首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Oxidative stress, perturbations in the cellular thiol level and redox balance, affects many cellular functions, including signaling pathways. This, in turn, may cause the induction of autophagy or apoptosis. The NRF2/KEAP1 signaling pathway is the main pathway responsible for cell defense against oxidative stress and maintaining the cellular redox balance at physiological levels. The relation between NRF2/KEAP1 signaling and regulation of apoptosis and autophagy is not well understood. In this hypothesis article we discuss how KEAP1 protein and its direct interactants (such as PGAM5, prothymosin α, FAC1 (BPTF), and p62) provide a molecular foundation for a possible cross-talk between NRF2/KEAP1, apoptosis, and autophagy pathways. We present a hypothesis for how NRF2/KEAP1 may interfere with the cellular apoptosis-regulatory machinery through activation of the ASK1 kinase by a KEAP1 binding partner-PGAM5. Based on very recent experimental evidence, new hypotheses for a cross-talk between NF-κB and the NRF2/KEAP1 pathway in the context of autophagy-related "molecular hub" protein p62 are also presented. The roles of KEAP1 molecular binding partners in apoptosis regulation during carcinogenesis and in neurodegenerative diseases are also discussed.  相似文献   

4.
5.
6.
The activation of Nuclear Factor, Erythroid 2 Like 2 – Kelch Like ECH Associated Protein 1 (NRF2-KEAP1) signaling pathway plays a critical dual role by either protecting or promoting the carcinogenesis process. However, its activation or nuclear translocation during hepatocellular carcinoma (HCC) progression has not been addressed yet. This study characterizes the subcellular localization of both NRF2 and KEAP1 during diethylnitrosamine-induced hepatocarcinogenesis in the rat. NRF2-KEAP1 pathway was continuously activated along with the increased expression of its target genes, namely Nqo1, Hmox1, Gclc, and Ptgr1. Similarly, the nuclear translocation of NRF2, MAF, and KEAP1 increased in HCC cells from weeks 12 to 22 during HCC progression. Likewise, colocalization of NRF2 with KEAP1 was higher in the cell nuclei of HCC neoplastic nodules than in surrounding cells. Moreover, immunofluorescence analyses revealed that the interaction of KEAP1 with filamentous Actin was disrupted in HCC cells. This disruption may be contributing to the release and nuclear translocation of NRF2 since the cortical actin cytoskeleton serves as anchoring of KEAP1. In conclusion, this evidence indicates that NRF2 is progressively activated and promotes the progression of experimental HCC.  相似文献   

7.
8.
9.
Guard cells allow land plants to survive under restricted or fluctuating water availability. They control the exchange of gases between the external environment and the interior of the plant by regulating the aperture of stomatal pores in response to environmental stimuli such as light intensity, and are important regulators of plant productivity. Their turgor driven movements are under the control of a signalling network that is not yet fully characterised. A reporter gene fusion confirmed that the Arabidopsis APK1b protein kinase gene is predominantly expressed in guard cells. Infrared gas analysis and stomatal aperture measurements indicated that plants lacking APK1b are impaired in their ability to open their stomata on exposure to light, but retain the ability to adjust their stomatal apertures in response to darkness, abscisic acid or lack of carbon dioxide. Stomatal opening was not specifically impaired in response to either red or blue light as both of these stimuli caused some increase in stomatal conductance. Consistent with the reduction in maximum stomatal conductance, the relative water content of plants lacking APK1b was significantly increased under both well-watered and drought conditions. We conclude that APK1b is required for full stomatal opening in the light but is not required for stomatal closure.  相似文献   

10.
11.
12.
Retinal ischemia-reperfusion (I/R) often results in intractable visual impairments, where blood retinal barrier (BRB) homeostasis mediated by retinal pigment epithelium (RPE) and retinal microvascular endothelium (RME) is crucial. However, strategies targeting the BRB are limited. Thus, we investigated the inconclusive effect of lycopene (LYC) in retinal protection under I/R. LYC elevated cellular viability and reversed oxidative stress in aRPE-19 cells/hRME cells under I/R conditions based on oxygen-glucose deprivation (OGD) in vitro. Molecular analysis showed that LYC promoted NRF2 expression and enhanced the downstream factors of the KEAP1/NRF2/ARE pathway: LYC increased the activities of antioxidants, including SOD and CAT, whereas it enhanced the mRNA expression of HO-1 (ho-1) and NQO-1 (nqo-1). The activation resulted in restrained ROS and MDA. On the other hand, LYC ameliorated the damage to retinal function and morphology in a mouse I/R model, which was established by unilateral ligation of the left pterygopalatine artery/external carotid artery and reperfusion. LYC promoted the expression of NRF2 in both the neural retina and the RPE choroid in vivo. This evidence revealed the potential of LYC in retinal protection under I/R, uncovering the pharmacological effect of the KEAP1/NRF2/ARE pathway in BRB targeting. The study generates new insights into scientific practices in retinal research.  相似文献   

