首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diabetic nephropathy is characterized by decreased expression of bone morphogenetic protein-7 (BMP-7) and decreased podocyte number and differentiation. Extracellular antagonists such as connective tissue growth factor (CTGF; CCN-2) and sclerostin domain-containing-1 (SOSTDC1; USAG-1) are important determinants of BMP signaling activity in glomeruli. We studied BMP signaling activity in glomeruli from diabetic patients and non-diabetic individuals and from control and diabetic CTGF+/+ and CTGF+/− mice. BMP signaling activity was visualized by phosphorylated Smad1, -5, and -8 (pSmad1/5/8) immunostaining, and related to expression of CTGF, SOSTDC1, and the podocyte differentiation markers WT1, synaptopodin, and nephrin. In control and diabetic glomeruli, pSmad1/5/8 was mainly localized in podocytes, but both number of positive cells and staining intensity were decreased in diabetes. Nephrin and synaptopodin were decreased in diabetic glomeruli. Decrease of pSmad1/5/8 was only partially explained by decrease in podocyte number. SOSTDC1 and CTGF were expressed exclusively in podocytes. In diabetic glomeruli, SOSTDC1 decreased in parallel with podocyte number, whereas CTGF was strongly increased. In diabetic CTGF+/− mice, pSmad1/5/8 was preserved, compared with diabetic CTGF+/+ mice. In conclusion, in human diabetic nephropathy, BMP signaling activity is diminished, together with reduction of podocyte markers. This might relate to concomitant overexpression of CTGF but not SOSTDC1. (J Histochem Cytochem 57:623–631, 2009)  相似文献   

2.
Alport disease in humans, which usually results in proteinuria and kidney failure, is caused by mutations to the COL4A3, COL4A4, or COL4A5 genes, and absence of collagen α3α4α5(IV) networks found in mature kidney glomerular basement membrane (GBM). The Alport mouse harbors a deletion of the Col4a3 gene, which also results in the lack of GBM collagen α3α4α5(IV). This animal model shares many features with human Alport patients, including the retention of collagen α1α2α1(IV) in GBMs, effacement of podocyte foot processes, gradual loss of glomerular barrier properties, and progression to renal failure. To learn more about the pathogenesis of Alport disease, we undertook a discovery proteomics approach to identify proteins that were differentially expressed in glomeruli purified from Alport and wild-type mouse kidneys. Pairs of cy3- and cy5-labeled extracts from 5-week old Alport and wild-type glomeruli, respectively, underwent 2-dimensional difference gel electrophoresis. Differentially expressed proteins were digested with trypsin and prepared for mass spectrometry, peptide ion mapping/fingerprinting, and protein identification through database searching. The intermediate filament protein, vimentin, was upregulated ∼2.5 fold in Alport glomeruli compared to wild-type. Upregulation was confirmed by quantitative real time RT-PCR of isolated Alport glomeruli (5.4 fold over wild-type), and quantitative confocal immunofluorescence microscopy localized over-expressed vimentin specifically to Alport podocytes. We next hypothesized that increases in vimentin abundance might affect the basement membrane protein receptors, integrins, and screened Alport and wild-type glomeruli for expression of integrins likely to be the main receptors for GBM type IV collagen and laminin. Quantitative immunofluorescence showed an increase in integrin α1 expression in Alport mesangial cells and an increase in integrin α3 in Alport podocytes. We conclude that overexpression of mesangial integrin α1 and podocyte vimentin and integrin α3 may be important features of glomerular Alport disease, possibly affecting cell-signaling, cell shape and cellular adhesion to the GBM.  相似文献   

