首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The identification of the genes that make up rearranged immunoglobulin genes is critical to many studies. For example, the enumeration of mutations in immunoglobulin genes is important for the prognosis of chronic lymphocytic leukemia, and this requires the accurate identification of the germline genes from which a particular sequence is derived. The immunoglobulin heavy-chain variable (IGHV) gene repertoire is generally considered to be highly polymorphic. In this report, we describe a bioinformatic analysis of germline and rearranged immunoglobulin gene sequences which casts doubt on the existence of a substantial proportion of reported germline polymorphisms. We report a five-level classification system for IGHV genes, which indicates the likelihood that the genes have been reported accurately. The classification scheme also reflects the likelihood that germline genes could be incorrectly identified in mutated VDJ rearrangements, because of similarities to other alleles. Of the 226 IGHV alleles that have previously been reported, our analysis suggests that 104 of these alleles almost certainly include sequence errors, and should be removed from the available repertoire. The analysis also highlights the presence of common mismatches, with respect to the germline, in many rearranged heavy-chain sequences, suggesting the existence of twelve previously unreported alleles. Sequencing of IGHV genes from six individuals in this study confirmed the existence of three of these alleles, which we designate IGHV3-49*04, IGHV3-49*05 and IGHV4-39*07. We therefore present a revised repertoire of expressed IGHV genes, which should substantially improve the accuracy of immunoglobulin gene analysis.  相似文献   

2.
We have determined the nucleotide sequence of a 5.5-kilobase segment of cloned mouse DNA which includes regions encoding two parts of the mouse kappa immunoglobulin gene: the J regions (amino acids 96-108 of the kappa chain) and the C region (residues 109-214). This sequence allows us to rule out interruptions in the germline constant region coding segment as well as the presence of additional functional J genes in the sequenced DNA segment, although two weak homologies to J regions have been found. The complete sequence also allows us to identify a single occurrence of the heptanucleotide palindrome thought to play a role in V/J joining. This palindrome, midway between J and C regions, is the site of aberrant joining in the plasmacytoma MPC11 and may be a target for such aberrant recombination of other kappa genes. In addition, computer analysis of the J sequences suggests that those closest to the C region arose by the most recent duplication event.  相似文献   

3.
Human cord blood cell-derived IgM antibodies are important for the neonate immune responses and construction of germline-based immunoglobulin libraries. Several previous studies of a relatively small number of sequences found that they exhibit restrictions in the usage of germline genes and in the diversity of the variable heavy chain complementarity determining region 3 compared to adults. To further characterize such restrictions on a larger scale and to compare the early B-cell diversity to adult IgM repertoires, we performed 454 sequencing and IMGT/HighV-QUEST analysis of cord blood IG libraries from two babies and determined germline gene usage, V-D-J rearrangement, VHCDR3 diversity, and somatic mutations to characterize human neonate repertoire. Most of the germline subgroups were identified with frequencies comparable to those present in the adult IgM repertoire except for the IGHV1-2 gene that was preferentially expressed in the cord blood cells. The gene usage diversity contributed to 1,430 unique IGH V-D-J rearrangement patterns while the exonuclease trimming and N region addition at the V-D-J junctions along with gene diversity created a wide range of VHCDR3 with different lengths and sequence variability. We observed a lower degree of somatic mutations in the CDR and framework regions of antibodies from cord blood cells compared to adults. These results provide insights into the characteristics of human cord blood antibody repertoires, which have gene usage diversity and VHCDR3 lengths similar to that of the adult IgM repertoire but differ significantly in some of the gene usages, V-D-J rearrangements, junctional diversity, and somatic mutations.  相似文献   

4.

Background

Partitioning the human immunoglobulin variable region into variable (V), diversity (D), and joining (J) segments is a common sequence analysis step. We introduce a novel approximate dynamic programming method that uses conserved immunoglobulin gene motifs to improve performance of aligning V-segments of rearranged immunoglobulin (Ig) genes. Our new algorithm enhances the former JOINSOLVER algorithm by processing sequences with insertions and/or deletions (indels) and improves the efficiency for large datasets provided by high throughput sequencing.

