首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent developments in purification strategies, together with mass spectrometry (MS)-based proteomics, have identified numerous in vivo protein complexes and suggest the existence of many others. Standard proteomics techniques are, however, unable to describe the overall stoichiometry, subunit interactions and organization of these assemblies, because many are heterogeneous, are present at relatively low cellular abundance and are frequently difficult to isolate. We combine two existing methodologies to tackle these challenges: tandem affinity purification to isolate sufficient quantities of highly pure native complexes, and MS of the intact assemblies and subcomplexes to determine their structural organization. We optimized our protocol with two protein assemblies from Saccharomyces cerevisiae (scavenger decapping and nuclear cap-binding complexes), establishing subunit stoichiometry and identifying substoichiometric binding. We then targeted the yeast exosome, a nuclease with ten different subunits, and found that by generating subcomplexes, a three-dimensional interaction map could be derived, demonstrating the utility of our approach for large, heterogeneous cellular complexes.  相似文献   

2.
Mass spectrometry (MS) is a powerful tool for determining the mass of biomolecules with high accuracy and sensitivity. MS performed under so-called “native conditions” (native MS) can be used to determine the mass of biomolecules that associate noncovalently. Here we review the application of native MS to the study of protein−ligand interactions and its emerging role in elucidating the structure of macromolecular assemblies, including soluble and membrane protein complexes. Moreover, we discuss strategies aimed at determining the stoichiometry and topology of subunits by inducing partial dissociation of the holo-complex. We also survey recent developments in "native top-down MS", an approach based on Fourier Transform MS, whereby covalent bonds are broken without disrupting non-covalent interactions. Given recent progress, native MS is anticipated to play an increasingly important role for researchers interested in the structure of macromolecular complexes.  相似文献   

3.
Biomolecules have evolved to perform specific and sophisticated activities in a highly coordinated manner organizing into multi-component complexes consisting of proteins, nucleic acids, cofactors or ligands. Understanding such complexes represents a task in earnest for modern bioscience. Traditional structural techniques when extrapolating to macromolecules of ever increasing sizes are confronted with limitations posed by the difficulty in enrichment, solubility, stability as well as lack of homogeneity of these complexes. Alternative approaches are therefore prompted to bridge the gap, one of which is native mass spectrometry. Here we demonstrate the strength of native mass spectrometry, used alone or in combination with other biophysical methods such as analytical ultracentrifugation, small-angle neutron scattering, and small-angle X-ray scattering etc., in addressing dynamic aspects of protein complexes including structural reorganization, subunit exchange, as well as the assembly/disassembly processes in solution that are dictated by transient non-covalent interactions. We review recent studies from our laboratories and others applying native mass spectrometry to both soluble and membrane-embedded assemblies. This article is part of a Special Issue entitled “Biophysical Exploration of Dynamical Ordering of Biomolecular Systems” edited by Dr. Koichi Kato.  相似文献   

4.
The study of protein structure and function has evolved to become a leading discipline in the biophysical sciences. Although it is not yet possible to determine 3D protein structures from MS data alone, multiple MS-based techniques can be combined to obtain structural and functional data that are complementary to classical protein structure information obtained from NMR or X-ray crystallography. Monitoring gas-phase interactions of noncovalent complexes yields information on binding constants, complex stability, and the nature of interactions. Ion mobility MS and chemical crosslinking strategies can be applied to probe the architecture of macromolecular assemblies and protein-ligand complexes. MS analysis of hydrogen-deuterium exchange can be used to determine the localization of secondary structure elements, binding sites and conformational dynamics of proteins in solution. This minireview focuses first on new strategies that combine these techniques to gain insights into protein structure and function. Using one such strategy, we then demonstrate how a novel hydrogen-deuterium exchange microfluidics tool can be used online with an ESI mass spectrometer to monitor regional accessibility in a peptide, as exemplified with amyloid-β peptide 1-40.  相似文献   