3.
Yang W  Wang J  Shi L  Yu L  Qian Y  Liu Y  Wang W  Cheng S 《Cytokine》2012,59(2):370-376
The aim of this study is to investigate the expression of nephrin, vascular endothelial growth factor (VEGF), transforming growth factor-beta 1 (TGF-β1), and podocyte number in adriamycin (ADR)-induced nephropathy. A total of 60 male Sprague-Dawley rats were randomly divided into the control group and the ADR nephropathy group. The nephropathy was induced by tail-vein injection of ADR (4 mg/kg) twice at a 14-day interval. The expression levels of nephrin, VEGF, and TGF-β1 in glomeruli were assessed by immunohistochemistry and western blotting. The podocyte number was also evaluated after anti-Wilms' tumor-1 (WT1) immunohistochemical staining. In addition, the urinary protein content, biochemical parameters in serum samples and glomerular sclerosis index (SI) were compared between groups. In the ADR nephropathy group, the expression levels of nephrin was significantly decreased with the fusion of podocyte foot processes at 6 weeks after the first ADR injection, which was associated with a marked proteinuria. A decrease in podocyte number and an increase in SI with the overexpression of both VEGF and TGF-β1 were also observed in the glomeruli at 10 weeks after the first ADR injection. This was associated with focal segmental glomerulosclerosis (FSGS). The study data suggest that podocyte injury and decreased nephrin, as well as increased VEGF and TGF-β1, may contribute to the development of proteinuria and FSGS in ADR-induced nephropathy in rats.  相似文献   

4.
The development of proteinuria and glomerulosclerosis in kidney disease is associated with podocyte damage, including down-regulation of nephrin and podocin. Macrophages are known to induce renal injury, but the mechanisms involved are not fully understood. This study examined macrophage-mediated podocyte damage. Conditioned media (CM) from activated macrophages caused a 50-60% reduction in nephrin and podocin mRNA and protein expression in cultured mouse podocytes and rat glomeruli. This was abolished by a neutralizing anti-TNFα antibody. The addition of recombinant TNFα to podocytes or glomeruli caused a comparable reduction in podocyte nephrin and podocin expression to that of macrophage CM. Inhibition of c-Jun amino terminal kinase (JNK) or p38 kinase abolished the TNFα-induced reduction in nephrin and podocin expression. This study demonstrates that activated macrophages can induce podocyte injury via a TNFα-JNK/p38-dependent mechanism. This may explain, in part, the protective effects of JNK and p38 blockade in experimental kidney disease.  相似文献   

5.
CD2相关蛋白在足细胞分化中的作用   总被引:3,自引:0,他引:3  
Jiang HJ  Chang Y  Zhu ZH  Liu JS  Deng AG  Zhang C 《生理学报》2008,60(1):135-142
本文旨在研究肾脏足细胞的分化特点及CD2相关蛋白(CD2-associated protein,CD2AP)在足细胞分化过程中的作用.用RPMI 1640培养基在33.C许可条件下培养永生化小鼠足细胞系(未分化组),转染针对CD2AP的小分子干扰RNA(smallinterfering RNA,siRNA)后置于37.C非许可条件下培养(转染组),并将非许可条件下未转染组作为对照组.用MTT法检测足细胞的生长速度;用RT-PCR方法检测CD2AP、WTI、synaptopodin和nephrin mRNA表达;用Western blot检测CD2AP、wTl和nephrin蛋白表达;用免疫荧光结合激光共聚焦方法检测CD2AP、nephrin、F-actin和tubulin在分化及未分化足细胞中的分布及其共定位情况.结果显示,CD2AP、WTl和nephrin在分化及未分化足细胞中均可稳定表达,而synaptopodin仅表达于已分化足细胞,在未分化足细胞无表达.在足细胞分化过程中,CD2AP和nephrin的表达上调(P<0.05);CD2AP、tubulin和F-actin在细胞内的分布发生改变,CD2AP与nephrin及F-actin在未分化足细胞中存在共定位关系.转染特异性siRNA下调CD2AP表达,细胞生长速度明显减慢,synaptopodin mRNA表达下调(P<0.05),细胞分化迟滞.结果表明,足细胞分化过程中伴随细胞骨架的重新分布和细胞形态的改变;CD2AP可能作为足细胞裂孔隔膜分子与细胞骨架的连接蛋白,在足细胞分化过程中发挥重要作用.  相似文献   

