首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Coreceptor usage of primary human immunodeficiency virus type 1 (HIV-1) isolates varies according to biological phenotype. The chemokine receptors CCR5 and CXCR4 are the major coreceptors that, together with CD4, govern HIV-1 entry into cells. Since CXCR4 usage determines the biological phenotype for HIV-1 isolates and is more frequent in patients with immunodeficiency, it may serve as a marker for viral virulence. This possibility prompted us to study coreceptor usage by HIV-2, known to be less pathogenic than HIV-1. We tested 11 primary HIV-2 isolates for coreceptor usage in human cell lines: U87 glioma cells, stably expressing CD4 and the chemokine receptor CCR1, CCR2b, CCR3, CCR5, or CXCR4, and GHOST(3) osteosarcoma cells, coexpressing CD4 and CCR5, CXCR4, or the orphan receptor Bonzo or BOB. The indicator cells were infected by cocultivation with virus-producing peripheral blood mononuclear cells and by cell-free virus. Our results show that 10 of 11 HIV-2 isolates were able to efficiently use CCR5. In contrast, only two isolates, both from patients with advanced disease, used CXCR4 efficiently. These two isolates also promptly induced syncytia in MT-2 cells, a pattern described for HIV-1 isolates that use CXCR4. Unlike HIV-1, many of the HIV-2 isolates were promiscuous in their coreceptor usage in that they were able to use, apart from CCR5, one or more of the CCR1, CCR2b, CCR3, and BOB coreceptors. Another difference between HIV-1 and HIV-2 was that the ability to replicate in MT-2 cells appeared to be a general property of HIV-2 isolates. Based on BOB mRNA expression in MT-2 cells and the ability of our panel of HIV-2 isolates to use BOB, we suggest that HIV-2 can use BOB when entering MT-2 cells. The results indicate no obvious link between viral virulence and the ability to use a multitude of coreceptors.  相似文献   

2.

Background

Dual/mixed-tropic HIV-1 strains are predominant in a significant proportion of patients, though little information is available regarding their replication-capacity and susceptibility against CCR5-antagonists in-vitro. The aim of the study was to analyze the replication-capacity and susceptibility to maraviroc of HIV-1 clinical isolates with different tropism characteristics in primary monocyte-derived-macrophages (MDM), peripheral-blood-mononuclear-cells (PBMC), and CD4+T-lymphocytes.

Methods

Twenty-three HIV-1 isolates were phenotipically and genotipically characterized as R5, X4 or dual (discriminated as R5+/X4, R5/X4, R5/X4+). Phenotypic-tropism was evaluated by multiple-cycles-assay on U87MG-CD4+-CCR5+−/CXCR4+-expressing cells. Genotypic-tropism prediction was obtained using Geno2Pheno-algorithm (false-positive-rate [FPR] = 10%). Replication-capacity and susceptibility to maraviroc were investigated in human-primary MDM, PBMC and CD4+T-cells. AMD3100 was used as CXCR4-inhibitor. Infectivity of R5/Dual/X4-viruses in presence/absence of maraviroc was assessed also by total HIV-DNA, quantified by real-time polymerase-chain-reaction.

Results

Among 23 HIV-1 clinical isolates, phenotypic-tropism-assay distinguished 4, 17 and 2 viruses with R5-tropic, dual/mixed-, and X4-tropic characteristics, respectively. Overall, viruses defined as R5+/X4-tropic were found with the highest prevalence (10/23, 43.5%). The majority of isolates efficiently replicated in both PBMC and CD4+T-cells, regardless of their tropism, while MDM mainly sustained replication of R5- or R5+/X4-tropic isolates; strong correlation between viral-replication and genotypic-FPR-values was observed in MDM (rho = 0.710;p-value = 1.4e-4). In all primary cells, maraviroc inhibited viral-replication of isolates not only with pure R5- but also with dual/mixed tropism (mainly R5+/X4 and, to a lesser extent R5/X4 and R5/X4+). Finally, no main differences by comparing the total HIV-DNA with the p24-production in presence/absence of maraviroc were found.

