首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Owing to the intimate linkage of sequence and structure in nucleic acids, DNA is an extremely attractive molecule for the development of molecular devices, in particular when a combination of information processing and chemomechanical tasks is desired. Many of the previously demonstrated devices are driven by hybridization between DNA ‘effector’ strands and specific recognition sequences on the device. For applications it is of great interest to link several of such molecular devices together within artificial reaction cascades. Often it will not be possible to choose DNA sequences freely, e.g. when functional nucleic acids such as aptamers are used. In such cases translation of an arbitrary ‘input’ sequence into a desired effector sequence may be required. Here we demonstrate a molecular ‘translator’ for information encoded in DNA and show how it can be used to control the release of a protein by an aptamer using an arbitrarily chosen DNA input strand. The function of the translator is based on branch migration and the action of the endonuclease FokI. The modular design of the translator facilitates the adaptation of the device to various input or output sequences.  相似文献   

2.
Kissing-loop annealing of nucleic acids occurs in nature in several viruses and in prokaryotic replication, among other circumstances. Nucleobases of two nucleic acid strands (loops) interact with each other, although the two strands cannot wrap around each other completely because of the adjacent double-stranded regions (stems). In this study, we exploited DNA kissing-loop interaction for nanotechnological application. We functionalized the vertices of DNA tetrahedrons with DNA stem-loop sequences. The complementary loop sequence design allowed the hybridization of different tetrahedrons via kissing-loop interaction, which might be further exploited for nanotechnology applications like cargo transport and logical elements. Importantly, we were able to manipulate the stability of those kissing-loop complexes based on the choice and concentration of cations, the temperature and the number of complementary loops per tetrahedron either at the same or at different vertices. Moreover, variations in loop sequences allowed the characterization of necessary sequences within the loop as well as additional stability control of the kissing complexes. Therefore, the properties of the presented nanostructures make them an important tool for DNA nanotechnology.  相似文献   

3.
The human gastrointestinal (GI) tract contains a complex microbial community that develops in time and space. The most widely used approaches to study microbial diversity and activity are all based on the analysis of nucleic acids, DNA, rRNA and mRNA. Here, we present a DNA isolation protocol that is suitable for a wide variety of GI tract samples, including biopsies with minute amounts of material. The protocol is set up in such a way that sampling can be performed outside the laboratory, which offers possibilities for implementation in large intervention studies. The DNA isolation is based on mechanical disruption, followed by isolation of nucleic acids using phenol:chloroform:isoamylalcohol extraction. In addition, it includes an alternative DNA isolation protocol that is based on a commercial kit. These protocols have all been successfully used in our laboratory, resulting in isolation of DNA of sufficient quality for microbial diversity studies. Depending on the number of samples and sample type, the whole procedure will take approximately 2.5-4 hours.  相似文献   

4.
Xiong AS  Yao QH  Peng RH  Duan H  Li X  Fan HQ  Cheng ZM  Li Y 《Nature protocols》2006,1(2):791-797
Here we describe a simple and rapid method for assembly and PCR-based accurate synthesis (PAS) of long DNA sequences. The PAS protocol involves the following five steps: (i) design of the DNA sequence to be synthesized and of 60-bp overlapping oligonucleotides to cover the entire DNA sequence; (ii) purification of the oligonucleotides by PAGE; (iii) first PCR, to synthesize DNA fragments of 400-500 bp in length using 10 inner (template) and two outer (primer) oligonucleotides; (iv) second PCR, to assemble the products of the first PCR into the full-length DNA sequence; and (v) cloning and verification of the synthetic DNA by sequencing and, if needed, error correction using an overlap-extension PCR technique. This method, which takes approximately 1 wk, is suitable for synthesizing diverse types of long DNA molecule. We have successfully synthesized DNA fragments from 0.5 to 12.0 kb, with high G+C content, repetitive sequences or complex secondary structures. The PAS protocol therefore provides a simple, rapid, reliable and relatively inexpensive method for synthesizing long, accurate DNA sequences.  相似文献   