6.
Podocyte or endothelial cell VEGF-A knockout causes thrombotic microangiopathy in adult mice. To study the mechanism involved in acute and local injury caused by low podocyte VEGF-A we developed an inducible, podocyte-specific VEGF-A knockdown mouse, and we generated an immortalized podocyte cell line (VEGF(KD)) that downregulates VEGF-A upon doxycycline exposure. Tet-O-siVEGF:podocin-rtTA mice express VEGF shRNA in podocytes in a doxycycline-regulated manner, decreasing VEGF-A mRNA and VEGF-A protein levels in isolated glomeruli to ~20% of non-induced controls and urine VEGF-A to ~30% of control values a week after doxycycline induction. Induced tet-O-siVEGF:podocin-rtTA mice developed acute renal failure and proteinuria, associated with mesangiolysis and microaneurisms. Glomerular ultrastructure revealed endothelial cell swelling, GBM lamination and podocyte effacement. VEGF knockdown decreased podocyte fibronectin and glomerular endothelial alpha(V)beta(3) integrin in vivo. VEGF receptor-2 (VEGFR2) interacts with beta(3) integrin and neuropilin-1 in the kidney in vivo and in VEGF(KD) podocytes. Podocyte VEGF knockdown disrupts alpha(V)beta(3) integrin activation in glomeruli, detected by WOW1-Fab. VEGF silencing in cultured VEGF(KD) podocytes downregulates fibronectin and disrupts alpha(V)beta(3) integrin activation cell-autonomously. Collectively, these studies indicate that podocyte VEGF-A regulates alpha(V)beta(3) integrin signaling in the glomerulus, and that podocyte VEGF knockdown disrupts alpha(V)beta(3) integrin activity via decreased VEGFR2 signaling, thereby damaging the three layers of the glomerular filtration barrier, causing proteinuria and acute renal failure.  相似文献   

7.
The crucial involvement of podocyte failure in the development of hereditary focal segmental glomerulosclerosis (FSGS) indicates that specific podocyte proteins are closely related to podocyte function and biology. We hypothesized that podocyte failure, reflected by alteration of these proteins, leads not only to FSGS but also to resistance to steroid therapy. We investigated the association between expression of synaptopodin and glomerular epithelial protein 1 (GLEPP1) and response to corticosteroid therapy in primary FSGS. The subjects of this retrospective study were 17 adult patients with primary FSGS with nephrotic syndrome (NS) seen at Fukuoka Red Cross Hospital between 1979 and 2001. They were divided into two groups according to the response to steroid therapy at 6months: responders (n=10) and non-responders (persistence of nephrotic-range proteinuria, n=7). Expression levels of synaptopodin and GLEPP1 were examined immunohistochemically using image analysis software. Low expression levels of both proteins were associated with poor steroid responsiveness in FSGS. The average gray values for synaptopodin and GLEPP1 expression in responders vs. non-responders were 9.0+/-0.7 (mean+/-S.E.M.) vs. 6.3+/-0.9 (P=0.04) and 9.6+/-1.2 vs. 6.0+/-1.0 (P=0.04), respectively. The percentages of glomerular area staining for synaptopodin and GLEPP1 in responders vs. non-responders were 15.4+/-2.7% vs. 8.1+/-1.2% (P=0.045) and 11.9+/-1.6% vs. 6.0+/-1.3% (P=0.02), respectively. Synaptopodin expression correlated with the severity of proteinuria and with GLEPP1 expression. Reduced expression of both synaptopodin and GLEPP1 is associated with poor response to steroid therapy in primary FSGS.  相似文献   