Conclusions

Maraviroc is effective in-vitro against viruses with dual-characteristics in both MDM and lymphocytes, despite the potential X4-mediated escape. This suggests that the concept of HIV-entry through one of the two coreceptors “separately” may require revision, and that the use of CCR5-antagonists in patients with dual/mixed-tropic viruses may be a therapeutic-option that deserves further investigations in different clinical settings.  相似文献   

3.
CCR5 is the major HIV-1 entry coreceptor. RANTES/CCL5 analogs are more potent inhibitors of infection than native chemokines; one class activates and internalizes CCR5, one neither activates nor internalizes, and a third partially internalizes without activation. Here we show that mutations in CCR5 transmembrane domains differentially impact the activity of these three inhibitor classes, suggesting that the transmembrane region of CCR5, a key interaction site for inhibitors, is a sensitive molecular switch, modulating receptor activity.  相似文献   

4.
Glaucocalyxin H (GLH) is a new compound isolated from a traditional Chinese medical herb Isodon japonica var. glaucocalyx which has been used for folk medicine. This study was carried out for the first time to investigate the potential role of GLH in anti-hepatoma activity and underlying mechanisms in it. GLH could inhibit the growth of tumor in mice and induce HepG2 cells to death as assessed by the tumor reduction assay, toxic assay, morphological change, and survival rate assay. Many antitumor drugs originated from plants could inhibit the growth of tumor by inducing cells to apoptosis. The morphological changes of HepG2 cells treated with different concentrations of GLH under fluorescence and electron microscope and apoptotic rates were detected to verify its effect on apoptosis. As shown in the study, GLH could induce HepG2 cells to apoptosis in a dose-dependent manner. Bcl2 and Bax proteins played important roles in apoptosis and the disequilibrium between Bcl2 and Bax might result in apoptosis. The expression of Bax protein was upregulated and Bcl2 protein was downregulated in HepG2 cells treated with GLH assessed by Western blotting, and they were in a dose-dependent manner. Taken together, GLH can inhibit the growth of hepatoma cells in vivo and in vitro by inducing cell apoptosis due to the decreased Bcl2 and increased Bax proteins suggesting that GLH could be a potential candidate as an anti-hepatoma agent for the therapeutic treatment of hepatoma.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-014-0227-3) contains supplementary material, which is available to authorized users.KEY WORDS: apoptosis, Glaucocalyxin H, hepatoma, HepG2 cell  相似文献   

5.
Alternative chemo-reagents are in great demand because chemotherapy resistance is one of the major challenges in current cancer treatment. 5-hydoxy-1H-pyrrol-2-(5H)-one is an important N-heterocyclic scaffold that is present in natural products and medicinal chemistry. However, its antitumor activity has not been systematically explored. In this study, we screened a panel of 5-hydoxy-1H-pyrrol-2-(5H)-one derivatives and identified compound 1d as possessing strong anti-proliferative activity in multiple cancer cell lines. Cell cycle analysis revealed that 1d can induce S-phase cell cycle arrest and that HCT116 was sensitive to 1d-induced apoptosis. Further analysis indicated that 1d preferentially induced DNA damage and p53 activation in HCT116 cells and that 1d-induced apoptosis is partly dependent on p53. Furthermore, we showed that 1d significantly suppressed tumor growth in xenograft tumor models in vivo. Taken together, our results suggest that 5-hydoxy-1H-pyrrol-2-(5H)-one derivatives bear potential antitumor activity and that 1d is an effective agent for cancer treatment.  相似文献   

