首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protein-lipid interaction and bilayer regulation of membrane protein functions are largely controlled by the hydrophobic match between the transmembrane (TM) domain of membrane proteins and the surrounding lipid bilayer. To systematically characterize responses of a TM helix and lipid adaptations to a hydrophobic mismatch, we have performed a total of 5.8-μs umbrella sampling simulations and calculated the potentials of mean force (PMFs) as a function of TM helix tilt angle under various mismatch conditions. Single-pass TM peptides called WALPn (n = 16, 19, 23, and 27) were used in two lipid bilayers with different hydrophobic thicknesses to consider hydrophobic mismatch caused by either the TM length or the bilayer thickness. In addition, different flanking residues, such as alanine, lysine, and arginine, instead of tryptophan in WALP23 were used to examine their influence. The PMFs, their decomposition, and trajectory analysis demonstrate that 1), tilting of a single-pass TM helix is the major response to a hydrophobic mismatch; 2), TM helix tilting up to ∼10° is inherent due to the intrinsic entropic contribution arising from helix precession around the membrane normal even under a negative mismatch; 3), the favorable helix-lipid interaction provides additional driving forces for TM helix tilting under a positive mismatch; 4), the minimum-PMF tilt angle is generally located where there is the hydrophobic match and little lipid perturbation; 5), TM helix rotation is dependent on the specific helix-lipid interaction; and 6), anchoring residues at the hydrophilic/hydrophobic interface can be an important determinant of TM helix orientation.  相似文献   

2.
We investigated the effect of amino acid composition and hydrophobic length of α-helical transmembrane peptides and the role of electrostatic interactions on the lateral diffusion of the peptides in lipid membranes. Model peptides of varying length and composition, and either tryptophans or lysines as flanking residues, were synthesized. The peptides were labeled with the fluorescent label Alexa Fluor 488 and incorporated into phospholipid bilayers of different hydrophobic thickness and composition. Giant unilamellar vesicles were formed by electroformation, and the lateral diffusion of the transmembrane peptides (and lipids) was determined by fluorescence correlation spectroscopy. In addition, we performed coarse-grained molecular-dynamics simulations of single peptides of different hydrophobic lengths embedded in planar membranes of different thicknesses. Both the experimental and simulation results indicate that lateral diffusion is sensitive to membrane thickness between the peptides and surrounding lipids. We did not observe a difference in the lateral diffusion of the peptides with respect to the presence of tryptophans or lysines as flanking residues. The specific lipid headgroup composition of the membrane has a much less pronounced impact on the diffusion of the peptides than does the hydrophobic thickness.  相似文献   

3.
4.
Since the elucidation of the myoglobin (Mb) structure, a histidine residue on the E helix (His-E7) has been proposed to act as a gate with an open or closed conformation controlling access to the active site. Although it is believed that at low pH, the His-E7 gate is in its open conformation, the full relationship between the His-E7 protonation state, its conformation, and ligand migration in Mb is hotly debated. We used molecular dynamics simulations to first address the effect of His-E7 protonation on its conformation. We observed the expected shift from the closed to the open conformation upon protonation, but more importantly, noted a significant difference between the conformations of the two neutral histidine tautomers. We further computed free energy profiles for oxygen migration in each of the possible His-E7 states as well as in two instructive Mb mutants: Ala-E7 and Trp-E7. Our results show that even in the closed conformation, the His-E7 gate does not create a large barrier to oxygen migration and permits oxygen entry with only a small rotation of the imidazole side chain and movement of the E helix. We identify, instead, a hydrophobic site in the E7 channel that can accommodate an apolar diatomic ligand and enhances ligand uptake particularly in the open His-E7 conformation. This rate enhancement is diminished in the closed conformation. Taken together, our results provide a new conceptual framework for the histidine gate hypothesis.  相似文献   

5.
6.
Complementary surfaces are buried when peptide hormones, growth factors, or cytokines bind and activate cellular receptors. Although these extended surfaces provide high affinity and specificity to the interactions, they also present great challenges to the design of small molecules that might either mimic or antagonize the process. We show that the insulin receptor (IR) and downstream signals can be activated by targeting a site outside of its ligand-binding domain. A 24-residue peptide having the IR transmembrane (TM) domain sequence activates IR, but not related growth factor receptors, through specific interactions with the receptor TM domain. Like insulin-dependent activation, IR-TM requires that IR have a competent ATP-binding site and kinase activation loop. IR-TM also activates mutated receptors from patients with severe insulin resistance, which do not respond to insulin. These results show that IR can be activated through a pathway that bypasses its canonical ligand-binding domain.  相似文献   

