首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
A natural predominant flavanone naringenin, especially abundant in citrus fruits, has a wide range of pharmacological activities. The search for antiproliferative agents that reduce skin carcinoma is a task of great importance. The objective of this study was to analyze the anti-proliferative and apoptotic mechanism of naringenin using MTT assay, DNA fragmentation, nuclear condensation, change in mitochondrial membrane potential, cell cycle kinetics and caspase-3 as biomarkers and to investigate the ability to induce reactive oxygen species (ROS) initiating apoptotic cascade in human epidermoid carcinoma A431 cells. Results showed that naringenin exposure significantly reduced the cell viability of A431 cells (p<0.01) with a concomitant increase in nuclear condensation and DNA fragmentation in a dose dependent manner. The intracellular ROS generation assay showed statistically significant (p<0.001) dose-related increment in ROS production for naringenin. It also caused naringenin-mediated epidermoid carcinoma apoptosis by inducing mitochondrial depolarization. Cell cycle study showed that naringenin induced cell cycle arrest in G0/G1 phase of cell cycle and caspase-3 analysis revealed a dose dependent increment in caspase-3 activity which led to cell apoptosis. This study confirms the efficacy of naringenin that lead to cell death in epidermoid carcinoma cells via inducing ROS generation, mitochondrial depolarization, nuclear condensation, DNA fragmentation, cell cycle arrest in G0/G1 phase and caspase-3 activation.  相似文献   

3.
In this study, we determined the cytotoxic effects of piperine, a major constituent of black and long pepper in melanoma cells. Piperine treatment inhibited the growth of SK MEL 28 and B16 F0 cells in a dose and time-dependent manner. The growth inhibitory effects of piperine were mediated by cell cycle arrest of both the cell lines in G1 phase. The G1 arrest by piperine correlated with the down-regulation of cyclin D1 and induction of p21. Furthermore, this growth arrest by piperine treatment was associated with DNA damage as indicated by phosphorylation of H2AX at Ser139, activation of ataxia telangiectasia and rad3-related protein (ATR) and checkpoint kinase 1 (Chk1). Pretreatment with AZD 7762, a Chk1 inhibitor not only abrogated the activation of Chk1 but also piperine mediated G1 arrest. Similarly, transfection of cells with Chk1 siRNA completely protected the cells from G1 arrest induced by piperine. Piperine treatment caused down-regulation of E2F1 and phosphorylation of retinoblastoma protein (Rb). Apoptosis induced by piperine was associated with down-regulation of XIAP, Bid (full length) and cleavage of Caspase-3 and PARP. Furthermore, our results showed that piperine treatment generated ROS in melanoma cells. Blocking ROS by tiron protected the cells from piperine mediated cell cycle arrest and apoptosis. These results suggest that piperine mediated ROS played a critical role in inducing DNA damage and activation of Chk1 leading to G1 cell cycle arrest and apoptosis.  相似文献   

4.
Lung cancer is one of the leading causes of death in the world, and non-small cell lung carcinoma (NSCLC) accounts for approximately 75-85% of all lung cancers. In the present work, we studied the cytotoxic activity, cell cycle arrest and induction apoptosis of the compound cis-(dichloro)tetramineruthenium(III) chloride {cis-[RuCl(2)(NH(3))(4)]Cl} in human lung carcinoma tumor cell line A549. The results of MTT and trypan blue assays showed that cis-[RuCl(2)(NH(3))(4)]Cl causes reduction in the viability of A549 cells when treating with 95 and 383 μM of the compound for 48 and 72 h. Lower concentrations of the compound (19, 3.8 and 0.38 μM), however, only slightly affected cell viability. The IC(50) value for the compound was about 383 μM. Survival analysis of the A549 cells after treatment with ruthenium(III) compound using long term clonogenic assay showed that it reduced colony formation ability at concentrations of 0.38 and 3.8 μM, and at concentrations of 95 and 383 μM no colonies were observed. Cell cycle analysis showed that compound ruthenium led to an accumulation of A549 cells in S phase and increased in the sub-G1 peak. In addition, cis-(dichloro)tetramineruthenium(III) chloride treatment induced apoptosis, as observed by the increased numbers of annexin V-positive cells and increased messenger RNA expression of caspase-3.  相似文献   