5.
The methylation of histidine is a post-translational modification whose function is poorly understood. Methyltransferase histidine protein methyltransferase 1 (Hpm1p) monomethylates H243 in the ribosomal protein Rpl3p and represents the only known histidine methyltransferase in Saccharomyces cerevisiae. Interestingly, the hpm1 deletion strain is highly pleiotropic, with many extraribosomal phenotypes including improved growth rates in alternative carbon sources. Here, we investigate how the loss of histidine methyltransferase Hpm1p results in diverse phenotypes, through use of targeted mass spectrometry (MS), growth assays, quantitative proteomics, and differential crosslinking MS. We confirmed the localization and stoichiometry of the H243 methylation site, found unreported sensitivities of Δhpm1 yeast to nonribosomal stressors, and identified differentially abundant proteins upon hpm1 knockout with clear links to the coordination of sugar metabolism. We adapted the emerging technique of quantitative large-scale stable isotope labeling of amino acids in cell culture crosslinking MS for yeast, which resulted in the identification of 1267 unique in vivo lysine–lysine crosslinks. By reproducibly monitoring over 350 of these in WT and Δhpm1, we detected changes to protein structure or protein–protein interactions in the ribosome, membrane proteins, chromatin, and mitochondria. Importantly, these occurred independently of changes in protein abundance and could explain a number of phenotypes of Δhpm1, not addressed by expression analysis. Further to this, some phenotypes were predicted solely from changes in protein structure or interactions and could be validated by orthogonal techniques. Taken together, these studies reveal a broad role for Hpm1p in yeast and illustrate how crosslinking MS will be an essential tool for understanding complex phenotypes.  相似文献   

6.
Chemical crosslinking‐mass spectrometry (XL‐MS) is a valuable technique for gaining insights into protein structure and the organization of macromolecular complexes. XL‐MS data yield inter‐residue restraints that can be compared with high‐resolution structural data. Distances greater than the crosslinker spacer‐arm can reveal lowly populated “excited” states of proteins/protein assemblies, or crosslinks can be used as restraints to generate structural models in the absence of structural data. Despite increasing uptake of XL‐MS, there are few tools to enable rapid and facile mapping of XL‐MS data onto high‐resolution structures or structural models. PyXlinkViewer is a user‐friendly plugin for PyMOL v2 that maps intra‐protein, inter‐protein, and dead‐end crosslinks onto protein structures/models and automates the calculation of inter‐residue distances for the detected crosslinks. This enables rapid visualization of XL‐MS data, assessment of whether a set of detected crosslinks is congruent with structural data, and easy production of high‐quality images for publication.  相似文献   

7.
Mass spectrometry-based methods have become increasingly important in structural biology — in particular for large and dynamic, even heterogeneous assemblies of biomolecules. Native electrospray ionization coupled to ion mobility-mass spectrometry provides access to stoichiometry, size and architecture of noncovalent assemblies; while non-native approaches such as covalent labeling and H/D exchange can highlight dynamic details of protein structures and capture intermediate states. In this overview article we will describe these methods and highlight some recent applications for proteins and protein complexes, with particular emphasis on native MS analysis. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.  相似文献   

8.
The peptide self-assembly mimic (PSAM) from the outer surface protein A (OspA) can form highly stable but soluble β-rich self-assembly-like structures similar to those formed by native amyloid-forming peptides. However, unlike amyloids that predominantly form insoluble aggregates, PSAMs are highly water-soluble. Here, we characterize the conformations of these soluble β-sheet-rich assemblies. We simulate PSAMs with different-sized β-sheets in the presence and absence of end-capping proteins using all-atom explicit-solvent molecular dynamics, comparing the structural stability, conformational dynamics, and association force. Structural and free-energy comparisons among β-sheets with different numbers of layers and sequences indicate that in similarity to amyloids, the intersheet side chain-side chain interactions and hydrogen bonds combined with intrasheet salt bridges are the major driving forces in stabilizing the overall structural organization. A detailed structural analysis shows that in similarity to amyloid fibrils, all wild-type and mutated PSAM structures display twisted and bent β-sheets to some extent, implying that a twisted and bent β-sheet is a general motif of β-rich assemblies. Thus, our studies indicate that soluble β-sheet-rich peptide self-assemblies can provide good amyloid mimics, and as such confirm on the atomic scale that they are excellent systems for amyloid studies. These results provide further insight into the usefulness of such mimics for nanostructure design.  相似文献   

