (DNA gyrase), the Topo II from Sulfolobus and Pyrococcus lack gyrase activity and are the smallest enzymes of this type known so far. This peculiar pattern of DNA topoisomerases in hyperthermophilic archaea is paralleled by a unique DNA topology, i.e. whereas DNA isolated from Bacteria and Eucarya is negatively supercoiled, plasmidic DNA from hyperthermophilic archaea are from relaxed to positively supercoiled. The possible evolutionary implications of these findings are discussed in this review. We speculate that gyrase activity in mesophiles and reverse gyrase activity in hyperthermophiles might have originated in the course of procaryote evolution to balance the effect of temperature changes on DNA structure.  相似文献   

12.
DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys466 gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly81 and GyrB-Glu466 residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases.  相似文献   

13.
DNA topoisomerases manage chromosome supercoiling and organization in all cells. Gyrase, a prokaryotic type IIA topoisomerase, consumes ATP to introduce negative supercoils through a strand passage mechanism. All type IIA topoisomerases employ a similar set of catalytic domains for function; however, the activity and specificity of gyrase are augmented by a specialized DNA binding and wrapping element, termed the C-terminal domain (CTD), which is appended to its GyrA subunit. We have discovered that a nonconserved, acidic tail at the extreme C terminus of the Escherichia coli GyrA CTD has a dramatic and unexpected impact on gyrase function. Removal of the CTD tail enables GyrA to introduce writhe into DNA in the absence of GyrB, an activity exhibited by other GyrA orthologs, but not by wild-type E. coli GyrA. Strikingly, a "tail-less" gyrase holoenzyme is markedly impaired for DNA supercoiling capacity, but displays normal ATPase function. Our findings reveal that the E. coli GyrA tail regulates DNA wrapping by the CTD to increase the coupling efficiency between ATP turnover and supercoiling, demonstrating that CTD functions can be fine-tuned to control gyrase activity in a highly sophisticated manner.  相似文献   

14.
15.
DNA gyrase is a type II topoisomerase that is responsible for maintaining the topological state of bacterial and some archaeal genomes. It uses an ATP-dependent two-gate strand-passage mechanism that is shared among all type II topoisomerases. During this process, DNA gyrase creates a transient break in the DNA, the G-segment, to form a cleavage complex. This allows a second DNA duplex, known as the T-segment, to pass through the broken G-segment. After the broken strand is religated, the T-segment is able to exit out of the enzyme through a gate called the C-gate. Although many steps of the type II topoisomerase mechanism have been studied extensively, many questions remain about how the T-segment ultimately exits out of the C-gate. A recent cryo-EM structure of Streptococcus pneumoniae GyrA shows a putative T-segment in close proximity to the C-gate, suggesting that residues in this region may be important for coordinating DNA exit from the enzyme. Here, we show through site-directed mutagenesis and biochemical characterization that three conserved basic residues in the C-gate of DNA gyrase are important for DNA supercoiling activity, but not for ATPase or cleavage activity. Together with the structural information previously published, our data suggest a model in which these residues cluster to form a positively charged region that facilitates T-segment passage into the cavity formed between the DNA gate and C-gate.  相似文献   

16.
The discrete regulation of supercoiling, catenation and knotting by DNA topoisomerases is well documented both in vivo and in vitro, but the interplay between them is still poorly understood. Here we studied DNA catenanes of bacterial plasmids arising as a result of DNA replication in Escherichia coli cells whose topoisomerase IV activity was inhibited. We combined high-resolution two-dimensional agarose gel electrophoresis with numerical simulations in order to better understand the relationship between the negative supercoiling of DNA generated by DNA gyrase and the DNA interlinking resulting from replication of circular DNA molecules. We showed that in those replication intermediates formed in vivo, catenation and negative supercoiling compete with each other. In interlinked molecules with high catenation numbers negative supercoiling is greatly limited. However, when interlinking decreases, as required for the segregation of newly replicated sister duplexes, their negative supercoiling increases. This observation indicates that negative supercoiling plays an active role during progressive decatenation of newly replicated DNA molecules in vivo.  相似文献   