Results

In our simulations, which include rearrangements with indels, the V-matching success rate improved from 61% for partial alignments of sequences with indels in the original algorithm to over 99% in the approximate algorithm. An improvement in the alignment of human VDJ rearrangements over the initial JOINSOLVER algorithm was also seen when compared to the Stanford.S22 human Ig dataset with an online VDJ partitioning software evaluation tool.

Conclusions

HTJoinSolver can rapidly identify V- and J-segments with indels to high accuracy for mutated sequences when the mutation probability is around 30% and 20% respectively. The D-segment is much harder to fit even at 20% mutation probability. For all segments, the probability of correctly matching V, D, and J increases with our alignment score.  相似文献   

5.
In this study we investigate the molecular genetic basis for VHa- Ig. Knowing that the expression of VHa allotype Ig is suppressed by neonatal injection of rabbits with anti-VHa allotype antibody, and that the decreased level of VHa allotype Ig, VHa+, in the suppressed rabbits is compensated for by an increase in VHa- Ig, we determined the nucleotide sequences of 41 VDJ genes from a2/a2 rabbits neonatally suppressed for the expression of a2 Ig. We compared these nucleotide sequences to each other and identified two groups of VH sequences. We predict that the molecules of each group are encoded by one germline VH gene. Inasmuch as VHa+ Ig is encoded predominantly by one germline VH gene, VH1, it appears that more than 95% of the VDJ repertoire of rabbits may be encoded by as few as three germline VH genes. A genomic VDJ gene whose VH sequence was similar to those of group I molecules was expressed in vitro and was shown by ELISA to encode molecules of the VHa- allotype, y33. Analysis of the D regions in the VDJ gene indicated that germline D2b and D3 gene segments were preferentially used in the VDJ gene rearrangement. A comparison of sequences of D regions of the 41 VDJ gene rearrangements in 3-, 6-, and 9-wk-old rabbits to sequences of germline D gene segments showed an accumulation of mutations in the D region. Inasmuch as we have previously shown that V regions of rabbit VDJ genes are diversified, in part, by somatic gene conversion, it appears now that rabbit VDJ genes diversify by a combination of somatic mutation and somatic gene conversion.  相似文献   

6.
Five families of variable region genes of mouse kappa chains were analyzed by Southern blot hybridization to determine their relative chromosomal map positions. Map positions were deduced by Vk gene deletion from antibody-producing cells expressing upstream Vk genes and retention in cells expressing downstream genes. The Vk regions expressed in the myelomas M0PC167, MPC11, M0PC21 and ABPC20 are members of Vk families exhibiting one, three, six and six major germline hybridization bands respectively. The gene order of the five families in germline DNA was found to be VM167-VM11-(VM21, VA20)-VABE8-Jk-Ck. As expected in a deletion model of immunoglobulin gene rearrangement, a sequence located just 5' of J1 in germline DNA was found to be absent from some antibody producing cells which had not retained any germline Ck genes. However, other cell lines contained this sequence in rearranged contexts, suggesting that any deletion model of immunoglobulin V-J joining, as well as V gene mapping, must take into account the possibilities of stepwise rearrangements and reintegration of "deleted" DNA.  相似文献   

7.
Single-cell RT-PCR was used to sample CD19(+) B cell repertoires in cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS) or viral meningitis. Analysis of amplified Ab H and L chain products served to identify the rearranged germline segment and J segment, and to determine the degree of homology for the H and L chain sequence of individual B cells. The B cell repertoire of viral meningitis CSF was predominantly polyclonal, whereas B cell clonal expansion was a prominent feature of the IgG repertoire in three of four MS patients. Two dominant clonal populations in one MS CSF accounted for approximately 70% of the IgG H chain V regions sequenced, while the corresponding IgM repertoires were more heterogeneous. One clonal B cell population revealed multiple L chain rearrangements, raising the possibility of a role for receptor editing in shaping the B cell response in some MS patients. The most immediate implications of identifying rearranged Ig sequences in MS B cells is the potential to accurately recreate recombinant Abs from these overrepresented H and L chains that can be used to discover the relevant Ag(s) in MS.  相似文献   

