共查询到20条相似文献,搜索用时 0 毫秒
1.
Sang Beom Jun Verginia Cuzon Carlson Stephen Ikeda David Lovinger 《Journal of visualized experiments : JoVE》2011,(51)
Mechanical dissociation of neurons from the central nervous system has the advantage that presynaptic boutons remain attached to the isolated neuron of interest. This allows for examination of synaptic transmission under conditions where the extracellular and postsynaptic intracellular environments can be well controlled. A vibration-based technique without the use of proteases, known as vibrodissociation, is the most popular technique for mechanical isolation. A micropipette, with the tip fire-polished to the shape of a small ball, is placed into a brain slice made from a P1-P21 rodent. The micropipette is vibrated parallel to the slice surface and lowered through the slice thickness resulting in the liberation of isolated neurons. The isolated neurons are ready for study within a few minutes of vibrodissociation. This technique has advantages over the use of primary neuronal cultures, brain slices and enzymatically isolated neurons including: rapid production of viable, relatively mature neurons suitable for electrophysiological and imaging studies; superior control of the extracellular environment free from the influence of neighboring cells; suitability for well-controlled pharmacological experiments using rapid drug application and total cell superfusion; and improved space-clamp in whole-cell recordings relative to neurons in slice or cell culture preparations. This preparation can be used to examine synaptic physiology, pharmacology, modulation and plasticity. Real-time imaging of both pre- and postsynaptic elements in the living cells and boutons is also possible using vibrodissociated neurons. Characterization of the molecular constituents of pre- and postsynaptic elements can also be achieved with immunological and imaging-based approaches. 相似文献
2.
Fornari RV Wichmann R Atsak P Atucha E Barsegyan A Beldjoud H Messanvi F Thuring CM Roozendaal B 《Journal of visualized experiments : JoVE》2012,(59):e3528
Stereotaxic surgery for the implantation of cannulae into specific brain regions has for many decades been a very successful experimental technique to investigate the effects of locally manipulated neurotransmitter and signaling pathways in awake, behaving animals. Moreover, the stereotaxic implantation of electrodes for electrophysiological stimulation and recording studies has been instrumental to our current understanding of neuroplasticity and brain networks in behaving animals. Ever-increasing knowledge about optimizing surgical techniques in rodents(1-4), public awareness concerning animal welfare issues and stringent legislation (e.g., the 2010 European Union Directive on the use of laboratory animals(5)) prompted us to refine these surgical procedures, particularly with respect to implementing new procedures for oxygen supplementation and the continuous monitoring of blood oxygenation and heart rate levels during the surgery as well as introducing a standardized protocol for post-surgical care. Our observations indicate that these modifications resulted in an increased survival rate and an improvement in the general condition of the animals after surgery (e.g. less weight loss and a more active animal). This video presentation will show the general procedures involved in this type of stereotaxic surgery with special attention to our several modifications. We will illustrate these surgical procedures in rats, but it is also possible to perform this type of surgery in mice or other small laboratory animals by using special adaptors for the stereotaxic apparatus(6). 相似文献
3.