13.
Dickkopf-1 (DKK1) is an inhibitor of the Wnt/β-catenin signaling pathway. However, the role of DKK1 in the progression of non small cell lung cancer (NSCLC) is not fully understood. In this study, RT-PCR and Western blot were used to examine the expression of DKK1 in a panel of ten human NSCLC cell lines and NSCLC tissues. DKK1 expression was highly transactivated in the great majority of these cancer lines. The expression of DKK1 was upregulated on both mRNA and protein levels in NSCLC tissues compared with the adjacent normal lung tissues. Immunohistochemistry and immunofluoresence revealed that DKK1 was mainly distributed in the cytoplasm in both carcinoma tissues and cell lines. DKK1 protein expression was also evaluated in paraffin sections from 102 patients with NSCLC by immunohistochemistry, and 65(63.73%)tumors were DKK1 positive. Relative analysis showed a significant relationship between DKK1 positive expression and lymph node metastasis(P<0.05). Patients with DKK1-positive tumors had poorer DFS than those with negative ESCC (5-year DFS; 15.4% versus 27%, P = 0.007). To further explore the biological effects of DKK1 in NSCLC cells, we over-expressed DKK1 in NSCLC 95C cell using eukaryotic expression vector pCMV-Tab-2b and performed a knockdown of DKK1 in LTEP-a-2 cell using a short hairpin RNA expression vector pSilencer 5.1. DKK1 did not have any effect on proliferation, but seemed to play a role in migration and invasion capability. Overexpression of DKK1 promotes migratory and invasive activity of 95C, while DKK1 knockdown resulted in the suppression of migration and invasion potentials of LTEP-a-2 cell. Taken together, these results indicate that DKK1 may be a crucial regulator in the progression of NSCLC. DKK1 might be a potential therapeutic target in NSCLC.  相似文献   

14.
15.
Previous studies have demonstrated that the cell surface receptor Slamf1 (CD150) is requisite for optimal NADPH-oxidase (Nox2) dependent reactive oxygen species (ROS) production by phagocytes in response to Gram- bacteria. By contrast, Slamf8 (CD353) is a negative regulator of ROS in response to Gram+ and Gram- bacteria. Employing in vivo migration after skin sensitization, induction of peritonitis, and repopulation of the small intestine demonstrates that in vivo migration of Slamf1-/- dendritic cells and macrophages is reduced, as compared to wt mice. By contrast, in vivo migration of Slamf8-/- dendritic cells, macrophages and neutrophils is accelerated. These opposing effects of Slamf1 and Slamf8 are cell-intrinsic as judged by in vitro migration in transwell chambers in response to CCL19, CCL21 or CSF-1. Importantly, inhibiting ROS production of Slamf8-/- macrophages by diphenyleneiodonium chloride blocks this in vitro migration. We conclude that Slamf1 and Slamf8 govern ROS–dependent innate immune responses of myeloid cells, thus modulating migration of these cells during inflammation in an opposing manner.  相似文献   

16.
We have created a deletion mutant of the insulin-like growth factor type 1 receptor (IGF-1 R) which lacks the 36 amino acids (aa) immediately N-terminal to the transmembrane domain (Δ870–905 IGF-1 R). This region has been reported to have a negative effect on the transforming potential of an avian sarcoma virus gag-IGF-1 R fusion protein. We have sought to determine whether this region plays a similar role in the intact IGF-1 R. Analysis of the tyrosine kinase activity of the Δ870–905 IGF-1 R shows that the mutant receptor is autophosphorylated without IGF-1 stimulation, indicating that the tyrosine kinase domain is constitutively active. In addition, processing of the receptor is decreased, resulting in accumulation of a high molecular weight proreceptor containing both α and β-subunits. A well-characterized substrate of the IGF-1 R, IRS-1, is constitutively phosphorylated by the Δ870–905 IGF-1 R and phosphoinositide (PI) 3-kinase activity, which is normally activated by the phosphorylation of IRS-1 following IGF-1 stimulation, is increased even in the absence of IGF-1. A second intracellular signal pathway normally activated by IGF-1, the MAP kinase pathway, showed no increase in activity in the absence of IGF-1. The Δ870–905 IGF-1 R promoted cell proliferation only in the presence of IGF-1. We conclude that this deletion increases the basal activity of the IGF-1 receptor tyrosine kinase and activates PI 3-kinase, but is unable to stimulate MAP kinase in the absence of ligand. These results confirm those seen in the gag-IGF-1 R fusion protein and indicate that aa 870–905 exert a negative effect on the tyrosine kinase domain of the β-subunit of the IGF-1 R.  相似文献   