5.
Alantolactone, a sesquiterpene lactone compound, has variety of pharmacological properties, including anti‐inflammatory and antineoplastic effects. In our study, alantolactone inhibited cancer cell proliferation. To explore the mechanisms underlying its antitumor action, we further examined apoptotic cells and cell cycle distribution using flow cytometry analysis. Alantolactone triggered apoptosis and induced cell cycle G1/G0 phase arrest. Furthermore, the expressions of caspases‐8, ‐9, ‐3, PARP, and Bax were significantly upregulated, while antiapoptotic factor Bcl‐2 expression was inhibited. In addition, the expressions of cyclin‐dependent kinase 4 (CDK4), CDK6, cyclin D3, and cyclin D1 were downregulated by alantolactone. Therefore, our findings indicated that alantolactone has an antiproliferative role on lung squamous cancer cells, and it may be a promising chemotherapeutic agent for squamous lung cancer SK‐MES‐1 cells.  相似文献   

6.
Non-small cell lung carcinoma (NSCLC) is a major killer in cancer related human death. Its therapeutic intervention requires superior efficient molecule(s) as it often becomes resistant to present chemotherapy options. Here we report that vapor of volatile oil compounds obtained from Litsea cubeba seeds killed human NSCLC cells, A549, through the induction of apoptosis and cell cycle arrest. Vapor generated from the combined oils (VCO) deactivated Akt, a key player in cancer cell survival and proliferation. Interestingly VCO dephosphorylated Akt at both Ser473 and Thr308; through the suppression of mTOR and pPDK1 respectively. As a consequence of this, diminished phosphorylation of Bad occurred along with the decreased Bcl-xL expression. This subsequently enhanced Bax levels permitting the release of mitochondrial cytochrome c into the cytosol which concomitantly activated caspase 9 and caspase 3 resulting apoptotic cell death. Impairment of Akt activation by VCO also deactivated Mdm2 that effected overexpression of p53 which in turn upregulated p21 expression. This causes enhanced p21 binding to cyclin D1 that halted G1 to S phase progression. Taken together, VCO produces two prong effects on lung cancer cells, it induces apoptosis and blocked cancer cell proliferation, both occurred due to the deactivation of Akt. In addition, it has another crucial advantage: VCO could be directly delivered to lung cancer tissue through inhalation.  相似文献   

7.

Background

Phyllanthus is a traditional medicinal plant that has been used in the treatment of many diseases including hepatitis and diabetes. The main aim of the present work was to investigate the potential cytotoxic effects of aqueous and methanolic extracts of four Phyllanthus species (P.amarus, P.niruri, P.urinaria and P.watsonii) against skin melanoma and prostate cancer cells.

Methodology/Principal Findings

Phyllanthus plant appears to possess cytotoxic properties with half-maximal inhibitory concentration (IC50) values of 150–300 µg/ml for aqueous extract and 50–150 µg/ml for methanolic extract that were determined using the MTS reduction assay. In comparison, the plant extracts did not show any significant cytotoxicity on normal human skin (CCD-1127Sk) and prostate (RWPE-1) cells. The extracts appeared to act by causing the formation of a clear “ladder” fragmentation of apoptotic DNA on agarose gel, displayed TUNEL-positive cells with an elevation of caspase-3 and -7 activities. The Lactate Dehydrogenase (LDH) level was lower than 15% in Phyllanthus treated-cancer cells. These indicate that Phyllanthus extracts have the ability to induce apoptosis with minimal necrotic effects. Furthermore, cell cycle analysis revealed that Phyllanthus induced a Go/G1-phase arrest on PC-3 cells and a S-phase arrest on MeWo cells and these were accompanied by accumulation of cells in the Sub-G1 (apoptosis) phase. The cytotoxic properties may be due to the presence of polyphenol compounds such as ellagitannins, gallotannins, flavonoids and phenolic acids found both in the water and methanol extract of the plants.

