首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is an adaptation of the nicotine-evoked locomotor response (NLR) assay, which was originally utilized for phenotype-based neurotoxicity screening in zebrafish embryos. Zebrafish embryos do not exhibit spontaneous swimming until roughly 4 days post-fertilization (dpf), however, a robust swimming response can be induced as early as 36 hours post-fertilization (hpf) by means of acute nicotine exposure (30–240μM). Here, the NLR was tested as a tool for early detection of locomotor phenotypes in 36, 48 and 72 hpf mutant zebrafish embryos of the non-touch-responsive maco strain; this assay successfully discriminated mutant embryos from their non-mutant siblings. Then, methylmercury (MeHg) was used as a proof-of-concept neurotoxicant to test the effectiveness of the NLR assay as a screening tool in toxicology. The locomotor effects of MeHg were evaluated in 6 dpf wild type eleutheroembryos exposed to waterborne MeHg (0, 0.01, 0.03 and 0.1μM). Afterwards, the NLR assay was tested in 48 hpf embryos subjected to the same MeHg exposure regimes. Embryos exposed to 0.01 and 0.03μM of MeHg exhibited significant increases in locomotion in both scenarios. These findings suggest that similar locomotor phenotypes observed in free swimming fish can be detected as early as 48 hpf, when locomotion is induced with nicotine.  相似文献   

2.
The Wangyang River (WYR) basin is a typical wastewater irrigation area in Hebei Province, North China. This study investigated the concentration and distribution of six priority phthalate esters (PAEs) in the agricultural soils in this area. Thirty-nine soil samples (0–20 cm) were collected along the WYR to assess the PAE residues in soils. Results showed that PAEs are ubiquitous environmental contaminants in the topsoil obtained from the irrigation area. The concentrations of Σ6PAEs range from 0.191 μg g−1 dw to 0.457 μg g−1 dw with an average value of 0.294 μg g−1 dw. Di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) are the dominant PAE species in the agricultural soils. Among the DEHP concentrations, the highest DEHP concentration was found at the sites close to the villages; this result suggested that dense anthropogenic activities and random garbage disposal in the rural area are possible sources of PAEs. The PAE concentrations were weakly and positively correlated with soil organic carbon and soil enzyme activities; thus, these factors can affect the distribution of PAEs. This study further showed that only dimethyl phthalate (DMP) concentrations exceeded the recommended allowable concentrations; no remediation measures are necessary to control the PAEs in the WYR area. However, the PAEs in the topsoil may pose a potential risk to the ecosystem and human health in this area. Therefore, the exacerbating PAE pollution should be addressed.  相似文献   

3.
In this video, we demonstrate the method our lab has developed to analyze the cell shape changes and rearrangements required to bend and fold the developing zebrafish brain (Gutzman et al, 2008). Such analysis affords a new understanding of the underlying cell biology required for development of the 3D structure of the vertebrate brain, and significantly increases our ability to study neural tube morphogenesis. The embryonic zebrafish brain is shaped beginning at 18 hours post fertilization (hpf) as the ventricles within the neuroepithelium inflate. By 24 hpf, the initial steps of neural tube morphogenesis are complete. Using the method described here, embryos at the one cell stage are injected with mRNA encoding membrane-targeted green fluorescent protein (memGFP). After injection and incubation, the embryo, now between 18 and 24 hpf, is mounted, inverted, in agarose and imaged by confocal microscopy. Notably, the zebrafish embryo is transparent making it an ideal system for fluorescent imaging. While our analyses have focused on the midbrain-hindbrain boundary and the hindbrain, this method could be extended for analysis of any region in the zebrafish to a depth of 80-100 μm.Open in a separate windowClick here to view.(44M, flv)  相似文献   

4.

Background

Angiogenesis plays an important role in a wide range of physiological processes, and many diseases are associated with the dysregulation of angiogenesis. Radix Astragali is a Chinese medicinal herb commonly used for treating cardiovascular disorders and has been shown to possess angiogenic effect in previous studies but its active constituent and underlying mechanism remain unclear. The present study investigates the angiogenic effects of calycosin, a major isoflavonoid isolated from Radix Astragali, in vitro and in vivo.

