首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Diarrhea is one of the leading causes of mortality in young children. Diarrheal pathogens are transmitted via the fecal-oral route, and for children the majority of this transmission is thought to occur within the home. However, very few studies have documented enteric pathogens within households of low-income countries.

Methods and Findings

The presence of molecular markers for three enteric viruses (enterovirus, adenovirus, and rotavirus), seven Escherichia coli virulence genes (ECVG), and human-specific Bacteroidales was assessed in hand rinses and household stored drinking water in Bagamoyo, Tanzania. Using a matched case-control study design, we examined the relationship between contamination of hands and water with these markers and child diarrhea. We found that the presence of ECVG in household stored water was associated with a significant decrease in the odds of a child within the home having diarrhea (OR = 0.51; 95% confidence interval 0.27–0.93). We also evaluated water management and hygiene behaviors. Recent hand contact with water or food was positively associated with detection of enteric pathogen markers on hands, as was relatively lower volumes of water reportedly used for daily hand washing. Enteropathogen markers in stored drinking water were more likely found among households in which the markers were also detected on hands, as well as in households with unimproved water supply and sanitation infrastructure.

Conclusions

The prevalence of enteric pathogen genes and the human-specific Bacteroidales fecal marker in stored water and on hands suggests extensive environmental contamination within homes both with and without reported child diarrhea. Better stored water quality among households with diarrhea indicates caregivers with sick children may be more likely to ensure safe drinking water in the home. Interventions to increase the quantity of water available for hand washing, and to improve food hygiene, may reduce exposure to enteric pathogens in the domestic environment.  相似文献   

2.
BackgroundDiarrheal disease remains a leading cause of illness and death, particularly in low-income countries. Its burden, microbiological causes and risk factors were examined in children aged 0–59 months living in Manhiça, rural southern Mozambique.MethodsTrends of diarrhea-related burden of disease were estimated during the period 2001–2012. A prospective, age-stratified and matched (by age, gender and geographical origin), case-control study was conducted during 2007–2011. Clinical, epidemiology, anthropometric measurement and fecal samples obtained from recruited children were used to estimate moderate-to-severe diarrhea (MSD) weighted attributable fractions.ResultsOver the last decade the incidence of acute diarrhea has dropped by about 80%. Incidence of MSD per 100 child years at risk for the period 2007–2011 was 9.85, 7.73 and 2.10 for children aged 0–11, 12–23 and 24–59 months respectively. By adjusted population attributable fractions, most cases of MSD were due to rotavirus, Cryptosporidium, ETEC ST (ST only or ST/LT), Shigella and Adenovirus 40/41. Washing hands and having facilities to dispose child’s stools were associated with a reduced risk of MSD, while giving stored water to the child was associated with an increased risk of MSD.ConclusionsDespite the predominantly decreasing trends observed throughout the last decade, diarrheal diseases remain today a major cause of morbidity among children aged 0–59 months living in this rural Mozambican area. Rotavirus, cryptosporidium, Shigella, ETEC ST and Adenovirus 40/41 were the most important aetiologies of MSD. Thus, well-known preventive strategies such as washing hands, improving the treatment of stored water, having facilities to dispose children stools, and accelerating the introduction of the rotavirus vaccine should be promoted on a wider scale to reduce the current burden of diarrheal diseases.  相似文献   

3.
Several recently identified antifungal compounds share the backbone structure of acetophenones. The aim of the present study was to develop new isobutyrophenone analogs as new antifungal agents. A series of new 2,4-dihydroxy-5-methyl isobutyrophenone derivatives were prepared and characterized by 1H, 13C NMR and MS spectroscopic data. These products were evaluated for in vitro antifungal activities against seven plant fungal pathogens by the mycelial growth inhibitory rate assay. Compounds 3, 4a, 5a, 5b, 5e, 5f and 5g showed a broad-spectrum high antifungal activity. On the other hand, for the first time, these compounds were also assayed as potential inhibitors against Class II fructose-1,6-bisphosphate aldolase (Fba) from the rice blast fungus, Magnaporthe grisea. Compounds 5e and 5g were found to exhibit the inhibition constants (Ki) for 15.12 and 14.27?μM, respectively, as the strongest competitive inhibitors against Fba activity. The possible binding-modes of compounds 5e and 5g were further analyzed by molecular docking algorithms. The results strongly suggested that compound 5g could be a promising lead for the discovery of new fungicides via targeting Class II Fba.  相似文献   