Conclusions/Significance

Phyllanthus plant exerts its growth inhibition effect in a selective manner towards cancer cells through the modulation of cell cycle and induction of apoptosis via caspases activation in melanoma and prostate cancer cells. Hence, Phyllanthus may be sourced for the development of a potent apoptosis-inducing anticancer agent.  相似文献   

8.
黄酮和黄酮醇诱导人食管癌细胞周期停滞的分子机制   总被引:2,自引:0,他引:2  
黄酮和黄酮醇是两类具有抑癌活性的类黄酮化合物.为了探索它们对人食管癌细胞的抑制作用和分子机制,采用MTT法和流式细胞术,鉴定了3种黄酮(木犀草素、白杨素、芹菜素)和3种黄酮醇(槲皮素、山奈酚、杨梅素)对2株人食管癌细胞(鳞癌KYSE-510和腺癌OE33)的增殖抑制作用和G2/M周期停滞的诱导作用.结果表明,木犀草素和槲皮素分别对KYSE-510和OE33细胞的抑制活性相对最高.KYSE-510细胞和OE33细胞分别经木犀草素和槲皮素作用后,采用基因芯片分析细胞周期调控相关基因的表达变化.结果表明,木犀草素诱导KYSE-510细胞中p21-wafl的表达,抑制cyclin B1的表达,槲皮素诱导OE33细胞中GADD4513和14-3-3σ的表达,抑制cyclin B1的表达.采用荧光定量RT-PCR和Western-blot进一步验证基因芯片的分析结果,并比较了6种化合物对上述基因mRNA表达水平和蛋白质表达水平的影响.结果表明,p21硼、GADD45B、14-3-3σ和cyclin B1为介导黄酮和黄酮醇诱导KYSE-510和OE33细胞G2/M周期停滞的目标基因.  相似文献   

9.
Bcl-xL is an anti-apoptotic protein that is frequently found to be overexpressed in non-small cell lung cancer leading to an inhibition of apoptosis and poor prognosis. Recently, the role of miRNAs in regulating apoptosis and cell survival during tumorigenesis has become evident, with cancer cells showing perturbed expression of various miRNAs. In this study, we utilized miRNA microarrays to determine if miRNA dysregulation in bcl-xL silenced lung adenocarcinoma cells could be involved in regulating cell death. Short interfering RNA-based transfection of A549 and SK-LU1 lung adenocarcinoma cells was successful in inducing a reduction in bcl-xL expression levels, resulting in a decrease in cell viability. A total of 10 miRNAs were found to be significantly differentially expressed when compared between siRNA-transfected and non-transfected cells including hsa-miR-181a, hsa-miR-769-5p, hsa-miR-361-5p, hsa-miR-1304 and hsa-miR-608. When overexpression studies on hsa-miR-608 was performed via transfection of miRNA mimics, cell death was found to be induced in A549 and SK-LU1 cells in comparison to untreated cells. This effect was reversed when knockdown studies involving anti-sense inhibitors were introduced. Combination of siRNA based silencing of bcl-xL (siBcl-xL) followed by anti-sense inhibitor transfection led to a decrease in the apoptotic population of A549 and SK-LU1 cells in comparison to cells only treated with siBcl-xL, illustrating the connection between bcl-xL, hsa-miR-608 and cell death. Gene target prediction analysis implicated the PI3K/AKT, WNT, TGF-β, and ERK signaling pathways as targets of bcl-xL induced miRNA alterations. We have demonstrated that bcl-xL silencing in A549 and SK-LU1 cells leads to the occurrence of cell death through the dysregulation of specific miRNAs. This study also provides a platform for anti-sense gene therapy whereby miRNA expression can be exploited to increase the apoptotic properties in lung adenocarcinoma cells.  相似文献   