Methodology

Tg(fli1:EGFP) and Tg(fli1:nEGFP) transgenic zebrafish embryos were treated with different concentrations of calycosin (10, 30, 100 µM) from 72 hpf to 96 hpf prior morphological observation and angiogenesis phenotypes assessment. Zebrafish embryos were exposed to calycosin (10, 100 µM) from 72 hpf to 78 hpf before gene-expression analysis. The effects of VEGFR tyrosine kinase inhibitor on calycosin-induced angiogenesis were studied using 72 hpf Tg(fli1:EGFP) and Tg(fli1:nEGFP) zebrafish embryos. The pro-angiogenic effects of calycosin were compared with raloxifene and tamoxifen in 72 hpf Tg(fli1:EGFP) zebrafish embryos. The binding affinities of calycosin to estrogen receptors (ERs) were evaluated by cell-free and cell-based estrogen receptor binding assays. Human umbilical vein endothelial cell cultures (HUVEC) were pretreated with different concentrations of calycosin (3, 10, 30, 100 µM) for 48 h then tested for cell viability and tube formation. The role of MAPK signaling in calycosin-induced angiogenesis was evaluated using western blotting.

Conclusion

Calycosin was shown to induce angiogenesis in human umbilical vein endothelial cell cultures (HUVEC) in vitro and zebrafish embryos in vivo via the up-regulation of vascular endothelial growth factor (VEGF), VEGFR1 and VEGFR2 mRNA expression. It was demonstrated that calycosin acted similar to other selective estrogen receptor modulators (SERMs), such as raloxifene and tamoxifen, by displaying selective potency and affinity to estrogen receptors ERα and ERβ. Our results further indicated that calycosin promotes angiogenesis via activation of MAPK with the involvement of ERK1/2 and ER. Together, this study revealed, for the first time, that calycosin acts as a selective estrogen receptor modulator (SERM) to promote angiogenesis, at least in part through VEGF-VEGFR2 and MAPK signaling pathways.  相似文献   

5.
The specific activity of aminoacyl-tRNA synthetases (spAARS), an index of growth rate, and of the electron transport system (spETS), an index of respiration, was measured in three size fractions (73–150 μm, >150 μm and >350 μm) of zooplankton during five cruises to tropical coastal waters of the Kimberley coast (North West Australia) and four cruises to waters of the Great Barrier Reef (GBR; North East Australia). The N-specific biomass of plankton was 3–4-fold higher in the Kimberley than on the GBR in all 3 size classes: Kimberley 1.27, 3.63, 1.94 mg m-3; GBR 0.36, 0.88 and 0.58 mg m-3 in the 73–150 μm, >150 μm and >350 μm size classes, respectively. Similarly, spAARS activity in the Kimberley was greater than that of the GBR: 88.4, 132.2, and 147.6 nmol PPi hr-1 mg protein -1 in the Kimberley compared with 71.7, 82.0 and 83.8 nmol PPi hr-1 mg protein -1 in the GBR, for the 73–150 μm, >150 μm and >350 μm size classes, respectively. Specific ETS activity showed similar differences in scale between the two coasts: 184.6, 148.8 and 92.2 μL O2 hr-1 mg protein-1 in the Kimberley, against 86.5, 88.3 and 71.3 μL O2 hr-1 mg protein-1 in the GBR. On the basis of these measurements, we calculated that >150 μm zooplankton grazing accounted for 7% of primary production in the Kimberley and 8% in GBR waters. Area-specific respiration by >73 μm zooplankton was 7-fold higher in the Kimberley than on the GBR and production by >150 μm zooplankton was of the order of 278 mg C m-2 d-1 in the Kimberley and 42 mg C m-2 d-1 on the GBR. We hypothesize that the much stronger physical forcing on the North West shelf is the principal driver of higher rates in the west than in the east of the continent.  相似文献   