9.
The advent of machine learning‐based structure prediction algorithms such as AlphaFold2 (AF2) and RoseTTa Fold have moved the generation of accurate structural models for the entire cellular protein machinery into the reach of the scientific community. However, structure predictions of protein complexes are based on user‐provided input and may require experimental validation. Mass spectrometry (MS) is a versatile, time‐effective tool that provides information on post‐translational modifications, ligand interactions, conformational changes, and higher‐order oligomerization. Using three protein systems, we show that native MS experiments can uncover structural features of ligand interactions, homology models, and point mutations that are undetectable by AF2 alone. We conclude that machine learning can be complemented with MS to yield more accurate structural models on a small and large scale.  相似文献   

10.
Human Histone Deacetylase 2 (HDAC2) belongs to a conserved enzyme superfamily that regulates deacetylation inside cells. HDAC2 is a drug target as it is known to be upregulated in cancers and neurodegenerative disorders. It consists of globular deacetylase and C-terminus intrinsically-disordered domains [1–3]. To date, there is no full-length structure of HDAC2 available due to the high intrinsic flexibility of its C-terminal domain. The intrinsically-disordered domain, however, is known to be important for the enzymatic function of HDAC2 [1, 4].Here we combine several structural Mass Spectrometry (MS) methodologies such as denaturing, native, ion mobility and chemical crosslinking, alongside biochemical assays and molecular modelling to study the structure and dynamics of the full-length HDAC2 for the first time. We show that MS can easily dissect heterogeneity inherent within the protein sample and at the same time probe the structural arrangement of the different conformers present.Activity assays combined with data from MS and molecular modelling suggest how the structural dynamics of the C-terminal domain, and its interactions with the catalytic domain, regulate the activity of this enzyme.  相似文献   

11.
Cataract is characterized by progressive protein aggregation and loss of vision. α-Crystallins are the major proteins in the lens responsible for maintaining transparency. They exist in the lens as highly polydisperse oligomers with variable numbers of subunits, and mutations in α-crystallin are associated with some forms of cataract in humans. Because the stability of proteins is dependent on optimal subunit interactions, the structural transformations and aggregation of mutant proteins that underlie cataract formation can be understood best by identifying the residue-specific inter- and intra-subunit interactions. Chemical crosslinking combined with mass spectrometry is increasingly used to provide structural insights into intra- and inter-protein interactions. We used isotope-labeled cross-linker in combination with LC-MS/MS to determine the subunit–subunit interaction sites in cataract-causing mutant αA-G98R crystallin. Peptides cross-linked by isotope-labeled (heavy and light forms) cross-linkers appear as doublets in mass spectra, thus facilitating the identification of cross-linker–containing peptides. In this study, we cross-linked wild-type (αA-WT) and mutant (αA-G98R) crystallins using the homobifunctional amine-reactive, isotope-labeled (d0 and d4) cross-linker–BS2G (bis[sulfosuccinimidyl]glutarate). Tryptic in-solution digest of cross-linked complexes generates a wide array of peptide mixtures. Cross-linked peptides were enriched using strong cation exchange (SCX) chromatography followed by both MS and MS/MS to identify the cross-linked sites. We identified a distinct intermolecular interaction site between K88 — K99 in the β5 strand of the mutant αA-G98R crystallin that is not found in wild-type αA-crystallin. This interaction could explain the conformational instability and aggregation nature of the mutant protein that results from incorrect folding and assembly.  相似文献   