8.
P Early  H Huang  M Davis  K Calame  L Hood 《Cell》1980,19(4):981-992
We have determined the sequences of separate germline genetic elements which encode two parts of a mouse immunglobulin heavy chain variable region. These elements, termed gene segments, are heavy chain counterparts of the variable (V) and joining (J) gene segments of immunoglobulin light chains. The VH gene segment encodes amino acids 1-101 and the JH gene segment encodes amino acids 107-123 of the S107 phosphorylcholine-binding VH region. This JH gene segment and two other JH gene segments are located 5' to the mu constant region gene (Cmu) in germline DNA. We have also determined the sequence of a rearranged VH gene encoding a complete VH region, M603, which is closely related to S107. In addition, we have partially determined the VH coding sequences of the S107 and M167 heavy chain mRNAs. By comparing these sequences to the germline gene segments, we conclude that the germline VH and JH gene segments do not contain at least 13 nucleotides which are present in the rearranged VH genes. In S107, these nucleotides encode amino acids 102-106, which form part of the third hypervariable region and consequently influence the antigen-binding specificity of the immunoglobulin molecule. This portion of the variable region may be encoded by a separate germline gene segment which can be joined to the VH and JH gene segments. We term this postulated genetic element the D gene segment, referring to its role in the generation of heavy chain diversity. Essentially the same noncoding sequences are found 3' to the VH gene segment and as inverse complements 5' to two JH gene segments. These are the same conserved nucleotides previously found adjacent to light chain V and J gene segments. Each conserved sequence consists of blocks of seven and ten conserved nucleotides which are separated by a spacer of either 11 or 22 nonconserved nucleotides. The highly conserved spacing, corresponding to one or two turns of the DNA helix, maintains precise spatial orientations between blocks of conserved nucleotides. Gene segments which can join to one another (VK and JK, for example) always have spacers of different lengths. Based on these observations, we propose a model for variable region gene rearrangement mediated by proteins which recognize the same conserved sequences adjacent to both light and heavy chain immunoglobulin gene segments.  相似文献   

9.
10.
S Huck  M P Lefranc 《FEBS letters》1987,224(2):291-296
In the human T-cell rearranging gamma (TRG gamma) locus, five joining (J) segments have been identified: J1, J2 and three additional segments JP, JP1 and JP2. We report the sequence of the germline JP1 segment and compare it with the other human and mouse J gamma segments. We also demonstrate that rearrangements to the three additional J gamma segments can be identified by hybridization of the KpnI digests to the J gamma 1 probe pH60. Since rearrangements to J1 or J2 can be assigned, using the same pH60 probe, to one of the nine variable (V) gamma genes known to rearrange [(1987) EMBO J. 6, 1945-1950], our results show that a unique probe can detect all the TRG gamma rearrangements and be particularly useful for assessing the preferential usage of V gamma and J gamma segments in the TRG gamma-expressing cells.  相似文献   

11.
J B Cohen  D Givol 《The EMBO journal》1983,2(11):2013-2018
The nucleotide sequence of two germline immunoglobulin heavy chain variable region (VH) genes of mouse BALB/c origin was determined. These two genes are highly homologous to each other. They both have the unusual codon CCT for proline at position 7, which so far has been found only in a specific set of VH genes, called the NPb family. We show that the two VH genes belong to this set. One of our BALB/c genes, VH124, is more homologous to a C57BL/6 NPb VH gene than to any BALB/c VH gene, and we propose that these two genes are alleles. A comparison of the substitutions between these two genes with published sequences of all other BALB/c and C57BL/6 NPb VH genes reveals evidence for past homologous recombination events between related germline VH genes Homologous recombination may play an important role in the diversification of germline immunoglobulin VH genes.  相似文献   