6.
Artemisinin, a potent antimalarial drug, is phytotoxic to many crops and weeds. The effects of artemisinin on stress markers, including fluorescence parameters, photosystem II photochemistry, photon energy dissipation, lipid peroxidation, reactive oxygen species generation and carbon isotope discrimination in Arabidopsis thaliana were studied. Arabidopsis ecotype Columbia (Col-0) seedlings were grown in perlite and watered with 50% Hoagland nutrient solution. Adult plants of Arabidopsis were treated with artemisinin at 0, 40, 80, 160 μM for one week. Artemisinin, in the range 40–160 μM, decreased the fresh biomass, chl a, b and leaf mineral contents. Photosynthetic efficiency, yield and electron transport rate in Arabidopsis were also reduced following exposure to 80 and 160 μM artemisinin. The ΦNPQ and NPQ were less than control. Artemisinin treatment caused an increase in root oxidizability and lipid peroxidation (MDA contents) of Arabidopsis. Calcium and nitrogen contents decreased after 80 and 160 μM artemisinin treatment compared to control. δ13C values were less negative following treatment with artemisinin as compared to the control. Artemisinin also decreased leaf protein contents in Arabidopsis. Taken together, these data suggest that artemisinin inhibits many physiological and biochemical processes in Arabidopsis.  相似文献   

7.
A field study was conducted to compare the formationand bacterial communities of rhizosheaths of wheat grown under wheat-cotton and wheat-rice rotation and to study the effects of bacterial inoculation on plant growth. Inoculation of Azospirillum sp. WS-1 and Bacillus sp. T-34 to wheat plants increased root length, root and shoot dry weight and dry weight of rhizosheathsoil when compared to non-inoculated control plants, and under both crop rotations. Comparing both crop rotations, root length, root and shoot dry weight and dry weight of soil attached with roots were higher under wheat-cotton rotation. Organic acids (citric acid, malic acid, acetic acid and oxalic acid) were detected in rhizosheaths from both rotations, with malic acid being most abundant with 24.8±2 and 21.3±1.5 μg g-1 dry soil in wheat-cotton and wheat-rice rotation, respectively. Two sugars (sucrose, glucose) were detected in wheat rhizosheath under both rotations, with highest concentrations of sucrose (4.08±0.5 μg g-1and 7.36±1.0 μg g-1) and glucose (3.12±0.5 μg g-1 and 3.01± μg g-1) being detected in rhizosheaths of non-inoculated control plants under both rotations. Diversity of rhizosheath-associated bacteria was evaluated by cultivation, as well as by 454-pyrosequencing of PCR-tagged 16S rRNA gene amplicons. A total of 14 and 12 bacterial isolates predominantly belonging to the genera Arthrobacter, Azospirillum, Bacillus, Enterobacter and Pseudomonaswere obtained from the rhizosheath of wheat grown under wheat-cotton and wheat-rice rotation, respectively. Analysis of pyrosequencing data revealed Proteobacteria, Bacteriodetes and Verrucomicrobia as the most abundant phyla in wheat-rice rotation, whereas Actinobacteria, Firmicutes, Chloroflexi, Acidobacteria, Planctomycetes and Cyanobacteria were predominant in wheat-cotton rotation. From a total of 46,971 sequences, 10.9% showed ≥97% similarity with 16S rRNA genes of 32 genera previously shown to include isolates with plant growth promoting activity (nitrogen fixation, phosphate-solubilization, IAA production). Among these, the most predominant genera were Arthrobacter, Azoarcus, Azospirillum, Bacillus, Cyanobacterium, Paenibacillus, Pseudomonas and Rhizobium.  相似文献   

8.
We demonstrate the application of image-based high-content screening (HCS) methodology to identify small molecules that can modulate the FGF/RAS/MAPK pathway in zebrafish embryos. The zebrafish embryo is an ideal system for in vivo high-content chemical screens. The 1-day old embryo is approximately 1mm in diameter and can be easily arrayed into 96-well plates, a standard format for high throughput screening. During the first day of development, embryos are transparent with most of the major organs present, thus enabling visualization of tissue formation during embryogenesis. The complete automation of zebrafish chemical screens is still a challenge, however, particularly in the development of automated image acquisition and analysis. We previously generated a transgenic reporter line that expresses green fluorescent protein (GFP) under the control of FGF activity and demonstrated their utility in chemical screens 1. To establish methodology for high throughput whole organism screens, we developed a system for automated imaging and analysis of zebrafish embryos at 24-48 hours post fertilization (hpf) in 96-well plates 2. In this video we highlight the procedures for arraying transgenic embryos into multiwell plates at 24hpf and the addition of a small molecule (BCI) that hyperactivates FGF signaling 3. The plates are incubated for 6 hours followed by the addition of tricaine to anesthetize larvae prior to automated imaging on a Molecular Devices ImageXpress Ultra laser scanning confocal HCS reader. Images are processed by Definiens Developer software using a Cognition Network Technology algorithm that we developed to detect and quantify expression of GFP in the heads of transgenic embryos. In this example we highlight the ability of the algorithm to measure dose-dependent effects of BCI on GFP reporter gene expression in treated embryos.  相似文献   