4.
Mitochondrial morphogenesis is a key process of cell physiology. It is essential for the proper function of this double membrane-delimited organelle, as it ensures the packing of the inner membrane in a very ordered pattern called cristae. In yeast, the mitochondrial ATP synthase is able to form dimers that can assemble into oligomers. Two subunits (e and g) are involved in this supramolecular organization. Deletion of the genes encoding these subunits has no effect on the ATP synthase monomer assembly or activity and only affects its dimerization and oligomerization. Concomitantly, the absence of subunits e and g and thus, of ATP synthase supercomplexes, promotes the modification of mitochondrial ultrastructure suggesting that ATP synthase oligomerization is involved in cristae morphogenesis. We report here that in mammalian cells in culture, the shRNA-mediated down-regulation of subunits e and g affects the stability of ATP synthase and results in a 50% decrease of the available functional enzyme. Comparable to what was shown in yeast, when subunits e and g expression are repressed, ATP synthase dimers and oligomers are less abundant when assayed by native electrophoresis. Unexpectedly, mammalian ATP synthase dimerization/oligomerization impairment has functional consequences on the respiratory chain leading to a decrease in OXPHOS activity. Finally these structural and functional alterations of the ATP synthase have a strong impact on the organelle itself leading to the fission of the mitochondrial network and the disorganization of mitochondrial ultrastructure. Unlike what was shown in yeast, the impairment of the ATP synthase oligomerization process drastically affects mitochondrial ATP production. Thus we propose that mutations or deletions of genes encoding subunits e and g may have physiopathological implications.  相似文献   

5.
One of the UN sustainable development goals is to achieve universal access to safe and affordable drinking water by 2030. It is locations like Kathmandu, Nepal, a densely populated city in South Asia with endemic typhoid fever, where this goal is most pertinent. Aiming to understand the public health implications of water quality in Kathmandu we subjected weekly water samples from 10 sources for one year to a range of chemical and bacteriological analyses. We additionally aimed to detect the etiological agents of typhoid fever and longitudinally assess microbial diversity by 16S rRNA gene surveying. We found that the majority of water sources exhibited chemical and bacterial contamination exceeding WHO guidelines. Further analysis of the chemical and bacterial data indicated site-specific pollution, symptomatic of highly localized fecal contamination. Rainfall was found to be a key driver of this fecal contamination, correlating with nitrates and evidence of S. Typhi and S. Paratyphi A, for which DNA was detectable in 333 (77%) and 303 (70%) of 432 water samples, respectively. 16S rRNA gene surveying outlined a spectrum of fecal bacteria in the contaminated water, forming complex communities again displaying location-specific temporal signatures. Our data signify that the municipal water in Kathmandu is a predominant vehicle for the transmission of S. Typhi and S. Paratyphi A. This study represents the first extensive spatiotemporal investigation of water pollution in an endemic typhoid fever setting and implicates highly localized human waste as the major contributor to poor water quality in the Kathmandu Valley.  相似文献   

6.
Opisthorchis viverrini, a carcinogenic liver fluke, requires Bithynia snails as the first intermediate host, which release cercariae after ingesting fluke eggs from contaminated water. Fecal bacterial contamination and O. viverrini-infected Bithynia snails were investigated in samples collected from natural water reservoirs in Ban Phai, Chonnabot and Muang Districts (Ban Lerngpeuy) in Khon Kaen Province, northeast Thailand, where there is a high incidence of cholangiocarcinoma. Water was sampled and examined six times (February, April, June, August, October and December 2006). The most probable number (MPN) index and coliform counts were utilized to evaluate fecal contamination; the cercarial shedding method was conducted for detecting infected snails. The data revealed that all water samples had a high MPN index number, and fecal coliform levels above the WHO standard. This indicated that water in these reservoirs was contaminated with feces or manure constituents. Water sampling from Ban Lerngpeuy showed full-scale bacterial contamination (> 1609 MPN index) throughout the year. This finding was correlated with the highest prevalence of O. viverrini-infected snails, which were found nearly all year round in this area. Slightly lower fecal contamination levels were detected in water samples from Chonnabot and Ban Phai, with high MPN index numbers and coliform counts from April to October. This corresponded with the higher recovery of infected snails in June and August, but with relatively lower prevalence than those found in Ban Lerngpeuy. Among the sampling sites, the people in Ban Lerngpeuy live nearer to the reservoir than do those in Ban Phai and Chonnabot. These results indicate that fecal bacterial contamination in natural water reservoirs is an important indicator of seasonal transmission of O. viverrini eggs to snail intermediate hosts. Sanitation improvement is essential and future investigations on the sources of contamination are needed.  相似文献   