12.
M Serwe  F Sablitzky 《The EMBO journal》1993,12(6):2321-2327
We have assessed the importance of the immunoglobulin heavy chain (IgH) intron enhancer for recombination of variable gene segments (V, D and J) during B cell development. We generated chimeric mice with embryonic stem cells lacking the intron enhancer from one of their IgH loci. The IgH intron enhancer was substituted by a short oligonucleotide through homologous recombination using the 'Hit and Run' procedure. V(D)J recombination occurred less frequently on mutant alleles, but was not blocked completely. Quantitative polymerase chain reaction analyses demonstrated that 15-30% of the mutated loci in mature B cells were unrearranged, in striking contrast to the wild-type alleles. The remainder of the mutated loci underwent D-J (65-80%) as well as V-DJ rearrangements, although the latter were less frequent (3-6%). These results are in line with previous data which showed that the V(D)J recombination machinery is modulated through cis-regulatory elements within the intron enhancer. However, our data predict the existence of additional cis-regulatory element(s) which, together with the intron enhancer, are required to activate the V(D)J recombination machinery fully. Such cis-regulatory element(s) might function as an enhancer of recombination or as a locus control region regulating the accessibility of the IgH locus.  相似文献   

13.
《MABS-AUSTIN》2013,5(5):870-883
ABSTRACT

Immunization of mice followed by hybridoma or B-cell screening is one of the most common antibody discovery methods used to generate therapeutic monoclonal antibody (mAb) candidates. There are a multitude of different immunization protocols that can generate an immune response in animals. However, an extensive analysis of the antibody repertoires that these alternative immunization protocols can generate has not been performed. In this study, we immunized mice that transgenically express human antibodies with either programmed cell death 1 protein or cytotoxic T-lymphocyte associated protein 4 using four different immunization protocols, and then utilized a single cell microfluidic platform to generate tissue-specific, natively paired immunoglobulin (Ig) repertoires from each method and enriched for target-specific binders using yeast single-chain variable fragment (scFv) display. We deep sequenced the scFv repertoires from both the pre-sort and post-sort libraries. All methods and both targets yielded similar oligoclonality, variable (V) and joining (J) gene usage, and divergence from germline of enriched libraries. However, there were differences between targets and/or immunization protocols for overall clonal counts, complementarity-determining region 3 (CDR3) length, and antibody/CDR3 sequence diversity. Our data suggest that, although different immunization protocols may generate a response to an antigen, performing multiple immunization protocols in parallel can yield greater Ig diversity. We conclude that modern microfluidic methods, followed by an extensive molecular genomic analysis of antibody repertoires, can be used to quickly analyze new immunization protocols or mouse platforms.  相似文献   

14.
15.
Structural studies of human antibody V regions have been largely limited to those involving the fetal repertoire, autoantibodies, and malignant cell rearrangements, leaving the "normal" repertoire relatively unexplored. In this study we describe the nucleotide sequences of the H and L chain V regions of four antibodies specific for the surface Ag of the hepatitis B virus. Monoclonal cell lines were derived from healthy individuals who received standard immunizations with the serum-derived or recombinant hepatitis B virus vaccines by fusion of PBL to a heterohybridoma cell line, SPAZ-4. We utilized the polymerase chain reaction to amplify the H and L chain V regions for cloning and sequencing. The four antibodies express the following V region combinations: VHIII/V lambda V, VHIII/V kappa II, VHIV/V kappa I, VHV/V lambda III. When compared to germline genes with the closest sequence homology, all of the V regions appear to have undergone somatic mutation, ranging from 3.4 to 11.3% for the H chain, and 5.1 to 9.2% for the L chain. Analysis of the mutations shows them to be typical for an Ag-driven immune response.  相似文献   

16.
《MABS-AUSTIN》2013,5(4):693-706
Camelid immunoglobulin variable (IGV) regions were found homologous to their human counterparts; however, the germline V repertoires of camelid heavy and light chains are still incomplete and their therapeutic potential is only beginning to be appreciated. We therefore leveraged the publicly available HTG and WGS databases of Lama pacos and Camelus ferus to retrieve the germline repertoire of V genes using human IGV genes as reference. In addition, we amplified IGKV and IGLV genes to uncover the V germline repertoire of Lama glama and sequenced BAC clones covering part of the Lama pacos IGK and IGL loci. Our in silico analysis showed that camelid counterparts of all human IGKV and IGLV families and most IGHV families could be identified, based on canonical structure and sequence homology. Interestingly, this sequence homology seemed largely restricted to the Ig V genes and was far less apparent in other genes: 6 therapeutically relevant target genes differed significantly from their human orthologs. This contributed to efficient immunization of llamas with the human proteins CD70, MET, interleukin (IL)-1β and IL-6, resulting in large panels of functional antibodies. The in silico predicted human-homologous canonical folds of camelid-derived antibodies were confirmed by X-ray crystallography solving the structure of 2 selected camelid anti-CD70 and anti-MET antibodies. These antibodies showed identical fold combinations as found in the corresponding human germline V families, yielding binding site structures closely similar to those occurring in human antibodies. In conclusion, our results indicate that active immunization of camelids can be a powerful therapeutic antibody platform.  相似文献   