12.
During retrovirus particle maturation, the assembled Gag polyprotein is cleaved by the viral protease into matrix (MA), capsid (CA), and nucleocapsid (NC) proteins. To form the mature viral capsid, CA rearranges, resulting in a lattice composed of hexameric and pentameric CA units. Recent structural studies of assembled HIV-1 CA revealed several inter-subunit interfaces in the capsid lattice, including a three-fold interhexamer interface that is critical for proper capsid stability. Although a general architecture of immature particles has been provided by cryo-electron tomographic studies, the structural details of the immature particle and the maturation pathway remain unknown. Here, we used cryo-electron microscopy (cryoEM) to determine the structure of tubular assemblies of the HIV-1 CA-SP1-NC protein. Relative to the mature assembled CA structure, we observed a marked conformational difference in the position of the CA-CTD relative to the NTD in the CA-SP1-NC assembly, involving the flexible hinge connecting the two domains. This difference was verified via engineered disulfide crosslinking, revealing that inter-hexamer contacts, in particular those at the pseudo three-fold axis, are altered in the CA-SP1-NC assemblies compared to the CA assemblies. Results from crosslinking analyses of mature and immature HIV-1 particles containing the same Cys substitutions in the Gag protein are consistent with these findings. We further show that cleavage of preassembled CA-SP1-NC by HIV-1 protease in vitro leads to release of SP1 and NC without disassembly of the lattice. Collectively, our results indicate that the proteolytic cleavage of Gag leads to a structural reorganization of the polypeptide and creates the three-fold interhexamer interface, important for the formation of infectious HIV-1 particles.  相似文献   

13.
BackgroundThe identification of dysfunctional human apolipoprotein A-I (apoA-I) in atherosclerotic plaques suggests that protein structure and function may be hampered under a chronic pro inflammatory scenario. Moreover, the fact that natural mutants of this protein elicit severe cardiovascular diseases (CVD) strongly indicates that the native folding could shift due to the mutation, yielding a structure more prone to misfold or misfunction. To understand the events that determine the failure of apoA-I structural flexibility to fulfill its protective role, we took advantage of the study of a natural variant with a deletion of the residue lysine 107 (K107del) associated with atherosclerosis.MethodsBiophysical approaches, such as electrophoresis, fluorescence and spectroscopy were used to characterize proteins structure and function, either in native conformation or under oxidation or intramolecular crosslinking.ResultsK107del structure was more flexible than the protein with the native sequence (Wt) but interactions with artificial membranes were preserved. Instead, structural restrictions by intramolecular crosslinking impaired the Wt and K107del lipid solubilization function. In addition, controlled oxidation decreased the yield of the native dimer conformation for both variants.ConclusionsWe conclude that even though mutations may alter protein structure and spatial arrangement, the highly flexible conformation compensates the mild shift from the native folding. Instead, post translational apoA-I modifications (probably chronic and progressive) are required to raise a protein conformation with significant loss of function and increased aggregation tendency.General significanceThe results learnt from this variant strength a close association between amyloidosis and atherosclerosis.  相似文献   

14.
Collagen and amelogenin are two major extracellular organic matrix proteins of dentin and enamel, the mineralized tissues comprising a tooth crown. They both are present at the dentin-enamel boundary (DEB), a remarkably robust interface holding dentin and enamel together. It is believed that interactions of dentin and enamel protein assemblies regulate growth and structural organization of mineral crystals at the DEB, leading to a continuum at the molecular level between dentin and enamel organic and mineral phases. To gain insight into the mechanisms of the DEB formation and structural basis of its mechanical resiliency we have studied the interactions between collagen fibrils, amelogenin assemblies, and forming mineral in vitro, using electron microscopy. Our data indicate that collagen fibrils guide assembly of amelogenin into elongated chain or filament-like structures oriented along the long axes of the fibrils. We also show that the interactions between collagen fibrils and amelogenin-calcium phosphate mineral complexes lead to oriented deposition of elongated amorphous mineral particles along the fibril axes, triggering mineralization of the bulk of collagen fibril. The resulting structure was similar to the mineralized collagen fibrils found at the DEB, with arrays of smaller well organized crystals inside the collagen fibrils and bundles of larger crystals on the outside of the fibrils. These data suggest that interactions between collagen and amelogenin might play an important role in the formation of the DEB providing structural continuity between dentin and enamel.  相似文献   