7.
E-cadherin is a transmembrane glycoprotein which is involved in the Ca2+-dependent cell–cell adhesion, and the adhesiveness is heavily dependent on the homodimerization of this molecule. Previous studies have shown that both the extracellular domain and cytoplasmic domain of E-cadherin contribute to its homodimerization. However, the roles of the transmembrane(TM) domain in the E-cadherin homodimerization have not been discussed in detail. In our experiments, SDS-PAGE showed higher molecular weight bands for the synthetic E-cadherin TM peptide, which indicated that the E-cadherin TM peptide is able to dimerize in the SDS micelle. The TOXCAT assay proved that the E-cadherin TM domain can form a moderate homo-oligomer in the Escherichia coli inner membrane. Furthermore, mutational analyses using the TOXCAT assays revealed that, instead of the common GxxxG dimerization motif, the leucine zipper motif is essential for the dimerization of the E-cadherin TM domain. Combining our experiment data and the computational simulation results, we provide insights for understanding the roles of the TM domain in the E-cadherin dimerization.  相似文献   

8.
报道了以对β-硫酸酯己砜基苯胺(SESA)为活化剂制备疏水作用层析剂方法及其柱层析纯化脂肪酶的工艺条件。实验结果表明:活化剂对-β-硫酸酯己砜基苯胺(SESA)最适用量为1.0g/g湿纸纤维素。笨胺:丙酮比为1:4.以0.2mol/L磷酸缓冲液(pH8.0)=1mol/LNaCl为淋洗剂,以0.2mol/L磷酸缓冲液(pH8.0)+8%吐温80为洗脱刘纯化脂肪酶具有较好的分辨率,酶活回收率64.0%,比活提高6.70倍。  相似文献   

9.

Background

There is an urgent need to develop safe and effective adjuvants for the new generation of subunit vaccines. We developed the tubular immunostimulating complex (TI-complex) as a new nanoparticulate antigen delivery system. The morphology and composition of TI-complexes principally differ from the known vesicular immunostimulating complexes (ISCOMs). However, methodology for the preparation of TI-complexes has suffered a number of shortcomings. The aim of the present work was to obtain an antigen carrier consisting of triterpene glycosides from Cucumaria japonica, cholesterol, and monogalactosyldiacylglycerol from marine macrophytes with reproducible properties and high adjuvant activity.

Results

The cucumarioside A2-2 - cholesterol - MGalDG ratio of 6:2:4 (by weight) was found to provide the most effective formation of TI-complexes and the minimum hemolytic activity in vitro. Tubules of TI-complexes have an outer diameter of about 16 nm, an inner diameter of 6 nm, and a length of 500 nm. A significant dilution by the buffer gradually destroyed the tubular nanoparticles. The TI-complex was able to increase the immunogenicity of the protein antigens from Yersinia pseudotuberculosis by three to four times.

Conclusions

We propose an optimized methodology for the preparation of homogeneous TI-complexes containing only tubular particles, which would achieve reproducible immunization results. We suggest that the elaborated TI-complexes apply as a universal delivery system for different subunit antigens within anti-infectious vaccines and enhance their economic efficacy and safety.  相似文献   

10.
Reassortment is fundamental to the evolution of influenza viruses and plays a key role in the generation of epidemiologically significant strains. Previous studies indicate that reassortment is restricted by segment mismatch, arising from functional incompatibilities among components of two viruses. Additional factors that dictate the efficiency of reassortment remain poorly characterized. Thus, it is unclear what conditions are favorable for reassortment and therefore under what circumstances novel influenza A viruses might arise in nature. Herein, we describe a system for studying reassortment in the absence of segment mismatch and exploit this system to determine the baseline efficiency of reassortment and the effects of infection dose and timing. Silent mutations were introduced into A/Panama/2007/99 virus such that high-resolution melt analysis could be used to differentiate all eight segments of the wild-type and the silently mutated variant virus. The use of phenotypically identical parent viruses ensured that all progeny were equally fit, allowing reassortment to be measured without selection bias. Using this system, we found that reassortment occurred efficiently (88.4%) following high multiplicity infection, suggesting the process is not appreciably limited by intracellular compartmentalization. That co-infection is the major determinant of reassortment efficiency in the absence of segment mismatch was confirmed with the observation that the proportion of viruses with reassortant genotypes increased exponentially with the proportion of cells co-infected. The number of reassortants shed from co-infected guinea pigs was likewise dependent on dose. With 106 PFU inocula, 46%–86% of viruses isolated from guinea pigs were reassortants. The introduction of a delay between infections also had a strong impact on reassortment and allowed definition of time windows during which super-infection led to reassortment in culture and in vivo. Overall, our results indicate that reassortment between two like influenza viruses is efficient but also strongly dependent on dose and timing of the infections.  相似文献   