9.
We examined the role of zebrafish (Danio rerio) Jak2a, a homolog of mammalian Jak2, in the developing embryo by injecting in vitro synthesized Jak2a shRNA into zebrafish zygotes. Blood circulation was suppressed in Jak2a shRNA-injected embryos from 24 hours post fertilization (hpf) and all embryos died with enlarged pericardium, shortened body lengths, and defects in some vasculature within 8 days post fertilization. O-dianisidine staining of red blood cells revealed normal blood island formation with no circulating red blood cells. As in Jak2−/− transgenic mice, expression of definitive Ba1 globin was significantly reduced in Jak2a knockdown embryos at 36 hpf, whereas expression of other hematopoietic markers, primitive be1 globin, gata-1, and scl, were unaffected. More importantly, blood vessel formation was disturbed in Jak2a knockdown embryos as revealed by alkaline phosphatase staining at 72 hpf. Thus, our data indicate that zebrafish Jak2a is important in both definitive hematopoiesis and blood vessel formation.  相似文献   

10.
Tomographic imaging has been a widely used tool in medicine as it can provide three-dimensional (3D) structural information regarding objects of different size scales. In micrometer and millimeter scales, optical microscopy modalities find increasing use owing to the non-ionizing nature of visible light, and the availability of a rich set of illumination sources (such as lasers and light-emitting-diodes) and detection elements (such as large format CCD and CMOS detector-arrays). Among the recently developed optical tomographic microscopy modalities, one can include optical coherence tomography, optical diffraction tomography, optical projection tomography and light-sheet microscopy. 1-6 These platforms provide sectional imaging of cells, microorganisms and model animals such as C. elegans, zebrafish and mouse embryos.Existing 3D optical imagers generally have relatively bulky and complex architectures, limiting the availability of these equipments to advanced laboratories, and impeding their integration with lab-on-a-chip platforms and microfluidic chips. To provide an alternative tomographic microscope, we recently developed lensfree optical tomography (LOT) as a high-throughput, compact and cost-effective optical tomography modality. 7 LOT discards the use of lenses and bulky optical components, and instead relies on multi-angle illumination and digital computation to achieve depth-resolved imaging of micro-objects over a large imaging volume. LOT can image biological specimen at a spatial resolution of <1 μm x <1 μm x <3 μm in the x, y and z dimensions, respectively, over a large imaging volume of 15-100 mm3, and can be particularly useful for lab-on-a-chip platforms.  相似文献   

11.
Ergosterol contents of six wood-rotting basidiomycetes were analyzed under different cultivation conditions. Four white-rot and two brown-rot fungi were cultivated in liquid synthetic medium with low nutrient nitrogen (2 mM) and 0.1% glucose, and ergosterol in mycelial biomasses were measured weekly for 35 days. The highest ergosterol content per fungal dry mass in the white-rot fungi was found in Phanerochaete chrysosporium being 2100 μg g−1, while in Ceriporiopsis subvermispora it was 1700 μg g−1, Phlebia radiata 700 μg g−1, and Physisporinus rivulosus 560 μg g−1. In brown-rot fungi the ergosterol content was in Poria placenta 2868 μg g−1 and in Gloeophyllum trabeum 3915 μg g−1. On agar media, P. chrysosporium and P. radiata reached the highest ergosterol value in 7 days, while in wood block cultures the ergosterol contents were quite stable. The conversion factors for ergosterol-to-fungal biomass varied from 48 and 243, which were lower than values for ascomycetous soil fungi reported in the literature.  相似文献   