10.
Acute lymphoblastic leukemia (ALL) is the most common hematological cancer in children. Although risk-adaptive therapy, CNS-directed chemotherapy, and supportive care have improved the survival of ALL patients, disease relapse is still the leading cause of cancer-related death in children. Therefore, new drugs are needed as frontline treatments in high-risk disease and as salvage agents in relapsed ALL. In this study, we report that purified sulforaphane, a natural isothiocyanate found in cruciferous vegetables, has anti-leukemic properties in a broad range of ALL cell lines and primary lymphoblasts from pediatric T-ALL and pre-B ALL patients. The treatment of ALL leukemic cells with sulforaphane resulted in dose-dependent apoptosis and G2/M cell cycle arrest, which was associated with the activation of caspases (3, 8, and 9), inactivation of PARP, p53-independent upregulation of p21CIP1/WAF1, and inhibition of the Cdc2/Cyclin B1 complex. Interestingly, sulforaphane also inhibited the AKT and mTOR survival pathways in most of the tested cell lines by lowering the levels of both total and phosphorylated proteins. Finally, the administration of sulforaphane to the ALL xenograft models resulted in a reduction of tumor burden, particularly following oral administration, suggesting a potential role as an adjunctive agent to improve the therapeutic response in high-risk ALL patients with activated AKT signaling.  相似文献   

11.
The cytotoxicity effects of E. adenophorum on cell cycle and apoptosis of renal cells in Saanen goat was evaluated by TUNEL, DAPI, AO/EB staining, DNA fragmentation assay, Caspase activity, Western-blot, qRT-PCR and flow cytometry analysis. 16 saanen goats randomly divided into four groups were fed on 0%, 40%, 60% and 80% E. adenophorum diets. The Results showed that E. adenophorum induced typical apoptotic features of renal cells. E. adenophorum significantly suppressed renal cells viability, caused cell cycle activity arrest and induced typical apoptotic features in a dose-dependent manner. However, the protein levels of Fas/FasL, Bid and caspase-8 did not appear significant changes in the process of E. adenophorum-induced apoptosis. Moreover, E. adenophorum administration slightly decreased Bcl-2 expression, promoted Bax translocation to mitochondria, triggered the release of Cyt c from mitochondria into cytosol and activated caspase-9, -3, and cleaved PARP. The mitochondrial p53 translocation was significantly activated, accompanied by a significant increase in the loss of ΔΨm, Cyt c release and caspase-9 activation. Above all, these data suggest that E. adenophorum induces renal cells apoptosis via the activation of mitochondria-mediated apoptosis pathway in renal cells. These findings may provide new insights to understand the mechanisms involved in E. adenophorum-caused cytotoxicity of renal cells.  相似文献   

12.
Radiation affects several cellular and molecular processes, including double strand breakage and modifications of sugar moieties and bases. In outer space, protons are the primary radiation source that poses a range of potential health risks to astronauts. On the other hand, the use of proton irradiation for tumor radiation therapy is increasing, as it largely spares healthy tissues while killing tumor tissues. Although radiation-related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton irradiation remain poorly understood. Therefore, in this study, we irradiated rat lung epithelial cells with different doses of protons and investigated their effects on cell proliferation and death. Our data show an inhibition of cell proliferation in proton-irradiated cells with a significant dose-dependent activation and repression of reactive oxygen species and antioxidants glutathione and superoxide dismutase, respectively, compared with control cells. In addition, the activities of apoptosis-related genes such as caspase-3 and -8 were induced in a dose-dependent manner with corresponding increased levels of DNA fragmentation in proton-irradiated cells compared with control cells. Together, our results show that proton irradiation alters oxidant and antioxidant levels in cells to activate the apoptotic pathway for cell death.  相似文献   