6.
High-throughput sequencing platforms provide an approach for detecting rare HIV-1 variants and documenting more fully quasispecies diversity. We applied this technology to the V3 loop-coding region of env in samples collected from 4 chronically HIV-infected subjects in whom CCR5 antagonist (vicriviroc [VVC]) therapy failed. Between 25,000–140,000 amplified sequences were obtained per sample. Profound baseline V3 loop sequence heterogeneity existed; predicted CXCR4-using populations were identified in a largely CCR5-using population. The V3 loop forms associated with subsequent virologic failure, either through CXCR4 use or the emergence of high-level VVC resistance, were present as minor variants at 0.8–2.8% of baseline samples. Extreme, rapid shifts in population frequencies toward these forms occurred, and deep sequencing provided a detailed view of the rapid evolutionary impact of VVC selection. Greater V3 diversity was observed post-selection. This previously unreported degree of V3 loop sequence diversity has implications for viral pathogenesis, vaccine design, and the optimal use of HIV-1 CCR5 antagonists.  相似文献   

7.
Cell surface receptors exploited by human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) for infection are major determinants of tropism. HIV-1 usually requires two receptors to infect cells. Gp120 on HIV-1 virions binds CD4 on the cell surface, triggering conformational rearrangements that create or expose a binding site for a seven-transmembrane (7TM) coreceptor. Although HIV-2 and SIV strains also use CD4, several laboratory-adapted HIV-2 strains infect cells without CD4, via an interaction with the coreceptor CXCR4. Moreover, the envelope glycoproteins of SIV of macaques (SIV(MAC)) can bind to and initiate infection of CD4(-) cells via CCR5. Here, we show that most primary HIV-2 isolates can infect either CCR5(+) or CXCR4(+) cells without CD4. The efficiency of CD4-independent infection by HIV-2 was comparable to that of SIV, but markedly higher than that of HIV-1. CD4-independent HIV-2 strains that could use both CCR5 and CXCR4 to infect CD4(+) cells were only able to use one of these receptors in the absence of CD4. Our observations therefore indicate (i) that HIV-2 and SIV envelope glycoproteins form a distinct conformation that enables contact with a 7TM receptor without CD4, and (ii) the use of CD4 enables a wider range of 7TM receptors to be exploited for infection and may assist adaptation or switching to new coreceptors in vivo. Primary CD4(-) fetal astrocyte cultures expressed CXCR4 and supported replication by the T-cell-line-adapted ROD/B strain. Productive infection by primary X4 strains was only triggered upon treatment of virus with soluble CD4. Thus, many primary HIV-2 strains infect CCR5(+) or CXCR4(+) cell lines without CD4 in vitro. CD4(-) cells that express these coreceptors in vivo, however, may still resist HIV-2 entry due to insufficient coreceptor concentration on the cell surface to trigger fusion or their expression in a conformation nonfunctional as a coreceptor. Our study, however, emphasizes that primary HIV-2 strains carry the potential to infect CD4(-) cells expressing CCR5 or CXCR4 in vivo.  相似文献   

8.
Serine protease inhibitor elafin (E) and its precursor, trappin-2 (Tr), have been associated with mucosal resistance to HIV-1 infection. We recently showed that Tr/E are among principal anti-HIV-1 molecules in cervicovaginal lavage (CVL) fluid, that E is ∼130 times more potent than Tr against HIV-1, and that Tr/E inhibited HIV-1 attachment and transcytosis across human genital epithelial cells (ECs). Since herpes simplex virus 2 (HSV-2) is a major sexually transmitted infection and risk factor for HIV-1 infection and transmission, we assessed Tr/E contribution to defense against HSV-2. Our in vitro studies demonstrated that pretreatment of endometrial (HEC-1A) and endocervical (End1/E6E7) ECs with human Tr-expressing adenovirus (Ad/Tr) or recombinant Tr/E proteins before or after HSV-2 infection resulted in significantly reduced virus titers compared to those of controls. Interestingly, E was ∼7 times more potent against HSV-2 infection than Tr. Conversely, knockdown of endogenous Tr/E by small interfering RNA (siRNA) significantly increased HSV-2 replication in genital ECs. Recombinant Tr and E reduced viral attachment to genital ECs by acting indirectly on cells. Further, lower viral replication was associated with reduced secretion of proinflammatory interleukin 8 (IL-8) and tumor necrosis factor alpha (TNF-α) and decreased NF-κB nuclear translocation. Additionally, protected Ad/Tr-treated ECs demonstrated enhanced interferon regulatory factor 3 (IRF3) nuclear translocation and increased antiviral IFN-β in response to HSV-2. Lastly, in vivo studies of intravaginal HSV-2 infection in Tr-transgenic mice (Etg) showed that despite similar virus replication in the genital tract, Etg mice had reduced viral load and TNF-α in the central nervous system compared to controls. Collectively, this is the first experimental evidence highlighting anti-HSV-2 activity of Tr/E in female genital mucosa.  相似文献   