8.
9.
The slit diaphragm (SD) is an intercellular junction between renal glomerular epithelial cells (podocytes) that is essential for permselectivity in glomerular ultrafiltration. The SD components, nephrin and Neph1, assemble a signaling complex in a tyrosine phosphorylation dependent manner, and regulate the unique actin cytoskeleton of podocytes. Mutations in the NPHS1 gene that encodes nephrin cause congenital nephrotic syndrome (CNS), which is characterized by the loss of the SD and massive proteinuria. Recently, we have identified the expression of the transmembrane glycoprotein signal regulatory protein α (SIRPα) at the SD. In the present study, we analyzed the expression of SIRPα in developing kidneys, in kidneys from CNS patients and in proteinuric rat models. The possibility that SIRPα interacts with known SD proteins was also investigated. SIRPα was concentrated at the SD junction during the maturation of intercellular junctions. In the glomeruli of CNS patients carrying mutations in NPHS1, where SD formation is disrupted, the expression of SIRPα as well as Neph1 and nephrin was significantly decreased, indicating that SIRPα is closely associated with the nephrin complex. Indeed, SIRPα formed hetero-oligomers with nephrin in cultured cells and in glomeruli. Furthermore, the cytoplasmic domain of SIRPα was highly phosphorylated in normal glomeruli, and its phosphorylation was dramatically decreased upon podocyte injury in?vivo. Thus, SIRPα interacts with nephrin at the SD, and its phosphorylation is dynamically regulated in proteinuric states. Our data provide new molecular insights into the phosphorylation events triggered by podocyte injury. Structured digital abstract ? Sirp-alpha?physically interacts?with?Nephrin?by?anti bait coimmunoprecipitation?(View interaction) ? Sirp-alpha?physically interacts?with?Nephrin?by?anti tag coimmunoprecipitation?(View interaction).  相似文献   

10.
The loss of glomerular podocytes is a key event in the progression of chronic kidney disease resulting in proteinuria and declining function. Podocytes are slow cycling cells that are considered terminally differentiated. Here we provide the first report of the directed differentiation of induced pluripotent stem (iPS) cells to generate kidney cells with podocyte features. The iPS-derived podocytes share a morphological phenotype analogous with cultured human podocytes. Following 10 days of directed differentiation, iPS podocytes had an up-regulated expression of mRNA and protein localization for podocyte markers including synaptopodin, nephrin and Wilm’s tumour protein (WT1), combined with a down-regulation of the stem cell marker OCT3/4. In contrast to human podocytes that become quiescent in culture, iPS-derived cells maintain a proliferative capacity suggestive of a more immature phenotype. The transduction of iPS podocytes with fluorescent labeled-talin that were immunostained with podocin showed a cytoplasmic contractile response to angiotensin II (AII). A permeability assay provided functional evidence of albumin uptake in the cytoplasm of iPS podocytes comparable to human podocytes. Moreover, labeled iPS-derived podocytes were found to integrate into reaggregated metanephric kidney explants where they incorporated into developing glomeruli and co-expressed WT1. This study establishes the differentiation of iPS cells to kidney podocytes that will be useful for screening new treatments, understanding podocyte pathogenesis, and offering possibilities for regenerative medicine.  相似文献   

11.
Resolvin D1 (RvD1) is a lipid-derived mediator generated during the resolution inflammation. While the immunoresolvent effects of Resolvins have been extensively studied in leukocytes, actions of Resolvins on intrinsic kidney cells have received little attention. The podocyte plays a central role in glomerular function, and podocyte damage can lead to proteinuria and glomerulosclerosis. This study examined whether RvD1 has renoprotective effects upon podocytes. We investigated a mouse model of adriamycin (ADR) nephropathy featuring rapid induction of podocyte damage and proteinuria followed by glomerulosclerosis. We identified a progressive loss of synaptopodin expression over a 28 day time-course of ADR nephropathy which was associated with increased acetylation of 14-3-3β and reduced synaptopodin phosphorylation. Groups of mice were given once daily RvD1 treatment (4 ng/g body weight/day) starting either 30 min (early treatment) or 14 days (late treatment) after ADR injection and continued until mice were killed on day 28. Early, but not late, RvD1 treatment attenuated ADR-induced proteinuria, glomerulosclerosis and tubulointerstitial fibrosis, modified macrophages from an M1 to M2 phenotype. Early RvD1 treatment prevented the down-regulation of synaptopodin expression and changes in 14-3-3β acetylation and synaptopodin phosphorylation. In a podocyte cell line, RvD1 was shown to prevent rapid TNF-α-induced down-regulation of synaptopodin expression. In transfection studies, TNF-α-induced a decrease in synaptopodin phosphorylation and an increase in acetylation of 14-3-3β, resulting in disassociation between 14-3-3β and synaptopodin. RvD1 prevented TNF-α induced post-translational modification of synaptopodin and 14-3-3β proteins, and maintained the synaptopodin/14-3-3β interaction. Furthermore, replacement of lysine K51, or K117+K122 in 14-3-3β with glutamine, to mimic lysine acetylation, significantly reduced the interaction between 14-3-3β and synaptopodin. In conclusion, our studies provide the first evidence that RvD1 can protect against podocyte damage by preventing down-regulation of synaptopodin through inhibition of 14-3-3β/synaptopodin dissociation. RvD1 treatment may have potential application in the treatment of chronic kidney disease.  相似文献   