5.
There is a growing need for sensitive and reliable nucleic acid detection methods that are convenient and inexpensive. Responsive and programmable DNA nanostructures have shown great promise as chemical detection systems. Here, we describe a DNA detection system employing the triggered self-assembly of a novel DNA dendritic nanostructure. The detection protocol is executed autonomously without external intervention. Detection begins when a specific, single-stranded target DNA strand (T) triggers a hybridization chain reaction (HCR) between two, distinct DNA hairpins (α and β). Each hairpin opens and hybridizes up to two copies of the other. In the absence of T, α and β are stable and remain in their poised, closed-hairpin form. In the presence of T, α hairpins are opened by toe-hold mediated strand-displacement, each of which then opens and hybridizes two β hairpins. Likewise, each opened β hairpin can open and hybridize two α hairpins. Hence, each layer of the growing dendritic nanostructure can in principle accommodate an exponentially increasing number of cognate molecules, generating a high molecular weight nanostructure. This HCR system has minimal sequence constraints, allowing reconfiguration for the detection of arbitrary target sequences. Here, we demonstrate detection of unique sequence identifiers of HIV and Chlamydia pathogens.  相似文献   

6.
We report the replication technology of DNA chip using by sequence specific localization of nucleic acids via hybridization and electric transfer of the nucleic acids onto a new substrate without losing their array information. The denatured DNA fragments are first spotted and UV-cross-linked on a nylon membrane. The membrane is then immersed and hybridized in a DNA mixture solution that contains all complementary sequences of the nucleic acids to be hybridized with the DNA fragments on the membrane. The hybridized DNA fragments are transferred to another membrane at the denatured condition. After separating two membranes, the transferred membrane contains a complementary array of DNA fragments. This method can be used for the replication of the same copy of DNA chip repeatedly and moreover could be applied for a personalized DNA chip fabrication, where specific information of each spot of DNA chip is originated from the genetic information of a personal sample.  相似文献   

7.
Double-stranded DNA is a therapeutic target for a variety of anticancer and antimicrobial drugs. Noncovalent interactions of small molecules with DNA usually occur via intercalation of planar compounds between adjacent base pairs or minor-groove recognition by extended crescent-shaped ligands. However, the dynamic and flexibility of the DNA platform provide a variety of conformations that can be targeted by structurally diverse compounds. Here, we propose a novel DNA-binding template for construction of new therapeutic candidates. Four bisphenylcarbazole derivatives, derived from the combined molecular architectures of known antitumor bisphenylbenzimidazoles and anti-infectious dicationic carbazoles, have been designed, and their interaction with DNA has been studied by a combination of biochemical and biophysical methods. The substitutions of the bisphenylcarbazole core with two terminal dimethylaminoalkoxy side chains strongly promote the interaction with DNA, to prevent the heat denaturation of the double helix. The deletion or the replacement of the dimethylamino-terminal groups with hydroxyl groups strongly decreased DNA interaction, and the addition of a third cationic side chain on the carbazole nitrogen reinforced the affinity of the compound for DNA. Although the bi- and tridentate molecules both derive from well-characterized DNA minor-groove binders, the analysis of their binding mode by means of circular and linear dichroism methods suggests that these compounds form intercalation complexes with DNA. Negative-reduced dichroism signals were recorded in the presence of natural DNA and synthetic AT and GC polynucleotides. The intercalation hypothesis was validated by unwinding experiments using topoisomerase I. Prominent gel shifts were observed with the di- and trisubstituted bisphenylcarbazoles but not with the uncharged analogues. These observations, together with the documented stacking properties of such molecules (components for liquid crystals), prompted us to investigate their binding to the human telomeric DNA sequence by means of biosensor surface plasmon resonance. Under conditions favorable to G4 formation, the title compounds showed only a modest interaction with the telomeric quadruplex sequence, comparable to that measured with a double-stranded oligonucleotide. Their sequence preference was explored by DNase I footprinting experiments from which we identified a composite set of binding sequences comprising short AT stretches and a few other mixed AT/GC blocks with no special AT character. The variety of the binding sequences possibly reflects the coexistence of distinct positioning of the chromophore in the intercalation sites. The bisphenylcarbazole unit represents an original pharmacophore for DNA recognition. Its branched structure, with two or three arms suitable to introduce a structural diversity, provides an interesting scaffold to built molecules susceptible to discriminate between the different conformations of nucleic acids.  相似文献   