12.
The hydrothermal vent tubeworm Riftia pachyptila lacks a mouth and gut and lives in association with intracellular, sulfide-oxidizing chemoautotrophic bacteria. Growth of this tubeworm requires an exogenous source of nitrogen for biosynthesis, and, as determined in previous studies, environmental ammonia and free amino acids appear to be unlikely sources of nitrogen. Nitrate, however, is present in situ (K. Johnson, J. Childress, R. Hessler, C. Sakamoto-Arnold, and C. Beehler, Deep-Sea Res. 35:1723–1744, 1988), is taken up by the host, and can be chemically reduced by the symbionts (U. Hentschel and H. Felbeck, Nature 366:338–340, 1993). Here we report that at an in situ concentration of 40 μM, nitrate is acquired by R. pachyptila at a rate of 3.54 μmol g−1 h−1, while elimination of nitrite and elimination of ammonia occur at much lower rates (0.017 and 0.21 μmol g−1 h−1, respectively). We also observed reduction of nitrite (and accordingly nitrate) to ammonia in the trophosome tissue. When R. pachyptila tubeworms are exposed to constant in situ conditions for 60 h, there is a difference between the amount of nitrogen acquired via nitrate uptake and the amount of nitrogen lost via nitrite and ammonia elimination, which indicates that there is a nitrogen “sink.” Our results demonstrate that storage of nitrate does not account for the observed stoichiometric differences in the amounts of nitrogen. Nitrate uptake was not correlated with sulfide or inorganic carbon flux, suggesting that nitrate is probably not an important oxidant in metabolism of the symbionts. Accordingly, we describe a nitrogen flux model for this association, in which the product of symbiont nitrate reduction, ammonia, is the primary source of nitrogen for the host and the symbionts and fulfills the association's nitrogen needs via incorporation of ammonia into amino acids.  相似文献   

13.
14.
The production of microcystins (MC) from Microcystis aeruginosa UTEX 2388 was investigated in a P-limited continuous culture. MC (MC-LR, MC-RR, and MC-YR) from lyophilized M. aeruginosa were extracted with 5% acetic acid, purified by a Sep-Pak C18 cartridge, and then analyzed by high-performance liquid chromatography with a UV detector and Nucleosil C18 reverse-phase column. The specific growth rate (μ) of M. aeruginosa was within the range of 0.1 to 0.8/day and was a function of the cellular P content under a P limitation. The N/P atomic ratio of steady-state cells in a P-limited medium varied from 24 to 15 with an increasing μ. The MC-LR and MC-RR contents on a dry weight basis were highest at μ of 0.1/day at 339 and 774 μg g−1, respectively, while MC-YR was not detected. The MC content of M. aeruginosa was higher at a lower μ, whereas the MC-producing rate was linearly proportional to μ. The C fixation rate at an ambient irradiance (160 microeinsteins m−2 s−1) increased with μ. The ratios of the MC-producing rate to the C fixation rate were higher at a lower μ. Accordingly, the growth of M. aeruginosa was reduced under a P limitation due to a low C fixation rate, whereas the MC content was higher. Consequently, increases in the MC content per dry weight along with the production of the more toxic form, MC-LR, were observed under more P-limited conditions.  相似文献   