17.
Structural studies of topoisomerase-fluoroquinolone-DNA ternary complexes revealed a cavity between the quinolone N-1 position and the active site tyrosine. Fluoroquinolone derivatives having positively charged or aromatic moieties extended from the N-1 position were designed to probe for binding contacts with the phosphotyrosine residue in ternary complex. While alkylamine, alkylphthalimide, and alkylphenyl groups introduced at the N-1 position afforded derivatives that maintained modest inhibition of the supercoiling activity of DNA gyrase, none retained ability to poison DNA gyrase. Thus, the addition of a large and/or long moiety at the N-1 position disrupts ternary complex formation, and retained ability to inhibit supercoiling is likely through interference with the strand breakage reaction. Two derivatives were found to possess inhibitory effects on the decatenation activity of human topoisomerase II.  相似文献   

18.
The multipartite genome of Deinococcus radiodurans forms toroidal structure. It encodes topoisomerase IB and both the subunits of DNA gyrase (DrGyr) while lacks other bacterial topoisomerases. Recently, PprA a pleiotropic protein involved in radiation resistance in D. radiodurans has been suggested for having roles in cell division and genome maintenance. In vivo interaction of PprA with topoisomerases has also been shown. DrGyr constituted from recombinant gyrase A and gyrase B subunits showed decatenation, relaxation and supercoiling activities. Wild type PprA stimulated DNA relaxation activity while inhibited supercoiling activity of DrGyr. Lysine133 to glutamic acid (K133E) and tryptophane183 to arginine (W183R) replacements resulted loss of DNA binding activity in PprA and that showed very little effect on DrGyr activities in vitro. Interestingly, wild type PprA and its K133E derivative continued interacting with GyrA in vivo while W183R, which formed relatively short oligomers did not interact with GyrA. The size of nucleoid in PprA mutant (1.9564 ± 0.324 µm) was significantly bigger than the wild type (1.6437 ± 0.345 µm). Thus, we showed that DrGyr confers all three activities of bacterial type IIA family DNA topoisomerases, which are differentially regulated by PprA, highlighting the significant role of PprA in DrGyr activity regulation and genome maintenance in D. radiodurans.  相似文献   

19.
The Arabidopsis thaliana genome contains four genes that were originally annotated as potentially encoding DNA gyrase: ATGYRA, ATGYRB1, ATGYRB2, and ATGYRB3. Although we subsequently showed that ATGYRB3 does not encode a gyrase subunit, the other three genes potentially encode subunits of a plant gyrase. We also showed evidence for the existence of supercoiling activity in A. thaliana and that the plant is sensitive to quinolone and aminocoumarin antibiotics, compounds that target DNA gyrase in bacteria. However, it was not possible at that time to show whether the A. thaliana genes encoded an active gyrase enzyme, nor whether that enzyme is indeed the target for the quinolone and aminocoumarin antibiotics. Here we show that an A. thaliana mutant resistant to the quinolone drug ciprofloxacin has a point mutation in ATGYRA. Moreover we show that, as in bacteria, the quinolone-sensitive (wild-type) allele is dominant to the resistant gene. Further we have heterologously expressed ATGYRA and ATGYRB2 in a baculovirus expression system and shown supercoiling activity of the partially purified enzyme. Expression/purification of the quinolone-resistant A. thaliana gyrase yields active enzyme that is resistant to ciprofloxacin. Taken together these experiments now show unequivocally that A. thaliana encodes an organelle-targeted DNA gyrase that is the target of the quinolone drug ciprofloxacin; this has important consequences for plant physiology and the development of herbicides.  相似文献   

20.
Reverse gyrase is a unique hyperthermophile-specific DNA topoisomerase that induces positive supercoiling. It is a modular enzyme composed of a topoisomerase IA and a helicase domain, which cooperate in the ATP-dependent positive supercoiling reaction. Although its physiological function has not been determined, it can be hypothesized that, like the topoisomerase–helicase complexes found in every organism, reverse gyrase might participate in different DNA transactions mediated by multiprotein complexes. Here, we show that reverse gyrase activity is stimulated by the single-strand binding protein (SSB) from the archaeon Sulfolobus solfataricus. Using a combination of in vitro assays we analysed each step of the complex reverse gyrase reaction. SSB stimulates all the steps of the reaction: binding to DNA, DNA cleavage, strand passage and ligation. By co-immunoprecipitation of cell extracts we show that reverse gyrase and SSB assemble a complex in the presence of DNA, but do not make stable protein–protein interactions. In addition, SSB stimulates reverse gyrase positive supercoiling activity on DNA templates associated with the chromatin protein Sul7d. Furthermore, SSB enhances binding and cleavage of UV-irradiated substrates by reverse gyrase. The results shown here suggest that these functional interactions may have biological relevance and that the interplay of different DNA binding proteins might modulate reverse gyrase activity in DNA metabolic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号