Elizabeth D. Kirby Kelly Jensen Ki A. Goosens Daniela Kaufer 《Journal of visualized experiments : JoVE》2012,(65)
Many behavioral functions in mammals, including rodents and humans, are mediated principally by discrete brain regions. A common method for discerning the function of various brain regions for behavior or other experimental outcomes is to implement a localized ablation of function. In humans, patient populations with localized brain lesions are often studied for deficits, in hopes of revealing the underlying function of the damaged area. In rodents, one can experimentally induce lesions of specific brain regions.Lesion can be accomplished in several ways. Electrolytic lesions can cause localized damage but will damage a variety of cell types as well as traversing fibers from other brain regions that happen to be near the lesion site. Inducible genetic techniques using cell-type specific promoters may also enable site-specific targeting. These techniques are complex and not always practical depending on the target brain area. Excitotoxic lesion using stereotaxic surgery, by contrast, is one of the most reliable and practical methods of lesioning excitatory neurons without damaging local glial cells or traversing fibers.Here, we present a protocol for stereotaxic infusion of the excitotoxin, N-methyl-D-aspartate (NMDA), into the basolateral amygdala complex. Using anatomical indications, we apply stereotaxic coordinates to determine the location of our target brain region and lower an injection needle in place just above the target. We then infuse our excitotoxin into the brain, resulting in excitotoxic death of nearby neurons. While our experimental subject of choice is a rat, the same methods can be applied to other mammals, with the appropriate adjustments in equipment and coordinates.This method can be used on a variety of brain regions, including the basolateral amygdala1-6, other amygdala nuclei6, 7, hippocampus8, entorhinal cortex9 and prefrontal cortex10. It can also be used to infuse biological compounds such as viral vectors1, 11. The basic stereotaxic technique could also be adapted for implantation of more permanent osmotic pumps, allowing more prolonged exposure to a compound of interest. 相似文献
4.
5.
6.
Neuroscientists study the function of the brain by investigating how neurons in the brain communicate. Many investigators look at changes in the electrical activity of one or more neurons in response to an experimentally-controlled input. The electrical activity of neurons can be recorded in isolated brain slices using patch clamp techniques with glass micropipettes. Traditionally, experimenters can mimic neuronal input by direct injection of current through the pipette, electrical stimulation of the other cells or remaining axonal connections in the slice, or pharmacological manipulation by receptors located on the neuronal membrane of the recorded cell.Direct current injection has the advantages of passing a predetermined current waveform with high temporal precision at the site of the recording (usually the soma). However, it does not change the resistance of the neuronal membrane as no ion channels are physically opened. Current injection usually employs rectangular pulses and thus does not model the kinetics of ion channels. Finally, current injection cannot mimic the chemical changes in the cell that occurs with the opening of ion channels.Receptors can be physically activated by electrical or pharmacological stimulation. The experimenter has good temporal precision of receptor activation with electrical stimulation of the slice. However, there is limited spatial precision of receptor activation and the exact nature of what is activated upon stimulation is unknown. This latter problem can be partially alleviated by specific pharmacological agents. Unfortunately, the time course of activation of pharmacological agents is typically slow and the spatial precision of inputs onto the recorded cell is unknown.The dynamic clamp technique allows an experimenter to change the current passed directly into the cell based on real-time feedback of the membrane potential of the cell (Robinson and Kawai 1993, Sharp et al., 1993a,b; for review, see Prinz et al. 2004). This allows an experimenter to mimic the electrical changes that occur at the site of the recording in response to activation of a receptor. Real-time changes in applied current are determined by a mathematical equation implemented in hardware.We have recently used the dynamic clamp technique to investigate the generation of bursts of action potentials by phasic activation of NMDA receptors in dopaminergic neurons of the substantia nigra pars compacta (Deister et al., 2009; Lobb et al., 2010). In this video, we demonstrate the procedures needed to apply a NMDA receptor conductance into a dopaminergic neuron. 相似文献
7.
Richelle Mychasiuk Allyson Farran Mariana Angoa-Perez Denise Briggs Donald Kuhn Michael J. Esser 《Journal of visualized experiments : JoVE》2014,(94)
Despite growing evidence that childhood represents a major risk period for mild traumatic brain injury (mTBI) from sports-related concussions, motor vehicle accidents, and falls, a reliable animal model of mTBI had previously not been developed for this important aspect of development. The modified weight-drop technique employs a glancing impact to the head of a freely moving rodent transmitting acceleration, deceleration, and rotational forces upon the brain. When applied to juvenile rats, this modified weight-drop technique induced clinically relevant behavioural outcomes that were representative of post-concussion symptomology. The technique is a rapidly applied procedure with an extremely low mortality rate, rendering it ideal for high-throughput studies of therapeutics. In addition, because the procedure involves a mild injury to a closed head, it can easily be used for studies of repetitive brain injury. Owing to the simplistic nature of this technique, and the clinically relevant biomechanics of the injury pathophysiology, the modified weight-drop technique provides researchers with a reliable model of mTBI that can be used in a wide variety of behavioural, molecular, and genetic studies. 相似文献
8.