11.
The hypothesis that local conformational differences of the snake venom cardiotoxins (cytotoxins, CT) may play a significant role in their interaction with membrane was tested by molecular modeling of the behavior of the CT A5 from the venom of Naja atra in water and at the water–membrane interface. Two models of the CT A5 spatial structure are known: the first was obtained by X-ray analysis and the second, by NMR studies in solution. A molecular dynamics (MD) analysis demonstrated that loop II of the toxin has a fixed -like shape in water, which does not depend on its initial structure. An interaction of the experimentally derived (X-ray and NMR) conformations and MD simulated conformations of CT A5 with the lipid bilayer was studied by the Monte Carlo method using the previously developed model of the implicit membrane. It is found that: (1) unlike the previously studied CT2 from the venom of cobra Naja oxiana, CT A5 has only loops I and II bound to the membrane with the involvement of a lesser number of hydrophobic residues. (2) A long hydrophobic area is formed on the surface of CT A5 due to the -like shape of loop II and the arrangement of loop I in proximity to loop II. This hydrophobic area favors the toxin embedding into the lipid bilayer. (3) The toxin retains its conformation upon interaction with the membrane. (4) The CT A5 molecule has close values of the potential energy in the membrane and in aqueous environment, which suggests dynamic character of the binding. The results of the molecular modeling indicate a definite configuration of loops I and II and, consequently, a specific character of distribution of polar and apolar properties on the toxin surface, which turns out to be the most energetically favorable.  相似文献   

12.
Glucose interfered with the inhibitory action of hydrophobic compounds, such as n-octanol, diphenylamine and 2-tert-butylphenol, during L-alanine-initiated germination of Bacillus subtilis spores. The action of glucose on the action of the hydrophobic compounds was not competitive, and the binding affinity of glucose was not essentially affected by the hydrophobic compounds, indicating the presence of separate binding sites for glucose and the hydrophobic compounds. The binding affinity of D-alanine, a competitive inhibitor of L-alanine, was not affected by the hydrophobic compounds, indicating separate binding sites for D-alanine and the hydrophobic compounds. A possible arrangement of the binding sites for glucose and for the hydrophobic compounds in relation to those for L- and D-alanine on the spores is discussed.  相似文献   

13.
14.
The thyrotropin receptor (TSHR) is a G protein-coupled receptor (GPCR) that is member of the leucine-rich repeat subfamily (LGR). In the absence of crystal structure, the success of rational design of ligands targeting the receptor internal cavity depends on the quality of the TSHR models built. In this subfamily, transmembrane helices (TM) 2 and 5 are characterized by the absence of proline compared to most receptors, raising the question of the structural conformation of these helices. To gain insight into the structural properties of these helices, we carried out bioinformatics and experimental studies. Evolutionary analysis of the LGR family revealed a deletion in TM5 but provided no information on TM2. Wild type residues at positions 2.58, 2.59 or 2.60 in TM2 and/or at position 5.50 in TM5 were substituted to proline. Depending on the position of the proline substitution, different effects were observed on membrane expression, glycosylation, constitutive cAMP activity and responses to thyrotropin. Only proline substitution at position 2.59 maintained complex glycosylation and high membrane expression, supporting occurrence of a bulged TM2. The TSHR transmembrane domain was modeled by homology with the orexin 2 receptor, using a protocol that forced the deletion of one residue in the TM5 bulge of the template. The stability of the model was assessed by molecular dynamics simulations. TM5 straightened during the equilibration phase and was stable for the remainder of the simulations. Our data support a structural model of the TSHR transmembrane domain with a bulged TM2 and a straight TM5 that is specific of glycoprotein hormone receptors.  相似文献   