15.
RNase P is a ribonucleoprotein (RNP) that catalyzes removal of the 5′ leader from precursor tRNAs in all domains of life. A recent cryo-EM study of Methanocaldococcus jannaschii (Mja) RNase P produced a model at 4.6-Å resolution in a dimeric configuration, with each holoenzyme monomer containing one RNase P RNA (RPR) and one copy each of five RNase P proteins (RPPs; POP5, RPP30, RPP21, RPP29, L7Ae). Here, we used native mass spectrometry (MS), mass photometry (MP), and biochemical experiments that (i) validate the oligomeric state of the Mja RNase P holoenzyme in vitro, (ii) find a different stoichiometry for each holoenzyme monomer with up to two copies of L7Ae, and (iii) assess whether both L7Ae copies are necessary for optimal cleavage activity. By mutating all kink-turns in the RPR, we made the discovery that abolishing the canonical L7Ae–RPR interactions was not detrimental for RNase P assembly and function due to the redundancy provided by protein–protein interactions between L7Ae and other RPPs. Our results provide new insights into the architecture and evolution of RNase P, and highlight the utility of native MS and MP in integrated structural biology approaches that seek to augment the information obtained from low/medium-resolution cryo-EM models.  相似文献   

16.
Downard KM 《Proteomics》2006,6(20):5374-5384
The role of MS in the study of protein-protein interactions in solution is described from a proteomics perspective, in terms of high-throughput analyses of protein complexes in vivo, through to chemical and biochemical treatments ahead of MS analysis in the context of complementary experimental approaches in structural biology. The use of MS to characterise protein-protein interactions is described following the single and tandem affinity purification of protein complexes and assemblies of expressed proteins in host cells, the isolation and preservation of protein complexes on surfaces and microarrays, and their prior treatment with chemical and biochemical probes by hydrogen exchange, radical probe, chemical cross-linking, and limited proteolysis. The advantages and disadvantages of each of the approaches are presented. These new and emerging applications, which further demonstrate the power of MS, continue to ensure that the mass spectrometer will remain at the heart of discoveries in proteomics in the foreseeable future.  相似文献   

17.
The purification of low-abundance protein complexes and detection of in vivo protein–protein interactions in complex biological samples remains a challenging task. Here, we devised crosslinking and tandem affinity purification coupled to mass spectrometry (XL–TAP–MS), a quantitative proteomics approach for analyzing tandem affinity-purified, crosslinked protein complexes from plant tissues. We exemplarily applied XL–TAP–MS to study the MKK2–Mitogen-activated protein kinase (MPK4) signaling module in Arabidopsis thaliana. A tandem affinity tag consisting of an in vivo-biotinylated protein domain flanked by two hexahistidine sequences was adopted to allow for the affinity-based isolation of formaldehyde–crosslinked protein complexes under fully denaturing conditions. Combined with 15N stable isotopic labeling and tandem MS we captured and identified a total of 107 MKK2–MPK4 module-interacting proteins. Consistent with the role of the MPK signaling module in plant immunity, many of the module-interacting proteins are involved in the biotic and abiotic stress response of Arabidopsis. Validation of binary protein–protein interactions by in planta split-luciferase assays and in vitro kinase assays disclosed several direct phosphorylation targets of MPK4. Together, the XL–TAP–MS approach purifies low abundance protein complexes from biological samples and discovers previously unknown protein–protein interactions.