9.
Understanding the biophysical properties and functional organization of single neurons and how they process information is fundamental for understanding how the brain works. The primary function of any nerve cell is to process electrical signals, usually from multiple sources. Electrical properties of neuronal processes are extraordinarily complex, dynamic, and, in the general case, impossible to predict in the absence of detailed measurements. To obtain such a measurement one would, ideally, like to be able to monitor, at multiple sites, subthreshold events as they travel from the sites of origin on neuronal processes and summate at particular locations to influence action potential initiation. This goal has not been achieved in any neuron due to technical limitations of measurements that employ electrodes. To overcome this drawback, it is highly desirable to complement the patch-electrode approach with imaging techniques that permit extensive parallel recordings from all parts of a neuron. Here, we describe such a technique - optical recording of membrane potential transients with organic voltage-sensitive dyes (Vm-imaging) - characterized by sub-millisecond and sub-micrometer resolution. Our method is based on pioneering work on voltage-sensitive molecular probes 2. Many aspects of the initial technology have been continuously improved over several decades 3, 5, 11. Additionally, previous work documented two essential characteristics of Vm-imaging. Firstly, fluorescence signals are linearly proportional to membrane potential over the entire physiological range (-100 mV to +100 mV; 10, 14, 16). Secondly, loading neurons with the voltage-sensitive dye used here (JPW 3028) does not have detectable pharmacological effects. The recorded broadening of the spike during dye loading is completely reversible 4, 7. Additionally, experimental evidence shows that it is possible to obtain a significant number (up to hundreds) of recordings prior to any detectable phototoxic effects 4, 6, 12, 13. At present, we take advantage of the superb brightness and stability of a laser light source at near-optimal wavelength to maximize the sensitivity of the Vm-imaging technique. The current sensitivity permits multiple site optical recordings of Vm transients from all parts of a neuron, including axons and axon collaterals, terminal dendritic branches, and individual dendritic spines. The acquired information on signal interactions can be analyzed quantitatively as well as directly visualized in the form of a movie. 相似文献
10.
Josh Titlow Zana R. Majeed John G Nicholls Robin L. Cooper 《Journal of visualized experiments : JoVE》2013,(81)
The freshwater leech, Hirudo medicinalis, is a versatile model organism that has been used to address scientific questions in the fields of neurophysiology, neuroethology, and developmental biology. The goal of this report is to consolidate experimental techniques from the leech system into a single article that will be of use to physiologists with expertise in other nervous system preparations, or to biology students with little or no electrophysiology experience. We demonstrate how to dissect the leech for recording intracellularly from identified neural circuits in the ganglion. Next we show how individual cells of known function can be removed from the ganglion to be cultured in a Petri dish, and how to record from those neurons in culture. Then we demonstrate how to prepare a patch of innervated skin to be used for mapping sensory or motor fields. These leech preparations are still widely used to address basic electrical properties of neural networks, behavior, synaptogenesis, and development. They are also an appropriate training module for neuroscience or physiology teaching laboratories. 相似文献
11.