8.
DNA纳米技术是基于沃森克里克碱基配对原则产生可编程核酸结构的技术。因其具有高精度的工程设计、前所未有的可编程性和内在的生物相容性等特点,运用该技术合成的纳米结构不仅可以与小分子、核酸、蛋白质、病毒和癌细胞相互作用,还可以作为纳米载体,递送不同的治疗药物。DNA折纸作为一种有效的、多功能的方法来构建二维和三维可编程的纳米结构,是DNA纳米技术发展的一个里程碑。由于其高度可控的几何形状、空间寻址性、易于化学修饰,DNA折纸在许多领域具有巨大的应用潜力。本文通过介绍DNA折纸的起源、基本原理和目前进展,归纳总结了运用DNA折纸进行药物装载和释放的方式,并基于此技术,展望了今后的发展趋势以及所面临的机遇和挑战。  相似文献   

9.
Specific and predictable hybridization of the polynucleotide sequences to their complementary counterparts plays a fundamental role in the rational design of new nucleic acid nanodevices. Generally, nucleic acid hybridization can be performed using two major strategies, namely hybridization of DNA or RNA targets to surface-tethered oligonucleotide probes (solid-phase hybridization) and hybridization of the target nucleic acids to randomly distributed probes in solution (solution-phase hybridization). Investigations into thermodynamic and kinetic parameters of these two strategies showed that hybridization on surfaces is less favorable than that of the same sequence in solution. Indeed, the efficiency of DNA hybridization on surfaces suffers from three constraints: (1) electrostatic repulsion between DNA strands on the surface, (2) steric hindrance between tethered DNA probes, and (3) nonspecific adsorption of the attached oligonucleotides to the solid surface. During recent years, several strategies have been developed to overcome the problems associated with DNA hybridization on surfaces. Optimizing the probe surface density, application of a linker between the solid surface and the DNA-recognizing sequence, optimizing the pH of DNA hybridization solutions, application of thiol reagents, and incorporation of a polyadenine block into the terminal end of the recognizing sequence are among the most important strategies for enhancing DNA hybridization on surfaces.  相似文献   

10.
DNA nanotechnologies have been highlighted as a promising synthetic tool for the creation of new shaped materials. They have developed a variety of materials in different shapes and sizes [1]. Inspired by these advancements, we sought to design a ring-shaped DNA nanostructure connected by X-DNA blocks. Six XDNA blocks were ligated together to form a circular nanostructure with a diameter of approximately 30 nm. Each DNA block possesses different overhang sequences in its terminal. It was sequentially built up onto each block platform in the line and later clipped into a necklace shape via enzymatic ligation. It was finally evaluated by a gel electrophoretic migration shift assay. It was concluded that the complete set of the necklace shaped DNA nanostructure was the most slowly retarded relative to other forms of incompleteness.  相似文献   

11.
Accurate estimation of biological diversity in environmental DNA samples using high-throughput amplicon pyrosequencing must account for errors generated by PCR and sequencing. We describe a novel approach to distinguish the underlying sequence diversity in environmental DNA samples from errors that uses information on the abundance distribution of similar sequences across independent samples, as well as the frequency and diversity of sequences within individual samples. We have further refined this approach into a bioinformatics pipeline, Amplicon Pyrosequence Denoising Program (APDP) that is able to process raw sequence datasets into a set of validated sequences in formats compatible with commonly used downstream analyses packages. We demonstrate, by sequencing complex environmental samples and mock communities, that APDP is effective for removing errors from deeply sequenced datasets comprising biological and technical replicates, and can efficiently denoise single-sample datasets. APDP provides more conservative diversity estimates for complex datasets than other approaches; however, for some applications this may provide a more accurate and appropriate level of resolution, and result in greater confidence that returned sequences reflect the diversity of the underlying sample.  相似文献   

12.
Two data structures designated Fragment and Construct are described. The Fragment data structure defines a continuous nucleic acid sequence from a unique genetic origin. The Construct defines a continuous sequence composed of sequences from multiple genetic origins. These data structures are manipulated by a set of software tools to simulate the construction of mosaic recombinant DNA molecules. They are also used as an interface between sequence data banks and analytical programs.  相似文献   

13.
Abstract

We present a new method for building full 3-D structures of DNA sequences. A database of the conformational properties of dinucleotide steps has been compiled using X-ray crystal structures of oligonucleotides. The protocol uses these dinucleotides as building blocks to generate three dimensional structures of any required sequence in any required conformation.  相似文献   