XL–TAP–MS: a novel technique that allows purification of crosslinked, low abundant protein complexes from plant tissues under denatured conditions and detection of in vivo protein–protein interactions.  相似文献   

18.
Eukaryotic cells are known to contain a wide variety of RNA–protein assemblies, collectively referred to as RNP granules. RNP granules form from a combination of RNA–RNA, protein–RNA, and protein–protein interactions. In addition, RNP granules are enriched in proteins with intrinsically disordered regions (IDRs), which are frequently appended to a well-folded domain of the same protein. This structural organization of RNP granule components allows for a diverse set of protein–protein interactions including traditional structured interactions between well-folded domains, interactions of short linear motifs in IDRs with the surface of well-folded domains, interactions of short motifs within IDRs that weakly interact with related motifs, and weak interactions involving at most transient ordering of IDRs and folded domains with other components. In addition, both well-folded domains and IDRs in granule components frequently interact with RNA and thereby can contribute to RNP granule assembly. We discuss the contribution of these interactions to liquid–liquid phase separation and the possible role of phase separation in the assembly of RNP granules. We expect that these principles also apply to other non-membrane bound organelles and large assemblies in the cell.  相似文献   

19.
Supramolecular protein assemblies including molecular motors, cytoskeletal filaments, chaperones, and ribosomes play a central role in a broad array of cellular functions ranging from cell division and motility to RNA and protein synthesis and folding. Single-particle reconstructions of such assemblies have been growing rapidly in recent years, providing increasingly high resolution structural information under native conditions. While the static structure of these assemblies provides essential insight into their mechanism of biological function, their dynamical motions provide additional important information that cannot be inferred from structure alone. Here we present an unsupervised computational framework for the analysis of high molecular weight protein assemblies and use it to analyze the conformational dynamics of structures deposited in the Electron Microscopy Data Bank. Protein assemblies are modeled using a recently introduced coarse-grained modeling framework based on the finite element method, which is used to compute equilibrium thermal fluctuations, elastic strain energy distributions associated with specific conformational transitions, and dynamical correlations in distant molecular domains. Results are presented in detail for the ribosome-bound termination factor RF2 from Escherichia coli, the nuclear pore complex from Dictyostelium discoideum, and the chaperonin GroEL from E. coli. Elastic strain energy distributions reveal hinge-regions associated with specific conformational change pathways, and correlations in collective molecular motions reveal dynamical coupling between distant molecular domains that suggest new, as well as confirm existing, allosteric mechanisms. Results are publically available for use in further investigation and interpretation of biological function including cooperative transitions, allosteric communication, and molecular mechanics, as well as in further classification and refinement of electron microscopy based structures.  相似文献   

20.
Living cells control and regulate their biological processes through the coordinated action of a large number of proteins that assemble themselves into an array of dynamic, multi-protein complexes1. To gain a mechanistic understanding of the various cellular processes, it is crucial to determine the structure of such protein complexes, and reveal how their structural organization dictates their function. Many aspects of multi-protein complexes are, however, difficult to characterize, due to their heterogeneous nature, asymmetric structure, and dynamics. Therefore, new approaches are required for the study of the tertiary levels of protein organization.One of the emerging structural biology tools for analyzing macromolecular complexes is mass spectrometry (MS)2-5. This method yields information on the complex protein composition, subunit stoichiometry, and structural topology. The power of MS derives from its high sensitivity and, as a consequence, low sample requirement, which enables examination of protein complexes expressed at endogenous levels. Another advantage is the speed of analysis, which allows monitoring of reactions in real time. Moreover, the technique can simultaneously measure the characteristics of separate populations co-existing in a mixture. Here, we describe a detailed protocol for the application of structural MS to the analysis of large protein assemblies. The procedure begins with the preparation of gold-coated capillaries for nanoflow electrospray ionization (nESI). It then continues with sample preparation, emphasizing the buffer conditions which should be compatible with nESI on the one hand, and enable to maintain complexes intact on the other. We then explain, step-by-step, how to optimize the experimental conditions for high mass measurements and acquire MS and tandem MS spectra. Finally, we chart the data processing and analyses that follow. Rather than attempting to characterize every aspect of protein assemblies, this protocol introduces basic MS procedures, enabling the performance of MS and MS/MS experiments on non-covalent complexes. Overall, our goal is to provide researchers unacquainted with the field of structural MS, with knowledge of the principal experimental tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号