Despite an enormous increase in our knowledge about the mechanisms underlying the encoding of information in the brain, a central question concerning the precise molecular steps as well as the activity of specific neurons in multi-functional nuclei of brain areas such as the hypothalamus remain. This problem includes identification of the molecular components involved in the regulation of various neurohormone signal transduction cascades. Elevations of intracellular Ca2+ play an important role in regulating the sensitivity of neurons, both at the level of signal transduction and at synaptic sites.New tools have emerged to help identify neurons in the myriad of brain neurons by expressing green fluorescent protein (GFP) under the control of a particular promoter. To monitor both spatially and temporally stimulus-induced Ca2+ responses in GFP-tagged neurons, a non-green fluorescent Ca2+ indicator dye needs to be used. In addition, confocal microscopy is a favorite method of imaging individual neurons in tissue slices due to its ability to visualize neurons in distinct planes of depth within the tissue and to limit out-of-focus fluorescence. The ratiometric Ca2+ indicator fura-2 has been used in combination with GFP-tagged neurons1. However, the dye is excited by ultraviolet (UV) light. The cost of the laser and the limited optical penetration depth of UV light hindered its use in many laboratories. Moreover, GFP fluorescence may interfere with the fura-2 signals2. Therefore, we decided to use a red fluorescent Ca2+ indicator dye. The huge Stokes shift of fura-red permits multicolor analysis of the red fluorescence in combination with GFP using a single excitation wavelength. We had previously good results using fura-red in combination with GFP-tagged olfactory neurons3. The protocols for olfactory tissue slices seemed to work equally well in hypothalamic neurons4. Fura-red based Ca2+ imaging was also successfully combined with GFP-tagged pancreatic β-cells and GFP-tagged receptors expressed in HEK cells5,6. A little quirk of fura-red is that its fluorescence intensity at 650 nm decreases once the indicator binds calcium7. Therefore, the fluorescence of resting neurons with low Ca2+ concentration has relatively high intensity. It should be noted, that other red Ca2+-indicator dyes exist or are currently being developed, that might give better or improved results in different neurons and brain areas. 相似文献
12.
A novel dissection and recording technique is described for optical monitoring staining and de-staining of lanceolate terminals surrounding hair follicles in the skin of the mouse pinna. The preparation is simple and relatively fast, reliably yielding extensive regions of multiple labeled units of living nerve terminals to study uptake and release of styryl pyridinium dyes extensively used in studies of vesicle recycling. Subdividing the preparations before labeling allows test vs. control comparisons in the same ear from a single individual. Helpful tips are given for improving the quality of the preparation, the labeling and the imaging parameters. This new system is suitable for assaying pharmacologically and mechanically-induced uptake and release of these vital dyes in lanceolate terminals in both wild-type and genetically modified animals. Examples of modulatory influences on labeling intensity are given. 相似文献
13.
Nicole Haack Simone Durry Karl W. Kafitz Mitchell Chesler Christine R. Rose 《Journal of visualized experiments : JoVE》2015,(103)
Electrical activity in the brain is accompanied by significant ion fluxes across membranes, resulting in complex changes in the extracellular concentration of all major ions. As these ion shifts bear significant functional consequences, their quantitative determination is often required to understand the function and dysfunction of neural networks under physiological and pathophysiological conditions. In the present study, we demonstrate the fabrication and calibration of double-barreled ion-selective microelectrodes, which have proven to be excellent tools for such measurements in brain tissue. Moreover, so-called “concentric” ion-selective microelectrodes are also described, which, based on their different design, offer a far better temporal resolution of fast ion changes. We then show how these electrodes can be employed in acute brain slice preparations of the mouse hippocampus. Using double-barreled, potassium-selective microelectrodes, changes in the extracellular potassium concentration ([K+]o) in response to exogenous application of glutamate receptor agonists or during epileptiform activity are demonstrated. Furthermore, we illustrate the response characteristics of sodium-sensitive, double-barreled and concentric electrodes and compare their detection of changes in the extracellular sodium concentration ([Na+]o) evoked by bath or pressure application of drugs. These measurements show that while response amplitudes are similar, the concentric sodium microelectrodes display a superior signal-to-noise ratio and response time as compared to the double-barreled design. Generally, the demonstrated procedures will be easily transferable to measurement of other ions species, including pH or calcium, and will also be applicable to other preparations. 相似文献
14.
15.