9.
The aim of this study was to verify the trypanocidal effectiveness of aqueous, methanolic, and ethanolic extracts of Achyrocline satureioides against Trypanosoma evansi in vitro. A. satureioides extracts, known as macela, were used on trypomastigotes at different concentrations (1, 5, 10, 50, 100, 500, and 1,000 µg/ml) and exposure times (0, 1, 3, 6, and 9 hr). A dose-dependent effect was observed when the 3 extracts were tested. The concentrations of 1, 5, and 10 µg/ml were not able to kill trypomastigotes until 3 hr after exposure, and the highest concentrations (500 and 1,000 µg/ml) were able to kill all trypomastigotes after 1 hr. When the time of exposure was increased up to 9 hr, the concentrations at 50 and 100 µg/ml were 100% effective to 3 extracts. The chemical analysis of the extracts revealed the presence of flavonoids, a trypanocidal compound already described. Based on the results, we can conclude that the A. satureioides extracts exhibit trypanocidal effects.  相似文献   

10.
11.
Mycopathologia - Management of superficial aspergillosis is a major challenge owing to the frequent relapses and treatment failure, which may pose a potential risk, thereby gradually developing...  相似文献   

12.
Exposure to HIV does not necessarily result in infection. Because primary HIV infection is associated with CCR5-tropic HIV variants (R5), CCR5-specific Abs in the sera of HIV-seronegative, HIV-exposed individuals (ESN) might be associated with protection against infection. We analyzed sera from ESN, their HIV-infected sexual partners (HIV+), and healthy controls (USN) searching for CCR5-specific Abs, studying whether incubation of PBMC with sera could prevent macrophage inflammatory protein 1 beta (Mip1 beta) (natural ligand of CCR5) binding to CCR5. Results showed that Mip1 beta binding to CCR5 was not modified by sera of either 40 HIV+ or 45 USN but was greatly reduced by sera of 6/48 ESN. Binding inhibition was due to Abs reactive with CCR5. The CCR5-specific Abs neutralized the infectivity of primary HIV isolates obtained from the corresponding HIV+ partners and of R5-primary HIV strains, but not that of CXCR4-tropic or amphitropic HIV strains. Immunoadsorption on CCR5-transfected, but not on CXCR4-transfected, cells removed CCR5-specific and virus-neutralizing Abs. Epitope mapping on purified CCR5-specific Abs showed that these Abs recognize a conformational epitope in the first cysteine loop of CCR5 (aa 89-102). Affinity-purified anti-CCR5-peptide neutralized the infectivity of R5 strains of HIV-1. Anti-CCR5 Abs inhibited Mip1beta-induced chemotaxis of PBMC from healthy donors. PBMC from two ESN (with anti-CCR5 Abs) were CCR5-negative and could not be stimulated by Mip1beta in chemotaxis assays. These results contribute to clarifying the phenomenon of immunologic resistance to HIV and may have implications for the development of a protective vaccine.  相似文献   

13.
A novel series of CCR5 antagonists were identified based on the redesign of Schering C. An SAR was established based on inhibition of CCR5 (RANTES) binding and these compounds exhibited potent inhibition of R5 HIV-1 replication in peripheral blood mononuclear cells.  相似文献   

14.
A series of CCR5 antagonists were optimized for potent inhibition of R5 HIV-1 replication in peripheral blood mononuclear cells. Compounds that met acceptable ADME criteria, selectivity, human plasma protein binding, potency shift in the presence of α-glycoprotein were evaluated in rat and dog pharmacokinetics.  相似文献   