15.
The E5 oncoprotein is the major transforming protein of bovine papillomavirus type 1. This 44-residue transmembrane protein can interact with the platelet-derived growth factor receptor β, leading to ligand-independent activation and cell transformation. For productive interaction, E5 needs to dimerize via a C-terminal pair of cysteines, though a recent study suggested that its truncated transmembrane segment can dimerize on its own. To analyze the structure of the full protein in a membrane environment and elucidate the role of the Cys-Ser-Cys motif, we produced recombinantly the wild-type protein and four cysteine mutants. Comparison by circular dichroism in detergent micelles and lipid vesicular dispersion and by NMR in trifluoroethanol demonstrates that the absence of one or both cysteines does not influence the highly α-helical secondary structure, nor does it impair the ability of E5 to dimerize, observations that are further supported by sodium dodecylsulfate polyacrylamide gel electrophoresis. We also observed assemblies of higher order. Oriented circular dichroism in lipid bilayers shows that E5 is aligned as a transmembrane helix with a slight tilt angle, and that this membrane alignment is also independent of any cysteines. We conclude that the Cys-containing motif represents a disordered region of the protein that serves as an extra covalent connection for stabilization.  相似文献   

16.
17.
In mammalian cells, most integral membrane proteins are initially inserted into the endoplasmic reticulum membrane by the so-called Sec61 translocon. However, recent predictions suggest that many transmembrane helices (TMHs) in multispanning membrane proteins are not sufficiently hydrophobic to be recognized as such by the translocon. In this study, we have screened 16 marginally hydrophobic TMHs from membrane proteins of known three-dimensional structure. Indeed, most of these TMHs do not insert efficiently into the endoplasmic reticulum membrane by themselves. To test if loops or TMHs immediately upstream or downstream of a marginally hydrophobic helix might influence the insertion efficiency, insertion of marginally hydrophobic helices was also studied in the presence of their neighboring loops and helices. The results show that flanking loops and nearest-neighbor TMHs are sufficient to ensure the insertion of many marginally hydrophobic helices. However, for at least two of the marginally hydrophobic helices, the local interactions are not enough, indicating that post-insertional rearrangements are involved in the folding of these proteins.  相似文献   

18.
《Biophysical journal》2020,118(4):934-943
The serotonin type 3A (5-HT3A) receptor is a homopentameric cation-selective member of the pentameric ligand-gated ion channel (pLGIC) superfamily. Members of this superfamily assemble from five subunits, each of which consists of three domains: extracellular (ECD), transmembrane (TMD), and intracellular domain (ICD). Previously, we have demonstrated that the 5-HT3A-ICD is required for the interaction between 5-HT3A and the chaperone protein resistance to inhibitors of choline esterase (RIC-3). Additionally, we have shown that 5-HT3A-ICD fused to maltose-binding protein (MBP) directly interacts with RIC-3, without the involvement of other protein(s). To elucidate the molecular determinants of this interaction, we developed different MBP-fused 5-HT3A-ICD constructs by deleting large segments of its amino acid sequence. We expressed seven engineered ICDs in Escherichia coli and purified them to homogeneity. Using a RIC-3 affinity pull-down assay, the interaction between MBP-5HT3A-ICD constructs and RIC-3 was investigated. In summary, we identify a 24-amino-acid-long segment of the 5-HT3A-ICD as a molecular determinant for the interaction between the 5-HT3A-ICD and RIC-3.  相似文献   

19.
PDGF受体结合域与乙肝病毒核心抗原的融合表达   总被引:2,自引:0,他引:2  
化学合成血小板源性生长因子受体结合域13肽基因,并与乙肝病毒核心抗原基因5′端融合,序列分析表明化学合成的13肽基因及融合后基因的阅读框架正确.将融合基因亚克隆于tac启动子控制的pET3a表达质粒中并于大肠杆菌中表达.表达产物经ELISA、WestrenBlot鉴定表明,融合蛋白已被表达,其单位分子量与推算值一致.电镜观察证明所表达的融合蛋白能形成颗粒.  相似文献   

20.
Bitter taste reception is expected to be associated with dietary selection and to prevent animals from ingesting potentially harmful compounds. To investigate the genetic basis of bitter taste reception, we reconfirmed the bitter taste receptor (T2R) genes from cow (herbivore) and dog (carnivore) genome sequences and identified the T2R repertoire from the draft genome of the bat (insectivore) for the first time using an automatic data-mining method. We detected 28 bitter receptor genes from the bat genome, including 9 intact genes, 8 partial but putative functional genes, and 9 pseudogenes. In the phylogenetic analysis, most of the T2R genes from the three species intermingle across the tree, suggesting that some are conserved among mammals with different dietary preferences. Furthermore, one clade of bat-specific genes was detected, possibly implying that the insectivorous mammal could recognize some species-specific bitter tastants. Evolutionary analysis shows strong positive selection was imposed on this bat-specific cluster, indicating that positive selection drives the functional divergence and specialization of the bat bitter taste receptors to adapt diets to the external environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号