Nissa L. Carrodus Kathleen Sue-Lyn Teng Kathryn M. Munro Matthew J. Kennedy Jenny M. Gunnersen 《Journal of visualized experiments : JoVE》2014,(84)
In order to demonstrate the cell-surface localization of a putative transmembrane receptor in cultured neurons, we labeled the protein on the surface of live neurons with a specific primary antibody raised against an extracellular portion of the protein. Given that receptors are trafficked to and from the surface, if cells are permeabilized after fixation then both cell-surface and internal protein will be detected by the same labeled secondary antibody. Here, we adapted a method used to study protein trafficking (“antibody feeding”) to differentially label protein that had been internalized by endocytosis during the antibody incubation step and protein that either remained on the cell surface or was trafficked to the surface during this period. The ability to distinguish these two pools of protein was made possible through the incorporation of an overnight blocking step with highly-concentrated unlabeled secondary antibody after an initial incubation of unpermeabilized neurons with a fluorescently-labeled secondary antibody. After the blocking step, permeabilization of the neurons allowed detection of the internalized pool with a fluorescent secondary antibody labeled with a different fluorophore. Using this technique we were able to obtain important information about the subcellular location of this putative receptor, revealing that it was, indeed, trafficked to the cell-surface in neurons. This technique is broadly applicable to a range of cell types and cell-surface proteins, providing a suitable antibody to an extracellular epitope is available. 相似文献
16.
Philip M. Brunetti Ralf D. Wimmer Li Liang Joshua H. Siegle Jakob Voigts Matthew Wilson Michael M. Halassa 《Journal of visualized experiments : JoVE》2014,(91)
The number of physiological investigations in the mouse, mus musculus, has experienced a recent surge, paralleling the growth in methods of genetic targeting for microcircuit dissection and disease modeling. The introduction of optogenetics, for example, has allowed for bidirectional manipulation of genetically-identified neurons, at an unprecedented temporal resolution. To capitalize on these tools and gain insight into dynamic interactions among brain microcircuits, it is essential that one has the ability to record from ensembles of neurons deep within the brain of this small rodent, in both head-fixed and freely behaving preparations. To record from deep structures and distinct cell layers requires a preparation that allows precise advancement of electrodes towards desired brain regions. To record neural ensembles, it is necessary that each electrode be independently movable, allowing the experimenter to resolve individual cells while leaving neighboring electrodes undisturbed. To do both in a freely behaving mouse requires an electrode drive that is lightweight, resilient, and highly customizable for targeting specific brain structures.A technique for designing and fabricating miniature, ultralight weight, microdrive electrode arrays that are individually customizable and easily assembled from commercially available parts is presented. These devices are easily scalable and can be customized to the structure being targeted; it has been used successfully to record from thalamic and cortical regions in a freely behaving animal during natural behavior. 相似文献
17.
Maria Weinert Tharakeswari Selvakumar Travis S. Tierney Kambiz N. Alavian 《Journal of visualized experiments : JoVE》2015,(96)
Degeneration of mesencephalic dopaminergic (mesDA) neurons is the pathological hallmark of Parkinson’s diseae. Study of the biological processes involved in physiological functions and vulnerability and death of these neurons is imparative to understanding the underlying causes and unraveling the cure for this common neurodegenerative disorder. Primary cultures of mesDA neurons provide a tool for investigation of the molecular, biochemical and electrophysiological properties, in order to understand the development, long-term survival and degeneration of these neurons during the course of disease. Here we present a detailed method for the isolation, culturing and maintenance of midbrain dopaminergic neurons from E12.5 mouse (or E14.5 rat) embryos. Optimized cell culture conditions in this protocol result in presence of axonal and dendritic projections, synaptic connections and other neuronal morphological properties, which make the cultures suitable for study of the physiological, cell biological and molecular characteristics of this neuronal population. 相似文献
18.