17.
Evolution of human immunoglobulin kappa J region genes   总被引:54,自引:0,他引:54  
Immunoglobulin kappa chain variable region genes are assembled from two discontinuous DNA segments, a V and a J gene. The J region genes, in addition to encoding amino acid positions 96-108 of the kappa polypeptide chain, also provide sequences required for both DNA and RNA splicing reactions. For purposes of evolutionary comparison and to establish the complexity of the kappa J region locus in man, we have determined an approximately 3000 basepair nucleotide sequence in a cloned human DNA fragment that encodes the germline distinct J region segments. Significant blocks of homology have been tightly maintained between this region and an analogous segment of the mouse genome. In particular, the short sequences, GGTTTTTGT and CACTGTG, thought to be involved in V-J recombination, are the most highly conserved regions (97% homology). In addition, from heteroduplex data and computer analysis of the nucleotide sequences, it is clear that the mouse J3 sequence, a pseudogene, is not present in the human cluster. This can be explained by a duplication event in the mouse J region gene cluster that may have been the result of unequal crossing over between homologous chromosomes.  相似文献   

18.
19.
We have analysed the transcribed immunoglobulin kappa (IGK) repertoire of peripheral blood B cells from four individuals from two genetically distinct populations, Papua New Guinean and Australian, using high-throughput DNA sequencing. The depth of sequencing data for each individual averaged 5,548 high-quality IGK reads, and permitted genotyping of the inferred IGKV and IGKJ germline gene segments for each individual. All individuals were homozygous at each IGKJ locus and had highly similar inferred IGKV genotypes. Preferential gene usage was seen at both the IGKV and IGKJ loci, but only IGKV segment usage varied significantly between individuals. Despite the differences in IGKV gene utilisation, the rearranged IGK repertoires showed extensive identity at the amino acid level. Public rearrangements (those shared by two or more individuals) made up 60.2% of the total sequenced IGK rearrangements. The total diversity of IGK rearrangements of each individual was estimated to range from just 340 to 549 unique amino acid sequences. Thus, the repertoire of unique expressed IGK rearrangements is dramatically less than previous theoretical estimates of IGK diversity, and the majority of expressed IGK rearrangements are likely to be extensively shared in individual human beings.  相似文献   

20.
The human and mouse antibody repertoires are formed by identical processes, but like all small animals, mice only have sufficient lymphocytes to express a small part of the potential antibody repertoire. In this study, we determined how the heavy chain repertoires of two mouse strains are generated. Analysis of IgM- and IgG-associated VDJ rearrangements generated by high-throughput sequencing confirmed the presence of 99 functional immunoglobulin heavy chain variable (IGHV) genes in the C57BL/6 genome, and inferred the presence of 164 IGHV genes in the BALB/c genome. Remarkably, only five IGHV sequences were common to both strains. Compared with humans, little N nucleotide addition was seen in the junctions of mouse VDJ genes. Germline human IgG-associated IGHV genes are rare, but many murine IgG-associated IGHV genes were unmutated. Together these results suggest that the expressed mouse repertoire is more germline-focused than the human repertoire. The apparently divergent germline repertoires of the mouse strains are discussed with reference to reports that inbred mouse strains carry blocks of genes derived from each of the three subspecies of the house mouse. We hypothesize that the germline genes of BALB/c and C57BL/6 mice may originally have evolved to generate distinct germline-focused antibody repertoires in the different mouse subspecies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号