12.
The purpose of this study was to detect the urinary podocytes and its related protein, nephrin, in the urine of the children with glomerular disease in order to analyze the relationship of the clinical testing with the significance of the glomerular disease. A total of 65 children with nephrotic syndrome were selected for this study. The podocytes and nephrin were detected in the urinary sediment by indirect immunofluorescence, enzyme-linked immunosorbent assay, and Western blotting. The urinary podocytes and nephrin positive rates were 53.8% and 50.8%, respectively, in the children with glomerular disease. The serum total protein and albumin decreased in the podocyte-positive children, while the urine total protein at 24 h, urinary albumin/creatinine ratio, blood urea nitrogen, and serum creatinine were significantly elevated as compared to those of the podocyte-negative patients. Furthermore, the results were the same in the patients with positive nephrin as compared to that of the patients with negative nephrin. The podocyte number and nephrin level were significantly higher in the lupus nephritis group as compared to those of the other groups. Likewise, the podocyte number and nephrin level dramatically increased in the focal segmental glomerulosclerosis group as compared to those of the mesangial proliferative glomerulonephritis and minimal change disease groups. In addition, the podocyte numbers and nephrin expression were significantly higher in severe proteinuria group as compared to those of the mild proteinuria group. The urinary nephrin expression was positively related to podocyte and urinary albumin/creatinine ratio. We concluded that the detection of the urinary podocytes and nephrin could be taken as markers for children with glomerular disease, reflecting the type of the disease. Therefore, this can be used as a noninvasive method to evaluate the severity of the kidney disease in children.  相似文献   

13.
To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2∶2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5–6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli.  相似文献   

14.
The transmembrane protein nephrin is an essential component of slit diaphragms, the specialized cell junctions that link podocyte foot processes. Podocytes are epithelial cells that surround the glomerular capillaries in the kidney and are necessary for the organ-filtering function. Nephrin signaling complex transduces extracellular cues to the podocyte cytoskeleton and regulates podocyte shape and function. Vascular endothelial growth factor A (VEGF-A) is a required growth factor produced and secreted by podocytes. Accumulating evidence suggests a cross-talk between VEGF-A and nephrin signaling pathways. We previously showed that in vivo nephrin associates with VEGF receptor-2 (VEGFR2), the signaling receptor for VEGF-A. In the present work, we characterized the interaction between nephrin and VEGFR2 in cultured cells and in vitro. We demonstrate that nephrin-VEGFR2 interaction is direct using mass spectrometry, immunoprecipitation, GST-binding assays, and blot overlay experiments. This interaction occurs through VEGFR2 and nephrin cytoplasmic domains. Nephrin-VEGFR2 interaction is modulated by tyrosine phosphorylation of both cytoplasmic domains. Furthermore, the nephrin-VEGFR2 complex involves Nck and actin. VEGF-A signaling via this complex results in decreased cell size. We provide evidence that this multiprotein interaction occurs in cultured podocytes. We propose that the nephrin-VEGFR2 complex acts as a key mediator to transduce local VEGF-A signals to the podocyte actin cytoskeleton, regulating the foot process structure and glomerular filter integrity.  相似文献   