14.
Rapid capture of DNA targets   总被引:1,自引:0,他引:1  
St John J  Quinn TW 《BioTechniques》2008,44(2):259-264
A rapid capture technique was developed to efficiently isolate specific DNA targets from a variety of genomes. The specificity can be easily adapted to any target for which partial sequence is known, allowing for the isolation of a wide set of target molecules from either characterized or uncharacterized genomes. These targets include but are not limited to transposable elements, microsatellites, repetitive sequences, and possibly unique sequences. Additionally, because the thermodynamics of nucleic acid hybridizations differ from processes such as PCR, a wider variety of targets with a range of mismatches to any customized probe can be isolated. Further this method allows sequences flanking known internal regions to be co-isolated, facilitating the development of flanking primers for downstream applications. Considerable reduction in the frequency of nonspecific binding between key components (background) obviates the need for subsequent screening steps. Rapid capture of DNA targets quickly provides information about target and flanking sequences.  相似文献   

15.
16.
Many nucleic acid enzymes and aptamers have modular architectures that allow them to retain their functions when combined with other nucleotide sequences. This modular function facilitates the engineering of RNAs and DNAs that have more complex functions. We sought to create new DNA aptamers that bind cellulose to provide a module for immobilizing DNAs. Cellulose has been used in a variety of applications ranging from coatings and films to pharmaceutical preparations, and therefore DNA aptamers that bind cellulose might enable new applications. We used in vitro selection to isolate aptamers from a pool of random-sequence DNAs and subjected two distinct clones to additional rounds of mutagenesis and selection. One aptamer (CELAPT 14) was chosen for sequence minimization and more detailed biochemical analysis. CELAPT 14 aptamer variants exhibit robust binding both to cellulose powder and paper. Also, an allosteric aptamer construct was engineered that exhibits ATP-mediated cellulose binding during paper chromatography.  相似文献   

17.
Models of chromatid structure are based on inferences made from genetic, cytological, and cytochemical observations. An alternative approach can provide limits as to the number of identical subunits present in chromatids. This method is based on the demonstration that nucleotide sequence diversity may be estimated from the kinetics of renaturation of denatured DNA. Measurements of DNA content and renaturation rate constants are given for several eukaryotic DNAs. Control experiments involved measurements of renaturation kinetics of DNAs from bacteria and bacteriophage. These estimates show that most of the nucleotide sequences in mouse, Drosophila, and Ciona DNA are present only once per sperm. Since the reduction of DNA content during meiosis indicates that mouse sperm contain a haploid set of chromatids, it follows that a set of mouse meiotic chromatids contains a single copy of most sequences. Models of chromatid structure which postulate multiple subunits with identical nucleotide sequences are therefore not tenable for mouse meiotic chromatids. This method of analyzing nucleotide sequence diversity may be of general use in designing models of chromatid structure in other organisms.  相似文献   

18.
Nonnatural nucleotide modified by glucose or galactose was synthesized to increase functional diversity of DNA library. These compounds were incorporated in a DNA double strand using Klenow Fragment as well as dTTP. These functional group could be ordered sequentially on a DNA double strand at intervals of few angstroms according to the designed template sequence within a few hours. This method must be useful to constructing nonnatural DNA library or designed supramolecular structures.  相似文献   

19.
20.
Molecules that interact with DNA in a sequence-specific manner are attractive tools for manipulating gene sequence and expression. For example, triplex-forming oligonucleotides (TFOs), which bind to oligopyrimidine.oligopurine sequences via Hoogsteen hydrogen bonds, have been used to inhibit gene expression at the DNA level as well as to induce targeted mutagenesis in model systems. Recent advances in using oligonucleotides and analogs to target DNA in a sequence-specific manner will be discussed. In particular, chemical modification of TFOs has been used to improve binding to chromosomal target sequences in living cells. Various oligonucleotide analogs have also been found to expand the range of sequences amenable to manipulation, including so-called "Zorro" locked nucleic acids (LNAs) and pseudo-complementary peptide nucleic acids (pcPNAs). Finally, we will examine the potential of TFOs for directing targeted gene sequence modification and propose that synthetic nucleases, based on conjugation of sequence-specific DNA ligands to DNA damaging molecules, are a promising alternative to protein-based endonucleases for targeted gene sequence modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号