13.
三元基序家族蛋白15 (tripartite motif-containing protein 15,TRIM15)是TRIM家族成员,该家族是一类具有E3泛素连接酶活性的蛋白质.TRIM15在肿瘤中的功能鲜有报导.本研究意在阐释TRIM15在肝细胞癌(hepatocellular carcinoma,HCC)中的作用...  相似文献   

14.
Fusarochromanone (FC101), a mycotoxin produced by the fungus Fusarium equiseti, is frequently observed in the contaminated grains and feedstuffs, which is toxic to animals and humans. However, the underlying molecular mechanism remains to be defined. In this study, we found that FC101 inhibited cell proliferation and induced cell death in COS7 and HEK293 cells in a concentration-dependent manner. Flow cytometric analysis showed that FC101 induced G1 cell cycle arrest and apoptosis in the cells. Concurrently, FC101 downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and Cdc25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in hypophosphorylation of Rb. FC101 also inhibited protein expression of Bcl-2, Bcl-xL, Mcl-1 and survivin, and induced expression of BAD, leading to activation of caspase 3 and cleavage of PARP, indicating caspase-dependent apoptosis. However, Z-VAD-FMK, a pan-caspase inhibitor, only partially prevented FC101-induced cell death, implying that FC101 may induce cell death through both caspase-dependent and -independent mechanisms. Our results support the notion that FC101 executes its toxicity at least by inhibiting cell proliferation and inducing cell death.  相似文献   

15.
Nasopharyngeal carcinoma is a common malignant tumor in the head and neck. Because of frequent recurrence and distant metastasis which are the main causes of death, better treatment is needed. Indole-3-carbinol (I3C), a natural phytochemical found in the vegetables of the cruciferous family, shows anticancer effect through various signal pathways. I3C induces G1 arrest in NPC cell line with downregulation of cell cycle-related proteins, such as CDK4, CDK6, cyclin D1 and pRb. In vivo, nude mice receiving I3C protectively or therapeutically exhibited smaller tumors than control group after they were inoculated with nasopharyngeal carcinoma cells. The expression of CDK4, CDK6, cyclin D1 and pRb in preventive treatment group and drug treatment group both decreased compared with the control group. We conclude that I3C can inhibit the growth of NPC in vitro and in vivo by suppressing the expression of CDK and cyclin families. The drug was safe and had no toxic effects on normal tissues and organs.  相似文献   

16.
Sclerotium rolfsii lectin (SRL) isolated from the phytopathogenic fungus Sclerotium rolfsii has exquisite binding specificity towards O-linked, Thomsen-Freidenreich (Galβ1-3GalNAcα1-Ser/Thr, TF) associated glycans. This study investigated the influence of SRL on proliferation of human breast cancer cells (MCF-7 and ZR-75), non-tumorigenic breast epithelial cells (MCF-10A) and normal mammary epithelial cells (HMECs). SRL caused marked, dose-dependent, inhibition of proliferation of MCF-7 and ZR-75 cells but only weak inhibition of proliferation of non-tumorigenic MCF-10A and HMEC cells. The inhibitory effect of SRL on cancer cell proliferation was shown to be a consequence of SRL cell surface binding and subsequent induction of cellular apoptosis, an effect that was largely prevented by the presence of inhibitors against caspases -3, -8, or -9. Lectin histochemistry using biotin-labelled SRL showed little binding of SRL to normal human breast tissue but intense binding to cancerous tissues. In conclusion, SRL inhibits the growth of human breast cancer cells via induction of cell apoptosis but has substantially less effect on normal epithelial cells. As a lectin that binds specifically to a cancer-associated glycan, has potential to be developed as an anti-cancer agent.  相似文献   