15.
16.
The state-of-the-art cultured podocyte is conditionally immortalized by expression of a temperature-sensitive mutant of the SV40 large-T antigen. These cultures proliferate at 33°C and differentiate at 37°C into arborized cells that more closely resemble in vivo podocytes. However, the degree of resemblance remains controversial. In this study, several parameters were measured in podocyte cell lines derived from mouse (JR, KE), human (MS), and rat (HK). In all lines, the quantities of NEPH1 and podocin proteins and NEPH1 and SYNPO mRNAs were comparable to glomeruli, while synaptopodin and nephrin proteins and NPHS1 and NPHS2 mRNAs were <5% of glomerular levels. Expression of Wilms' tumor-1 (WT1) mRNA in mouse lines was comparable to glomeruli, but rat and human lines expressed little WT1. Undifferentiated human and mouse lines had similar proliferation rates that decreased after differentiation, while the rate in rat cells remained constant. The motility of different lines varied as measured by both general motility and wound-healing assays. The toxicity of puromycin aminonucleoside was MS ~ JR > KE, and of doxorubicin was JR ~ KE > MS, while HK cells were almost unaffected. Process formation was largely a result of contractile action after formation of lamellipodia. These findings demonstrate dramatic differences in marker expression, response to toxins, and motility between lines of podocytes from different species and even between similarly-derived mouse lines.  相似文献   

17.
BackgroundAtractylodis rhizoma, an aromatic herb for resolving dampness, is used to treat Kidney-related edema in traditional Chinese medicine for thousands years. This herb possesses antioxidant effect. However, it is not yet clear how Atractylodis rhizoma prevents glomerular injury through its anti-oxidation.PurposeBased the analysis of Atractylodis rhizoma water extract (ARE) components and network pharmacology, this study was to explore whether ARE prevented glomerular injury via its anti-oxidation to inhibit oxidative stress-driven transient receptor potential channel 6 (TRPC6) and its downstream molecule calcium/calmodulin-dependent protein kinase IV (CaMK4) signaling.MethodsLiquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze ARE components. Network pharmacology analysis was preliminarily performed. Male Sprague-Dawley rats were given 10% fructose drinking water (100 mL/d) for 16 weeks. ARE at 720 and 1090 mg/kg was orally administered to rats for the last 8 weeks. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity in rat kidney cortex were detected, respectively. In rat glomeruli, redox-related factors forkhead box O3 (FoxO3), SOD2 and catalase (CAT), podocyte slit diaphragm proteins podocin and nephrin, cytoskeleton proteins CD2-associated protein (CD2AP) and α-Actinin-4, as well as TRPC6, p-CaMK4 and synaptopodin protein levels were analyzed by Western Blotting. SOD2 and CAT mRNA levels were detected by qRT-PCR.Results36 components were identified in ARE. Among them, network pharmacology analysis indicated that ARE might inhibit kidney oxidative stress. Accordingly, ARE up-regulated nuclear FoxO3 expression, and then increased SOD2 and CAT at mRNA and protein levels in glomeruli of fructose-fed rats. It reduced H2O2 and MDA levels, and increased SOD activity in renal cortex of fructose-fed rats. Subsequently, ARE down-regulated TRPC6 and p-CaMK4, and up-regulated synaptopodin in glomeruli of fructose-fed rats. Furthermore, ARE increased podocin and nephrin, as well as CD2AP and α-Actinin-4, being consistent with its reduction of urine albumin-to-creatinine ratio and improvement of glomerular structure injury in this animal model.ConclusionsThese results suggest that ARE may prevent glomerular injury in fructose-fed rats possibly by reducing oxidative stress to inhibit TRPC6/p-CaMK4 signaling and up-regulate synaptopodin expression. Therefore, ARE may be a promising drug for treating high fructose-induced glomerular injury in clinic.  相似文献   