15.
Four groups of juvenile Megalobrama amblycephala were fed three times daily with six semi-purified diets containing 3.39 (PA unsupplied diet), 10.54, 19.28, 31.04, 48.38 and 59.72 mg kg-1 calcium D-pantothenate. The results showed that survival rate, final weight, specific growth rate, protein efficiency ratio and nitrogen retention efficiency all increased significantly (P<0.01) as dietary PA levels increased from 3.39 to 19.28 mg kg-1, whereas the opposite was true for feed conversion ratio. Whole-body crude protein increased as dietary PA levels increased, while the opposite pattern was found for the crude lipid content. Intestinal α-amylase, lipase, protease, Na+-K+-ATPase, alkaline phosphatase and gamma-glutamyl transferase activities were all elevated in fish fed PA-supplemented diets. Hepatic catalase activities improved with increases in dietary PA, while the opposite was true for malondialdehyde contents. The liver PA concentration and coenzyme A content rose significantly (P<0.01), up to 31.04 mg kg-1, with increasing dietary PA levels and then plateaued. The percentage of hepatic saturated fatty acids increased significantly (P<0.01) as dietary PA levels increased, while the percentages of monounsaturated fatty acids and polyunsaturated fatty acid (PUFA) decreased as dietary PA increased. Fish fed diets containing 19.28 and 31.04 mg kg-1 PA exhibited higher (P<0.01) docosahexaenoic acid and PUFA percentages in muscle than those fed with other diets. The expression of the gene encoding pantothenate kinase was significantly up-regulated (P<0.01) in fish fed PA-supplemented diets. Hepatic Acetyl-CoA carboxylase α, fatty acid synthetase, stearoyl regulatory element-binding protein 1 and X receptor α genes all increased significantly (P<0.01) as dietary PA levels increased from 3.39 to 31.04 mg kg-1. Based on broken-line regression analyses of weight gain, liver CoA concentrations and PA contents against dietary PA levels, the optimal dietary PA requirements of juvenile blunt snout bream were estimated to be 24.08 mg kg-1.  相似文献   

16.
Withania somnifera has been an important herb in the Ayurvedic and indigenous medical systems for centuries in India. However, these grow as weeds mostly in the wastelands, which receive contaminated water from municipal and industrial sources. In the present investigation, plants of Withania somnifera were exposed to various concentrations of arsenate (AsV) and arsenite (AsIII) (0, 10, 25, 50, 100 μM) for 10 days and analysed for accumulation of arsenic (As) and physiological and biochemical changes. Plants showed more As accumulation upon exposure to AsIII (320 μg g−1 DW in roots and 161 μg g−1 DW in leaves) than to AsV (173 μg g−1 DW in roots and 100 μg g−1 DW in leaves) after 10 days of treatment. Consequently, AsIII exposure caused more toxicity to plants as compared to that AsV, as evaluated in terms of the level of photosynthetic pigments and oxidative stress parameters (superoxide, hydrogen peroxide and lipid peroxidation), particularly at higher concentrations and on longer durations. Plants could tolerate low concentrations (variable for AsIII and AsV) until longer durations (10 days) and high concentrations for shorter durations (1–5 days) through increase in antioxidant enzymes and by augmented synthesis of thiols. In conclusion, As tolerance potential of Withania plants on one hand advocates its prospective use for remediation under proper supervision and on the other demonstrates possible threat of As entry into humans due to medicinal uses.  相似文献   

17.
Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA communities were investigated by measuring ammonia monooxygenase (amoA) gene abundance and nitrification potentials both spatially and temporally. Nitrification potentials differed along the estuary and over time, with the greatest nitrification potentials occurring mid-estuary (8.2 μmol N grams dry weight [gdw]−1 day−1 in June, increasing to 37.4 μmol N gdw−1 day−1 in January). At the estuary head, the nitrification potential was 4.3 μmol N gdw−1 day−1 in June, increasing to 11.7 μmol N gdw−1 day−1 in January. At the estuary head and mouth, nitrification potentials fluctuated throughout the year. AOB amoA gene abundances were significantly greater (by 100-fold) than those of AOA both spatially and temporally. Nitrosomonas spp. were detected along the estuary by denaturing gradient gel electrophoresis (DGGE) band sequence analysis. In conclusion, AOB dominated over AOA in the estuarine sediments, with the ratio of AOB/AOA amoA gene abundance increasing from the upper (freshwater) to lower (marine) regions of the Colne estuary. These findings suggest that in this nutrified estuary, AOB (possibly Nitrosomonas spp.) were of major significance in nitrification.  相似文献   