17.
We reported previously (S. L. Rogers, P. J. Gegick, S. M. Alexander, and P. G. McGuire, Dev. Biol. 151, 191-203, 1992) that transforming growth factor-β1 (TGFβ1) inhibited proliferation, up-regulated fibronectin synthesis, and suppressed melanogenesis in a population of quail neural crest cells in vitro. Here, we report that cell lines derived from the parent SK-N-SH neuroblastoma line (R. A. Ross, B. A. Spengler, and J. L. Biedler, J. Natl. Cancer Inst. 71, 741-747, 1983) respond differentially to TGFβ1, and their responses provide further insights into the actions of this growth factor on neural crest subpopulations. The SH-EP cell line exhibits primarily nonneuronal traits and responded to TGFβ1 with increased thymidine uptake after 6 days of culture, increased expression of fibronectin mRNA and protein, and decreased laminin synthesis. Many SH-EP cells also acquired a dramatically elongated morphology, reminiscent of Schwann cells in culture. Thymidine uptake by the neuronal SY5Y cell line was not substantially altered. Neither fibronectin mRNA nor protein was detectable in either TGFβ1-treated or untreated cultures, although laminin synthesis was upregulated by the growth factor. In TGFβ1-treated cultures of the intermediate SH-IN cell line, which has been reported to display both neuronal and nonneuronal characteristics, there was marked flattening of many cells, a steady decrease in thymidine uptake, and increased expression of both fibronectin and laminin. The observed responses of SH-IN cells mimic those observed in primary neural crest cultures and appear to represent similar differentiation toward a mesenchymal phenotype. These results substantiate the idea that closely related but diverging neural crest-derived cell types respond selectively to TGFβ1 and demonstrate that these SK-N-SH-derived cell lines will be useful in experimental approaches that will allow us to infer mechanisms underlying regulation of neural crest differentiation.  相似文献   

18.
KRAS is mutated in ∼40% of colorectal cancer (CRC), and there are limited effective treatments for advanced KRAS mutant CRC. Therefore, it is crucial that downstream mediators of oncogenic KRAS continue to be studied. We identified p190RhoGAP as being phosphorylated in the DLD1 CRC cell line, which expresses a heterozygous KRAS G13D allele, and not in DKO4 in which the mutant allele has been deleted by somatic recombination. We found that a ubiquitous binding partner of p190RhoGAP, p120RasGAP (RasGAP), is expressed in much lower levels in DKO4 cells compared to DLD1, and this expression is regulated by KRAS. Rescue of RasGAP expression in DKO4 rescued Rho pathway activation and partially rescued tumorigenicity in DKO4 cells, indicating that the combination of mutant KRAS and RasGAP expression is crucial to these phenotypes. We conclude that RasGAP is an important effector of mutant KRAS in CRC.  相似文献   