18.
19.
Maturation of the glomerular basement membrane (GBM) is essential for maintaining the integrity of the renal filtration barrier. Impaired maturation causes proteinuria and renal fibrosis in the type IV collagen disease Alport syndrome. This study evaluates the role of collagen receptors in maturation of the GBM, matrix accumulation and renal fibrosis by using mice deficient for discoidin domain receptor 1 (DDR1), integrin subunit α2 (ITGA2), and type IV collagen α3 (COL4A3). Loss of both collagen receptors DDR1 and integrin α2β1 delays maturation of the GBM: due to a porous GBM filtration barrier high molecular weight proteinuria that more than doubles between day 60 and day 100. Thereafter, maturation of the GBM causes proteinuria to drop down to one tenth until day 200. Proteinuria and the porous GBM cause accumulation of glomerular and tubulointerstitial matrix, which both decrease significantly after GBM-maturation until day 250. In parallel, in a disease with impaired GBM-maturation such as Alport syndrome, loss of integrin α2β1 positively delays renal fibrosis: COL4A3−/−/ITGA2−/ double knockouts exhibited reduced proteinuria and urea nitrogen compared to COL4A3−/−/ITGA2+/− and COL4A3−/−/ITGA2+/+ mice. The double knockouts lived 20% longer and showed less glomerular and tubulointerstitial extracellular matrix deposition than the COL4A3−/− Alport mice with normal integrin α2β1 expression. Electron microscopy illustrated improvements in the glomerular basement membrane structure. MMP2, MMP9, MMP12 and TIMP1 were expressed at significantly higher levels (compared to wild-type mice) in COL4A3−/−/ITGA2+/+ Alport mice, but not in COL4A3+/+/ITGA2−/− mice. In conclusion, the collagen receptors DDR1 and integrin α2β1 contribute to regulate GBM-maturation and to control matrix accumulation. As demonstrated in the type IV collagen disease Alport syndrome, glomerular cell–matrix interactions via collagen receptors play an important role in the progression of renal fibrosis.  相似文献   

20.
Nephrin, podocin, CD2AP, and alpha-actinin-4 are important podocyte proteins that help maintain the integrity of the slit diaphragm and prevent proteinuria. Studies have shown that angiotensin-converting enzyme inhibitors, glucocorticoids, and all-trans retinoic acid (ATRA) have antiproteinuric effects. However, it is still unclear whether these drugs, with different pharmacological mechanisms, lead to a reduction in proteinuria by changing the expression and distribution of these important podocyte proteins. In this study, changes in the expression and distribution of nephrin, podocin, CD2AP, and alpha-actinin-4 were dynamically detected in Adriamycin-induced nephrotic (ADR) rats treated with three different drugs: lisinopril, prednisone, and ATRA. Nephropathy was induced by an intravenous injection of Adriamycin. After Adriamycin injection, rats received lisinopril, prednisone, and ATRA treatment, respectively. Renal tissues were collected at Days 3, 7, 14, and 28. The distribution and the expression of messenger RNA and protein of nephrin, podocin, CD2AP, and alpha-actinin-4 were detected by indirect immunofluorescence, real-time polymerase chain reaction, and Western blotting, respectively. With the intervention of lisinopril, prednisone, and ATRA, changes in the expression of nephrin, podocin, and CD2AP were diverse, which was different from that detected in ADR rats. After lisinopril and prednisone intervention, podocin exhibited prominent earlier changes compared with those of nephrin and CD2AP, whereas CD2AP showed more prominent changes after ATRA intervention. There was no change in the expression of alpha-actinin-4 molecule. In summary, we conclude that the antiproteinuric effects of lisinopril, prednisone, and ATRA were achieved by changes in the expression and distribution of the important podocyte molecules nephrin, podocin, CD2AP, and alpha-actinin-4. The pattern in the change of podocyte molecules after lisinopril and prednisone intervention was similar, but the pattern in the change of podocyte molecules after ATRA intervention was different from that of lisinopril or prednisone intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号