7.
Phosphorylation of intrinsically disordered proteins (IDPs) can produce changes in structural and dynamical properties and thereby mediate critical biological functions. How phosphorylation effects intrinsically disordered proteins has been studied for an increasing number of IDPs, but a systematic understanding is still lacking. Here, we compare the collapse propensity of four disordered proteins, Ash1, the C-terminal domain of RNA polymerase (CTD2’), the cytosolic domain of E-Cadherin, and a fragment of the p130Cas, in unphosphorylated and phosphorylated forms using extensive all-atom molecular dynamics (MD) simulations. We find all proteins to show V-shape changes in their collapse propensity upon multi-site phosphorylation according to their initial net charge: phosphorylation expands neutral or overall negatively charged IDPs and shrinks positively charged IDPs. However, force fields including those tailored towards and commonly used for IDPs overestimate these changes. We find quantitative agreement of MD results with SAXS and NMR data for Ash1 and CTD2’ only when attenuating protein electrostatic interactions by using a higher salt concentration (e.g. 350 mM), highlighting the overstabilization of salt bridges in current force fields. We show that phosphorylation of IDPs also has a strong impact on the solvation of the protein, a factor that in addition to the actual collapse or expansion of the IDP should be considered when analyzing SAXS data. Compared to the overall mild change in global IDP dimension, the exposure of active sites can change significantly upon phosphorylation, underlining the large susceptibility of IDP ensembles to regulation through post-translational modifications.  相似文献   

8.
Host–pathogen interactions in plants are complex and potentially influenced by heat shock/stress (HS). Host HS proteins (HSPs) induced prior to bacterial exposure may facilitate the folding of newly synthesized defense proteins and promote incompatible host–pathogen interactions. We hypothesized that a non-lethal HS, with recovery, promotes protection of Nicotiana tabacum during subsequent exposure to avirulent soilborne necrotrophic pathogen Ralstonia solanacearum. The objective of this study included investigating the effects of HS with or without recovery on the outcome of bacterial exposure to a virulent and avirulent biovar of R. solanacearum in N. tabacum cell suspensions. This was assessed by quantifying host Hsp70/Hsc70 levels, mitochondrial electron (e) transport activity as a marker of viability, and phosphatidylserine externalization and DNA fragmentation as markers of apoptosis. Our findings support the hypothesis that HS, with recovery, promotes protection of N. tabacum during subsequent exposure to R. solanacearum, suggesting a role for Hsp70/Hsc70 in the observed protection of e transport, increased apoptosis, and DNA fragmentation.  相似文献   

9.
10.
The gulfs that surround Península Valdés (PV), Golfo Nuevo and Golfo San José in Argentina, are important calving grounds for the southern right whale Eubalaena australis. However, high calf mortality events in recent years could be associated with phycotoxin exposure. The present study evaluated the transfer of domoic acid (DA) from Pseudo-nitzschia spp., potential producers of DA, to living and dead right whales via zooplanktonic vectors, while the whales are on their calving ground at PV. Phytoplankton and mesozooplankton (primary prey of the right whales at PV and potential grazers of Pseudo-nitzschia cells) were collected during the 2015 whale season and analyzed for species composition and abundance. DA was measured in plankton and fecal whale samples (collected during whale seasons 2013, 2014 and 2015) using liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). The genus Pseudo-nitzschia was present in both gulfs with abundances ranging from 4.4 × 102 and 4.56 × 105 cell l−1. Pseudo-nitzschia australis had the highest abundance with up to 4.56 × 105 cell l−1. DA in phytoplankton was generally low, with the exception of samples collected during a P. australis bloom. No clear correlation was found between DA in phytoplankton and mesozooplankton samples. The predominance of copepods in mesozooplankton samples indicates that they were the primary vector for the transfer of DA from Pseudo-nitzschia spp. to higher trophic levels. High levels of DA were detected in four whale fecal samples (ranging from 0.30 to 710 μg g−1 dry weight of fecal sample or from 0.05 and 113.6 μg g−1 wet weight assuming a mean water content of 84%). The maximum level of DA detected in fecal samples (710 μg DA g−1 dry weight of fecal sample) is the highest reported in southern right whales to date. The current findings demonstrate for the first time that southern right whales, E. australis, are exposed to DA via copepods as vectors during their calving season in the gulfs of PV.  相似文献   