R. Vogel G. Jennemann J. Seitz H. Wiesinger B. Hamprecht 《Journal of neurochemistry》1998,71(2):844-852
Abstract: To elucidate the cellular location of mitochondrial malic enzyme in brain, immunocytochemical studies were performed. For this purpose, mitochondrial malic enzyme was purified to apparent homogeneity from bovine brain and used for the immunization of rabbits. Subjecting the antiserum to affinity purification on immobilized antigen as an absorbent yielded a purified immunoreactive antibody preparation, which was characterized by probing cytosolic and mitochondrial fractions of bovine and rat brain in western blotting. As neither crossreactivity with cytosolic malic enzyme nor immunoreactivity against other proteins could be observed, the antibody preparation was found suitable for immunocytochemistry. By using sections of perfusion-fixed rat brain, considerable resolution was achieved at the light-microscopic level. Distinct and specific staining of neurons was observed; in contrast, no staining of astrocytes and possibly unspecific staining within the nuclei of oligodendrocytes were obtained. From these data, it is concluded that mitochondrial malic enzyme is located in neurons; however, in astrocytes, the enzyme appears to be either lacking or present at a much lower level. A protective role against oxidative stress in neurons is proposed for mitochondrial malic enzyme. 相似文献
19.
Periventricular white matter injury in premature infants is linked to chronic neurological dysfunction. Periventricular white
matter injury is caused by many mechanisms including hypoxia-ischemia (HI). Animal models of HI in the neonatal rodent brain
can replicate some important features of periventricular white matter injury. Most rodent studies have focused upon early
cellular and tissue events following unilateral neonatal HI that is elicited by unilateral carotid artery ligation and followed
by timed exposure to moderate hypoxia. Milder hypoxic-ischemic insults elicit preferential white matter injury. Little information
is available about long-term cellular effects of unilateral HI. One month after unilateral neonatal hypoxia ischemia, we show
that all the components for structural reorganization of the brain are present in moderately injured rats. These components
in the injured side include extensive influx of neurites, axonal and dendritic growth cones, abundant immature synapses, and
myelination of many small axons. Surprisingly, this neural recovery is often found in and adjacent to cysts that have the
ultrastructural features of bone extracellular matrix. In contrast, brains with severe hypoxia ischemia one month after injury
still undergo massive neuronal degeneration. While massive destruction of neurons and glia are striking events shortly after
brain HI, neural cells re-express their intrinsic properties and attempt an anatomical recovery long after injury.
Special issue dedicated to Anthony Campagnoni. 相似文献
20.
The cylinder test is routinely used to predict focal ischemic damage to the forelimb motor cortex in rodents. When placed in the cylinder, rodents explore by rearing and touching the walls of the cylinder with their forelimb paws for postural support. Following ischemic injury to the forelimb sensorimotor cortex, rats rely more heavily on their unaffected forelimb paw for postural support resulting in fewer touches with their affected paw which is termed forelimb asymmetry. In contrast, focal ischemic damage in the mouse brain fails to result in comparable consistent deficits in forelimb asymmetry. While forelimb asymmetry deficits are infrequently observed, mice do demonstrate a novel behaviour post stroke termed “paw-dragging”. Paw-dragging is the tendency for a mouse to drag its affected paw along the cylinder wall rather than directly push off from the wall when dismounting from a rear to a four-legged stance. We have previously demonstrated that paw-dragging behaviour is highly sensitive to small cortical ischemic injuries to the forelimb motor cortex. Here we provide a detailed protocol for paw-dragging analysis. We define what a paw-drag is and demonstrate how to quantify paw-dragging behaviour. The cylinder test is a simple and inexpensive test to administer and does not require pre-training or food deprivation strategies. In using paw-dragging analysis with the cylinder test, it fills a niche for predicting cortical ischemic injuries such as photothrombosis and Endothelin-1 (ET-1)-induced ischemia – two models that are ever-increasing in popularity and produce smaller focal injuries than middle cerebral artery occlusion. Finally, measuring paw-dragging behaviour in the cylinder test will allow studies of functional recovery after cortical injury using a wide cohort of transgenic mouse strains where previous forelimb asymmetry analysis has failed to detect consistent deficits. 相似文献