15.
Eradication of methicillin-resistant Staphylococcus aureus (MRSA) carried by inpatients or healthy hospital personnel by topical use of antibiotics is an important step for preventing outbreak of MRSA nosocomial infection. In the screening of the antibiotic best suited for this purpose, we have found that polymyxin B, a commonly used antibiotic for gram-negative infection, had an unexpected strong cytokilling activity towards MRSA clinical strains, which was more potent than that of vancomycin or gentamicin. The data suggested that polymyxin B could be an antibiotic of choice in the treatment of topical carriage of or infection caused by MRSA.  相似文献   

16.
Lung cancer is the most deadly type of cancer in humans, with non-small-cell lung cancer (NSCLC) being the most frequent and aggressive type of lung cancer showing high resistance to radiation and chemotherapy. Despite the outstanding progress made in anti-tumor therapy, discovering effective anti-tumor drugs is still a challenging task. Here we describe a new semisynthetic derivative of cucurbitacin B (DACE) as a potent inhibitor of NSCLC cell proliferation. DACE arrested the cell cycle of lung epithelial cells at the G2/M phase and induced cell apoptosis by interfering with EGFR activation and its downstream signaling, including AKT, ERK, and STAT3. Consistent with our in vitro studies, intraperitoneal application of DACE significantly suppressed the growth of mouse NSCLC that arises from type II alveolar pneumocytes due to constitutive expression of a human oncogenic c-RAF kinase (c-RAF-1-BxB) transgene in these cells. Taken together, these findings suggest that DACE is a promising lead compound for the development of an anti-lung-cancer drug.  相似文献   

17.
18.
We have tested a panel of pediatric and adult human immunodeficiency virus type 1 (HIV-1) primary isolates for the ability to employ the following proteins as coreceptors during viral entry: CCR1, CCR2b, CCR3, CCR4, CCR5, CCR8, CXCR4, Bonzo, BOB, GPR1, V28, US28, and APJ. Most non-syncytium-inducing isolates could utilize only CCR5. All syncytium-inducing viruses used CXCR4, some also employed V28, and one (DH123) used CCR8 and APJ as well. A longitudinal series of HIV-1 subtype B isolates from an infected infant and its mother utilized Bonzo efficiently, as well as CCR5. The maternal isolates, which were syncytium inducing, also used CXCR4, CCR8, V28, and APJ.  相似文献   

19.
CCR5 binds the chemokines CCL3, CCL4, and CCL5 and is the major coreceptor for HIV-1 entry into target cells. Chemokines are supposed to form a natural barrier against human immunodeficiency virus, type 1 (HIV-1) infection. However, we showed that their antiviral activity is limited by CCR5 adopting low-chemokine affinity conformations at the cell surface. Here, we investigated whether a pool of CCR5 that is not stabilized by chemokines could represent a target for inhibiting HIV infection. We exploited the characteristics of the chemokine analog PSC-RANTES (N-α-(n-nonanoyl)-des-Ser(1)-[l-thioprolyl(2), l-cyclohexylglycyl(3)]-RANTES(4-68)), which displays potent anti-HIV-1 activity. We show that native chemokines fail to prevent high-affinity binding of PSC-RANTES, analog-mediated calcium release (in desensitization assays), and analog-mediated CCR5 internalization. These results indicate that a pool of spare CCR5 may bind PSC-RANTES but not native chemokines. Improved recognition of CCR5 by PSC-RANTES may explain why the analog promotes higher amounts of β-arrestin 2·CCR5 complexes, thereby increasing CCR5 down-regulation and HIV-1 inhibition. Together, these results highlight that spare CCR5, which might permit HIV-1 to escape from chemokines, should be targeted for efficient viral blockade.  相似文献   

20.
Here, we present the first report of a novel rearranged porcine circovirus type 2 (PCV2) strain named BIV, isolated from both in vitro and in vivo sources. The complete circular genome of BIV is 896 nucleotides in length. The data will help us to update current knowledge of the replication of PCV2 viruses in cell culture and of their molecular evolution, as well as their diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号