11.
The objectives of this study were to elucidate spatial and temporal dynamics in source-specific Bacteroidales 16S rRNA genetic marker data across a watershed; to compare these dynamics to fecal indicator counts, general measurements of water quality, and climatic forces; and to identify geographic areas of intense exposure to specific sources of contamination. Samples were collected during a 2-year period in the Tillamook basin in Oregon at 30 sites along five river tributaries and in Tillamook Bay. We performed Bacteroidales PCR assays with general, ruminant-source-specific, and human-source-specific primers to identify fecal sources. We determined the Escherichia coli most probable number, temperature, turbidity, and 5-day precipitation. Climate and water quality data collectively supported a rainfall runoff pattern for microbial source input that mirrored the annual precipitation cycle. Fecal sources were statistically linked more closely to ruminants than to humans; there was a 40% greater probability of detecting a ruminant source marker than a human source marker across the basin. On a sample site basis, the addition of fecal source tracking data provided new information linking elevated fecal indicator bacterial loads to specific point and nonpoint sources of fecal pollution in the basin. Inconsistencies in E. coli and host-specific marker trends suggested that the factors that control the quantity of fecal indicators in the water column are different than the factors that influence the presence of Bacteroidales markers at specific times of the year. This may be important if fecal indicator counts are used as a criterion for source loading potential in receiving waters.  相似文献   

12.
13.
Currently, there are limited published data for the population dynamics of antimicrobial-resistant commensal bacteria. This study was designed to evaluate both the proportions of the Escherichia coli populations that are resistant to ampicillin at the level of the individual chicken on commercial broiler farms and the feasibility of obtaining repeated measures of fecal E. coli concentrations. Short-term temporal variation in the concentration of fecal E. coli was investigated, and a preliminary assessment was made of potential factors involved in the shedding of high numbers of ampicillin-resistant E. coli by growing birds in the absence of the use of antimicrobial drugs. Multilevel linear regression modeling revealed that the largest component of random variation in log-transformed fecal E. coli concentrations was seen between sampling occasions for individual birds. The incorporation of fixed effects into the model demonstrated that the older, heavier birds in the study were significantly more likely (P = 0.0003) to shed higher numbers of ampicillin-resistant E. coli. This association between increasing weight and high shedding was not seen for the total fecal E. coli population (P = 0.71). This implies that, in the absence of the administration of antimicrobial drugs, the proportion of fecal E. coli that was resistant to ampicillin increased as the birds grew. This study has shown that it is possible to collect quantitative microbiological data on broiler farms and that such data could make valuable contributions to risk assessments concerning the transfer of resistant bacteria between animal and human populations.  相似文献   

14.
To discover the more potent analogs, 12 novel monomethyl phthalate derivatives of podophyllotoxin were synthesized and preliminarily tested against the pre-third-instar larvae of Mythimna separata Walker in vivo at the concentration of 1 mg/mL. Compounds 8ei showed the higher insecticidal activity than podophyllotoxin. Especially 8g exhibited the most potent insecticidal activity compared with toosendanin, a commercially available insecticide derived from Melia azedarach. The structure–activity relationships demonstrated that trans-lactone, 4β-substitution, 2β-chlorine substitution, and 4′-methoxy group were the important structural properties of podophyllotoxins for good insecticidal activity.  相似文献   