17.
Arginine-Serine (RS) domain-containing proteins are RNA binding proteins with multiple functions in RNA metabolism. In mammalian cells this group of proteins is also implicated in regulation and coordination of cell cycle and apoptosis. In trypanosomes, an early branching group within the eukaryotic lineage, this group of proteins is represented by 3 members, two of them are SR proteins and have been recently shown to be involved in rRNA processing as well as in pre-mRNA splicing and stability. Here we report our findings on the 3rd member, the SR-related protein TbRRM1. In the present study, we showed that TbRRM1 ablation by RNA-interference in T. brucei procyclic cells leads to cell-cycle block, abnormal cell elongation compatible with the nozzle phenotype and cell death by an apoptosis-like mechanism. Our results expand the role of the trypanosomal RS-domain containing proteins in key cellular processes such as cell cycle and apoptosis-like death, roles also carried out by the mammalian SR proteins, and thus suggesting a conserved function in this phylogenetically conserved protein family.  相似文献   

18.
PTEN基因诱导人胚肾293细胞凋亡和细胞周期停滞   总被引:1,自引:0,他引:1  
为了研究抑癌基因PTEN过表达对HEK293细胞凋亡和细胞周期停滞的作用,以野生型PTEN和PTEN突变子(T910G)表达质粒分别转染无PTEN表达的人胚肾293细胞,采用细胞质梯度DNA方法检测细胞凋亡,以流式细胞仪分析细胞周期.发现PTEN过表达能够诱导人胚肾293细胞质中出现梯度DNA,293细胞发生凋亡,PTEN过表达改变细胞周期分布,G0/G1期细胞增加13%,S期细胞下降15%.PTEN突变子对细胞凋亡和G1细胞停滞的影响略弱于野生型PTEN.PTEN基因过表达明显下调血小板衍生生长因子(PDGF)诱导的蛋白激酶B(PKB)和p42,p44-促分裂原活化蛋白激酶(MAPK)磷酸化水平,PTEN突变子对p42,p44-MAPK磷酸化水平的调节作用略弱于野生型PTEN.PTEN通过抑制细胞增殖,诱导细胞凋亡而影响细胞生长.  相似文献   

19.
为了探讨FAS抗体与放线菌素D(actinomycin D,ActD)联合作用诱导人宫颈癌HeLa细胞凋亡的分子机制,通过MTT法检测细胞活力,利用流式细胞仪检测细胞凋亡和细胞周期,从而研究FAS/ActD抑制细胞增殖的作用. 结果表明,FAS/ActD能明显降低HeLa细胞的活力,并且通过G1/G0期阻滞和S期阻滞诱导HeLa细胞凋亡. 此外,Western印迹分析进一步显示,FAS/ActD还能引起Bcl-2蛋白表达降低, Bax蛋白表达增加,Bid蛋白发生断裂激活,导致细胞质中Cyto-c释放的增加,并激活在细胞凋亡的执行过程中起着关键作用的caspase 9和caspase 3. 以上结果提示,FAS抗体与ActD的联合作用可能经线粒体途径引起细胞周期阻滞,从而诱导HeLa细胞凋亡. 该研究为宫颈癌的免疫治疗提供了新的思路.  相似文献   

20.
Accumulating evidence supports the idea that secondary metabolites obtained from medicinal plants (phytometabolites) may be important contributors in the development of new chemotherapeutic agents to reduce the occurrence or recurrence of cancer. Our study focused on Dehydroleucodine (DhL), a sesquiterpene found in the provinces of Loja and Zamora-Chinchipe. In this study, we showed that DhL displayed cytostatic and cytotoxic activities on the human cerebral astrocytoma D384 cell line. With lactone isolated from Gynoxys verrucosa Wedd, a medicinal plant from Ecuador, we found that DhL induced cell death in D384 cells by triggering cell cycle arrest and inducing apoptosis and DNA damage. We further found that the cell death resulted in the increased expression of CDKN1A and BAX proteins. A marked induction of the levels of total TP73 and phosphorylated TP53, TP73, and γ-H2AX proteins was observed in D384 cells exposed to DhL, but no increase in total TP53 levels was detected. Overall these studies demonstrated the marked effect of DhL on the diminished survival of human astrocytoma cells through the induced expression of TP73 and phosphorylation of TP73 and TP53, suggesting their key roles in the tumor cell response to DhL treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号