19.
20.
Inactivating mutations of the neurofibromatosis 2 (NF2) gene, NF2, result predominantly in benign neurological tumors, schwannomas and meningiomas, in humans; however, mutations in murine Nf2 lead to a broad spectrum of cancerous tumors. The tumor-suppressive function of the NF2 protein, merlin, a membrane-cytoskeleton linker, remains unclear. Here, we identify the mammalian target of rapamycin complex 1 (mTORC1) as a novel mediator of merlin''s tumor suppressor activity. Merlin-deficient human meningioma cells and merlin knockdown arachnoidal cells, the nonneoplastic cell counterparts of meningiomas, exhibit rapamycin-sensitive constitutive mTORC1 activation and increased growth. NF2 patient tumors and Nf2-deficient mouse embryonic fibroblasts demonstrate elevated mTORC1 signaling. Conversely, the exogenous expression of wild-type merlin isoforms, but not a patient-derived L64P mutant, suppresses mTORC1 signaling. Merlin does not regulate mTORC1 via the established mechanism of phosphoinositide 3-kinase-Akt or mitogen-activated protein kinase/extracellular signal-regulated kinase-mediated TSC2 inactivation and may instead regulate TSC/mTOR signaling in a novel fashion. In conclusion, the deregulation of mTORC1 activation underlies the aberrant growth and proliferation of NF2-associated tumors and may restrain the growth of these lesions through negative feedback mechanisms, suggesting that rapamycin in combination with phosphoinositide 3-kinase inhibitors may be therapeutic for NF2.Meningiomas are mesenchymal tumors that arise from the arachnoid layer covering the brain and spinal cord and account for approximately 30% of all primary intracranial neoplasms (30). Most sporadic meningiomas (60%) display somatic inactivation of the NF2 gene. Germ line mutations of NF2 are associated with neurofibromatosis 2 (NF2), a dominantly inherited disorder characterized by multiple nervous system tumors, including schwannomas and meningiomas (33). Although most meningiomas are benign (WHO grade I), they often cause significant morbidity due to compression of the adjacent brain or spinal cord. Benign meningiomas also have recurrence rates of up to 20% over 10 years. Ten percent of meningiomas are classified as atypical (WHO grade II) or anaplastic (WHO grade III) and display more aggressive clinical behavior, with rapid growth and increased recurrence rates (6, 21). The current standard of care is maximal surgical resection, with adjuvant radiation reserved for progressive tumors or those with aggressive features (e.g., WHO grade II or III). The treatment strategy for meningiomas that progress despite surgery and radiation remains limited, and currently there is no effective chemotherapy.The development of effective therapies has been hampered, in part, by our incomplete understanding of the signals influencing meningioma cell growth. Enhanced expression of certain peptide and steroid growth factors and receptors in meningioma tissue suggests that specific autocrine growth-stimulatory loops may be functionally important in meningioma cell proliferation (20, 38). The scarcity of established meningioma models that would allow for the assessment of growth-regulatory mechanisms has also hampered progress. Recently, we have developed reliable meningioma models that overcome the challenges of the low growth rates and senescence of primary benign meningioma cells (19).Biallelic inactivation of the NF2 gene is detected in the majority of sporadic meningiomas and nearly all schwannomas (11). The tumor suppressor gene NF2 encodes merlin (also called schwannomin), a member of the ezrin-radixin-moesin (ERM) protein family that functions to link membrane proteins to the cortical actin cytoskeleton (31, 41). Like the ERM proteins, merlin has been implicated in the regulation of membrane organization and cytoskeleton-based cellular processes such as adhesion, migration, cell-cell contact, spreading, proliferation, and signal transduction (27). The loss of contact-dependent inhibition of proliferation is seen in several types of NF2-deficient cells (23, 29). Merlin controls cell proliferation in response to cell contact via CD44 (28) and functions together with the related tumor suppressor Expanded via the Hippo/Mst pathway in both Drosophila and some types of mammalian cells (14, 49). Although merlin is implicated in a wide range of cellular activities, the precise mechanism by which merlin mediates growth-inhibitory functions in human arachnoidal and Schwann cells and the way in which its loss results in tumor formation in NF2 remain poorly understood.We recently reported that primary human merlin-deficient meningioma cells exhibit a striking, enlarged-cell phenotype compared to nonneoplastic arachnoidal cell counterparts derived from the same patient (19). Interestingly, the tuberous sclerosis complex (TSC) tumor suppressor syndrome is characterized by widespread benign tumors that possess abnormally large cells (22). Mutations in the tumor suppressor genes TSC1 and TSC2 result in TSC syndrome, and the corresponding protein products, hamartin and tuberin (referred to as TSC1 and TSC2), function together as a complex that potently inhibits mammalian target of rapamycin complex 1 (mTORC1) (17). mTOR is an evolutionarily conserved Ser/Thr kinase that exists in one of two distinct functional complexes, TORC1 and TORC2. TORC1, which regulates autophagy, protein translation, and ribosome biogenesis, is potently and specifically inhibited by rapamycin (10, 46). TORC2, which is less sensitive to rapamycin, is important for cytoskeletal regulation and Akt/protein kinase B activation (16, 18, 36).The TSC1-TSC2 complex inhibits mTORC1 by acting as a GTPase-activating protein for the small GTPase Rheb (Ras homolog enriched in brain). Inactivation of the TSC1-TSC2 complex results in the accumulation of GTP-bound Rheb, which activates mTORC1 (10). In addition to naturally occurring mutations in the TSC1 and TSC2 genes, growth factor stimulation of the phosphoinositide 3-kinase (PI3K)-Akt pathway, as well as Ras/mitogen-activated protein kinase (MAPK) pathways, leads to the phosphorylation and inactivation of the TSC1-TSC2 complex and consequent activation of mTORC1 (17). The activation of mTORC1 results in the phosphorylation of two well-characterized effectors, eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) and S6 kinase 1 (S6K1), leading to an increase in ribosomal biogenesis and the selective translation of specific mRNA populations. As a critical regulator of cell growth and proliferation, the mTORC1 pathway is dysregulated in several hamartoma syndromes, as well as in many cancers (10).In this report, we identify the NF2 tumor suppressor protein, merlin, as a novel negative regulator of the mTORC1 pathway to control cell growth (cell size). We show that mTORC1 is constitutively activated in merlin-deficient human meningioma cells, leading to increased cell size. Furthermore, we suggest that the slow growth of merlin-deficient meningioma cells is due to a rapamycin-sensitive, mTORC1-S6K-dependent negative feedback loop that diminishes PI3K-Akt signaling in response to growth factor stimulation. The findings of these studies provide insight into the mechanism of merlin tumor suppressor activity and, moreover, indicate that rapamycin or rapamycin analogs in combination with PI3K inhibitors may provide promise as new therapeutics in the treatment of meningiomas and schwannomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号