18.
A rapid test to identify drugs that affect autonomic responses to hypoxia holds therapeutic and ecologic value. The zebrafish (Danio rerio) is a convenient animal model for investigating peripheral O2 chemoreceptors and respiratory reflexes in vertebrates; however, the neurotransmitters and receptors involved in this process are not adequately defined. The goals of the present study were to demonstrate purinergic and cholinergic control of the hyperventilatory response to hypoxia in zebrafish, and to develop a procedure for screening of neurochemicals that affect respiration. Zebrafish larvae were screened in multi-well plates for sensitivity to the cholinergic receptor agonist, nicotine, and antagonist, atropine; and to the purinergic receptor antagonists, suramin and A-317491. Nicotine increased ventilation frequency (fV) maximally at 100 μM (EC50 = 24.5 μM). Hypoxia elevated fV from 93.8 to 145.3 breaths min-1. Atropine reduced the hypoxic response only at 100 μM. Suramin and A-317491 maximally reduced fV at 50 μM (EC50 = 30.4 and 10.8 μM) and abolished the hyperventilatory response to hypoxia. Purinergic P2X3 receptors were identified in neurons and O2-chemosensory neuroepithelial cells of the gills using immunohistochemistry and confocal microscopy. These studies suggest a role for purinergic and nicotinic receptors in O2 sensing in fish and implicate ATP and acetylcholine in excitatory neurotransmission, as in the mammalian carotid body. We demonstrate a rapid approach for screening neuroactive chemicals in zebrafish with implications for respiratory medicine and carotid body disease in humans; as well as for preservation of aquatic ecosystems.  相似文献   

19.
With a view to consider the increasing concern over nitrogen pollution in the aquatic environment, we investigated effects of nitrate (NO3) and nitrite (NO2) on the activity of dopaminergic neuron in zebrafish embryos and larvae. Both nitrate and nitrite exposure decreased the expression of tyrosine hydroxylase (TH) in dopaminergic neurons at 48 hpf. Only nitrite decreased the response to tactile stimulation at 72 hpf, whereas both nitrate and nitrite decreased the swimming activity at 6 dpf. When the embryos were exposed to nitrate or nitrite together with an estrogen receptor blocker (ICI 182,780), the decreases in TH expression and motor behavior caused by nitrate or nitrite alone were reversed suggesting the effects of nitrate and nitrite were mediated through estrogen receptor (ER). The result of co-incubation with an oxidoreductase inhibitor, diphenyleneiodonium, indicated the conversion to nitric oxide (NO) is likely to be responsible for the effects of nitrate and nitrite, which was further supported by the increased staining for NO after exposure. The present study demonstrates that nitrate and nitrite are neurotoxicants acting as an endocrine disruptor possibly through conversion to NO to downregulate the activity of dopaminergic neuron in early development of zebrafish.  相似文献   

20.
Succinate-limited continuous cultures of an Azorhizobium caulinodans strain were grown on ammonia or nitrogen gas as a nitrogen source. Ammonia-grown cells became oxygen limited at 1.7 μM dissolved oxygen, whereas nitrogen-fixing cells remained succinate limited even at dissolved oxygen concentrations as low as 0.9 μM. Nitrogen-fixing cells tolerated dissolved oxygen concentrations as high as 41 μM. Succinate-dependent oxygen uptake rates of cells from the different steady states ranged from 178 to 236 nmol min−1 mg of protein−1 and were not affected by varying chemostat-dissolved oxygen concentration or nitrogen source. When equimolar concentrations of succinate and β-hydroxybutyrate were combined, oxygen uptake rates were greater than when either substrate was used alone. Azide could also used alone as a respiratory substrate regardless of nitrogen source; however, when azide was added following succinate additions, oxygen uptake was inhibited in ammonia-grown cells and stimulated in nitrogen-fixing cells. Use of 25 mM succinate in the chemostat resevoir at a dilution rate of 0.1 h−1 resulted in high levels of background respiration and nitrogenase activity, indicating that the cells were not energy limited. Lowering the reservoir succinate to 5 mM imposed energy limitation. Maximum succinate-dependent nitrogenase activity was 1,741 nmol of C2H4h−1 mg (dry weight)−1, and maximum hydrogen-dependent nitrogenase activity was 949 nmol of C2H4 h−1 mg (dry weight)−1. However, when concentration of 5% (vol/vol) hydrogen or greater were combined with succinate, nitrogenase activity decreased by 35% in comparison to when succinate was used alone. Substitution of argon for nitrogen in the chemostat inflow gas resulted in “washout,” proving that ORS571 can grow on N2 and that there was not a nitrogen source in the medium that could substitute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号