15.
Animal contact is a potential transmission route for campylobacteriosis, and both domestic household pet and petting zoo exposures have been identified as potential sources of exposure. Research has typically focussed on the prevalence, concentration, and transmission of zoonoses from farm animals to humans, yet there are gaps in our understanding of these factors among animals in contact with the public who don’t live on or visit farms. This study aims to quantify, through a systematic review and meta-analysis, the prevalence and concentration of Campylobacter carriage in household pets and petting zoo animals. Four databases were accessed for the systematic review (PubMed, CAB direct, ProQuest, and Web of Science) for papers published in English from 1992–2012, and studies were included if they examined the animal population of interest, assessed prevalence or concentration with fecal, hair coat, oral, or urine exposure routes (although only articles that examined fecal routes were found), and if the research was based in Canada, USA, Europe, Australia, and New Zealand. Studies were reviewed for qualitative synthesis and meta-analysis by two reviewers, compiled into a database, and relevant studies were used to create a weighted mean prevalence value. There were insufficient data to run a meta-analysis of concentration values, a noted study limitation. The mean prevalence of Campylobacter in petting zoo animals is 6.5% based on 7 studies, and in household pets the mean is 24.7% based on 34 studies. Our estimated concentration values were: 7.65x103cfu/g for petting zoo animals, and 2.9x105cfu/g for household pets. These results indicate that Campylobacter prevalence and concentration are lower in petting zoo animals compared with household pets and that both of these animal sources have a lower prevalence compared with farm animals that do not come into contact with the public. There is a lack of studies on Campylobacter in petting zoos and/or fair animals in Canada and abroad. Within this literature, knowledge gaps were identified, and include: a lack of concentration data reported in the literature for Campylobacter spp. in animal feces, a distinction between ill and diarrheic pets in the reported studies, noted differences in shedding and concentrations for various subtypes of Campylobacter, and consistent reporting between studies.  相似文献   

16.
Escherichia coli, a commensal bacterium from the intestinal tracts of humans and vertebrate animals, has been used as one of two bacterial indicators of fecal contamination, along with intestinal enterococci, to monitor the microbiological quality of water. However, water environments are now recognized as a secondary habitat where some strains can survive. We investigated the survival of E. coli isolates collected from bodies of water in France exhibiting distinct profiles of contamination, defined according to the following criteria: vicinity of the point sources of contamination, land use, hydrology, and physicochemical characteristics of the receiving water. We selected 88 E. coli strains among a collection of 352 strains to carry out a microcosm experiment in filtered estuarine water for 14 days at 10°C. The relationship between the survival of E. coli strains and genotypic and phenotypic characteristics was analyzed. This work showed that distinct E. coli survival types, able to survive from between 7 and 14 days to less than 2 days, coexisted in the water. E. coli isolates that rapidly lost their culturability were more frequently isolated in water recently contaminated by fecal bacteria of human origin, and most were multiresistant to antibiotics and harbored several virulence factors. In contrast, persistent strains able to survive from 4 to 14 days were more often found in water with low levels of fecal bacteria, belonged mainly to the B1 phylogroup, often harbored only one virulence factor, kspE or ompT, and were able to grow at 7°C.  相似文献   

17.
Cryptosporidium spp. are protozoan parasites that are transmitted via fecal-oral routes and can exhibit chemical resistance. Chlorine resistance makes it very difficult to eliminate parasites present in contaminated drinking water. While the efficacy of ultraviolet light-emitting diodes (UV-LEDs) against microorganisms has been reported, the efficacy of UV-LEDs against Cryptosporidium spp. has not been fully evaluated. Here, we assessed the efficacy of UV-LEDs with peak wavelengths of 268, 275, 284, and 289 nm against Cryptosporidium parvum at various exposure times, with a fixed exposure distance, using two in vitro methods. Consequently, the time required for 2 log10 inactivation through the excystation method by UV-LEDs of 268, 275, 284, and 289 nm was estimated as 115.5, 104.1, 37.4, and 30.7 min, respectively. The propidium iodide (PI) and 4′,6-diamidino-2-phenylindole (DAPI) staining assays estimated the inactivation time as 311.3, 275.2, 60.6, and 39.1 min, respectively. Our results showed that UV-LED irradiation at longer wavelengths produced higher inactivation activity against C. parvum, which corroborates our previously reported in vivo assay results, although further study is needed to clarify the mechanism.  相似文献   

