共查询到3条相似文献,搜索用时 0 毫秒
1.
Ken-ichi Mizutani Masahiro Ito Hitoshi Kamiya Minoru Sakurai 《Microbiology and immunology》1995,39(3):217-220
The effect of peripheral blood mononuclear cells (PBMC) on expression of varicella-zoster virus (VZV) glycoproteins (Gps) was analyzed by flow cytometry. PBMC from VZV seropositive and seronegative donors and supernatant of PBMC co-cultured with VZV-infected human embryonic fibroblasts reduced VZV Gp expression. Neutralization of supernatant fluid with mixture of anti-interferons (IFN)-α, -β, -γ, and tumor necrosis factor (TNF)-α partially reduced inhibitory activity of supernatant on VZV Gp expression. Deletion of natural killer (NK) cells and adherent cells from PBMC reduced inhibitory activity of PBMC on VZV Gp expression. These results suggest that IFN-α, -β, -γ, TNF-α and other soluble factors released from NK cells and monocytes by co-cultivation with VZV-infected fibroblasts inhibit VZV Gp expression. 相似文献
2.
Shuhei Nakane Aikichi Iwamoto Zene Matsuda 《The Journal of biological chemistry》2015,290(24):15279-15291
The mature human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) comprises the non-covalently associated gp120 and gp41 subunits generated from the gp160 precursor. Recent structural analyses have provided quaternary structural models for gp120/gp41 trimers, including the variable loops (V1–V5) of gp120. In these models, the V3 loop is located under V1/V2 at the apical center of the Env trimer, and the V4 and V5 loops project outward from the trimeric protomers. In addition, the V4 and V5 loops are predicted to have less movement upon receptor binding during membrane fusion events. We performed insertional mutagenesis using a GFP variant, GFPOPT, placed into the variable loops of HXB2 gp120. This allowed us to evaluate the current structural models and to simultaneously generate a GFP-tagged HIV-1 Env, which was useful for image analyses. All GFP-inserted mutants showed similar levels of whole-cell expression, although certain mutants, particularly V3 mutants, showed lower levels of cell surface expression. Functional evaluation of their fusogenicities in cell-cell and virus-like particle-cell fusion assays revealed that V3 was the most sensitive to the insertion and that the V1/V2 loops were less sensitive than V3. The V4 and V5 loops were the most tolerant to insertion, and certain tag proteins other than GFPOPT could also be inserted without functional consequences. Our results support the current structural models and provide a GFPOPT-tagged Env construct for imaging studies. 相似文献
3.
Properties and structures of the influenza and HIV fusion peptides on lipid membranes: implications for a role in fusion 下载免费PDF全文
The fusion peptides of HIV and influenza virus are crucial for viral entry into a host cell. We report the membrane-perturbing and structural properties of fusion peptides from the HA fusion protein of influenza virus and the gp41 fusion protein of HIV. Our goals were to determine: 1), how fusion peptides alter structure within the bilayers of fusogenic and nonfusogenic lipid vesicles and 2), how fusion peptide structure is related to the ability to promote fusion. Fluorescent probes revealed that neither peptide had a significant effect on bilayer packing at the water-membrane interface, but both increased acyl chain order in both fusogenic and nonfusogenic vesicles. Both also reduced free volume within the bilayer as indicated by partitioning of a lipophilic fluorophore into membranes. These membrane ordering effects were smaller for the gp41 peptide than for the HA peptide at low peptide/lipid ratio, suggesting that the two peptides assume different structures on membranes. The influenza peptide was predominantly helical, and the gp41 peptide was predominantly antiparallel beta-sheet when membrane bound, however, the depths of penetration of Trps of both peptides into neutral membranes were similar and independent of membrane composition. We previously demonstrated: 1), the abilities of both peptides to promote fusion but not initial intermediate formation during PEG-mediated fusion and 2), the ability of hexadecane to compete with this effect of the fusion peptides. Taken together, our current and past results suggest a hypothesis for a common mechanism by which these two viral fusion peptides promote fusion. 相似文献