18.
Amyloid formation is historically associated with cytotoxicity, but many organisms produce functional amyloid fibers (e.g., curli) as a normal part of cell biology. Two E. coli genes in the curli operon encode the chaperone-like proteins CsgC and CsgE that both can reduce in vitro amyloid formation by CsgA. CsgC was also found to arrest amyloid formation of the human amyloidogenic protein α-synuclein, which is involved in Parkinson’s disease. Here, we report that the inhibitory effects of CsgC arise due to transient interactions that promote the formation of spherical α-synuclein oligomers. We find that CsgE also modulates α-synuclein amyloid formation through transient contacts but, in contrast to CsgC, CsgE accelerates α-synuclein amyloid formation. Our results demonstrate the significance of transient protein interactions in amyloid regulation and emphasize that the same protein may inhibit one type of amyloid while accelerating another.  相似文献   

19.
Maternal nicotine exposure has been associated with many adverse fetal and placental outcomes. Although underlying mechanisms remain elusive, recent studies have identified that augmented endoplasmic reticulum (ER) stress is linked to placental insufficiency. Moreover, ER function depends on proper disulfide bond formation—a partially oxygen-dependent process mediated by protein disulfide isomerase (PDI) and ER oxidoreductases. Given that nicotine compromised placental development in the rat, and placental insufficiency has been associated with poor disulfide bond formation and ER stress, we hypothesized that maternal nicotine exposure leads to both placental ER stress and impaired disulfide bond formation. To test this hypothesis, female Wistar rats received daily subcutaneous injections of either saline (vehicle) or nicotine bitartrate (1 mg/kg) for 14 days prior to mating and during pregnancy. Placentas were harvested on embryonic day 15 for analysis. Protein and mRNA expression of markers involved in ER stress (e.g., phosphorylated eIF2α, Grp78, Atf4, and CHOP), disulfide bond formation (e.g., PDI, QSOX1, VKORC1), hypoxia (Hif1α), and amino acid deprivation (GCN2) were quantified via Western blot and/or Real-time PCR. Maternal nicotine exposure led to increased expression of Grp78, phosphorylated eIF2α, Atf4, and CHOP (p<0.05) in the rat placenta, demonstrating the presence of augmented ER stress. Decreased expression of PDI and QSOX1 (p<0.05) reveal an impaired disulfide bond formation pathway, which may underlie nicotine-induced ER stress. Finally, elevated expression of Hif1α and GCN2 (p<0.05) indicate hypoxia and amino acid deprivation in nicotine-exposed placentas, respectively, which may also cause impaired disulfide bond formation and augmented ER stress. This study is the first to link maternal nicotine exposure with both placental ER stress and disulfide bond impairment in vivo, providing novel insight into the mechanisms underlying nicotine exposure during pregnancy on placental health.  相似文献   

20.
Terpios hoshinota, an encrusting cyanosponge, is known as a strong substrate competitor of reef-building corals that kills encountered coral by overgrowth. Terpios outbreaks cause significant declines in living coral cover in Indo-Pacific coral reefs, with the damage usually lasting for decades. Recent studies show that there are morphological transformations at a sponge’s growth front when confronting corals. Whether these morphological transformations at coral contacts are involved with physiological outperformance (e.g., higher metabolic activity or nutritional status) over other portions of Terpios remains equivocal. In this study, we compared the indicators of photosynthetic capability and nitrogen status of a sponge-cyanobacteria association at proximal, middle, and distal portions of opponent corals. Terpios tissues in contact with corals displayed significant increases in photosynthetic oxygen production (ca. 61%), the δ13C value (ca. 4%), free proteinogenic amino acid content (ca. 85%), and Gln/Glu ratio (ca. 115%) compared to middle and distal parts of the sponge. In contrast, the maximum quantum yield (Fv/Fm), which is the indicator usually used to represent the integrity of photosystem II, of cyanobacteria photosynthesis was low (0.256~0.319) and showed an inverse trend of higher values in the distal portion of the sponge that might be due to high and variable levels of cyanobacterial phycocyanin. The inconsistent results between photosynthetic oxygen production and Fv/Fm values indicated that maximum quantum yields might not be a suitable indicator to represent the photosynthetic function of the Terpios-cyanobacteria association. Our data conclusively suggest that Terpios hoshinota competes with opponent corals not only by the morphological transformation of the sponge-cyanobacteria association but also by physiological outperformance in accumulating resources for the battle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号