首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
People with spinal cord injury (SCI) are predisposed to pressure ulcers (PU). PU remain a significant burden in cost of care and quality of life despite improved mechanistic understanding and advanced interventions. An agent-based model (ABM) of ischemia/reperfusion-induced inflammation and PU (the PUABM) was created, calibrated to serial images of post-SCI PU, and used to investigate potential treatments in silico. Tissue-level features of the PUABM recapitulated visual patterns of ulcer formation in individuals with SCI. These morphological features, along with simulated cell counts and mediator concentrations, suggested that the influence of inflammatory dynamics caused simulations to be committed to “better” vs. “worse” outcomes by 4 days of simulated time and prior to ulcer formation. Sensitivity analysis of model parameters suggested that increasing oxygen availability would reduce PU incidence. Using the PUABM, in silico trials of anti-inflammatory treatments such as corticosteroids and a neutralizing antibody targeted at Damage-Associated Molecular Pattern molecules (DAMPs) suggested that, at best, early application at a sufficiently high dose could attenuate local inflammation and reduce pressure-associated tissue damage, but could not reduce PU incidence. The PUABM thus shows promise as an adjunct for mechanistic understanding, diagnosis, and design of therapies in the setting of PU.  相似文献   

2.
Chronic neuropathic pain is a disabling condition observed in large number of individuals following spinal cord injury (SCI). Recent progress points to an important role of neuroinflammation in the pathogenesis of central neuropathic pain. The focus of the present study is to investigate the role of proinflammatory molecules IL-1β, TNF-α, MCP-1, MMP-9 and TIMP-1 in chronic neuropathic pain in a rodent model of SCI. Rats were subjected to spinal cord contusion using a controlled linear motor device with an injury epicenter at T10. The SCI rats had severe impairment in locomotor function at 7 days post-injury as assessed by the BBB score. The locomotor scores showed significant improvement starting at day 14 and thereafter showed no further improvement. The Hargreaves’ test was used to assess thermal hyperalgesia for hindpaw, forepaw and tail. A significant reduction in withdrawal latency was observed for forepaw and tail of SCI rats at days 21 and 28, indicating the appearance of thermal hyperalgesia. Changes in expression of mRNAs for IL-1β, TNF-α, MCP-1, MMP-9 and TIMP-1 were assessed using real-time polymerase chain reaction in spinal cord including the injury epicenter along with regions above and below the level of lesion at day 28 post-injury. A significant increase was observed in the expression of MCP-1, TNF-α, TIMP-1 and IL-1β in the injury epicenter, whereas only TIMP-1 was upregulated in the area below the injury epicenter. The results of the study suggest that prolonged upregulation of inflammatory mediators might be involved in chronic neuropathic pain in SCI, and that TIMP-1 may play a role in maintenance of chronic below level pain.  相似文献   

3.
4.
Treatment for spinal cord injury (SCI) remains a challenge worldwide, and inflammation is a major cause of secondary injury after SCI. Peripheral macrophages (PMs) have been verified as a key factor that exert anti-inflammatory effects after SCI, but the mechanism is unidentified. As local macrophages, microglia also exert significant effects after SCI, especially polarization. Exosomes show source cell-like biological functions to target cells and have been the subject of much research in recent years. Thus, we hypothesized the PM-derived exosomes (PM-Exos) play an important role in signal transmission with local microglia and can be used therapeutic agents for SCI in a series of in vivo and in vitro studies. For the in vivo experiment, three groups of Sprague-Dawley (SD) rats subjected to spinal cord contusion injury were injected with 200 µg/ml PM-Exos, 20 µg/ml PM-Exos or PBS via the tail vein. Recovery of the rats and of spinal cord function were observed. In vitro, we investigated the potential anti-inflammatory mechanism of PM-Exos and evaluated microglial autophagy, anti-inflammatory type microglia polarization and the upstream signaling pathway. The results showed that spinal cord function and recovery were better in the PM-Exo groups than the control group. In the in vitro study, microglial autophagy levels and the expression of anti-inflammatory type microglia were higher in the experimental groups than the control group. Moreover, the expression of proteins related to the PI3K/AKT/mTOR autophagic signaling pathway was suppressed in the PM-Exo groups. PM-Exos have a beneficial effect in SCI, and activation of microglial autophagy via inhibition of the PI3K/AKT/mTOR signaling pathway, enhancing the polarization of anti-inflammatory type microglia, that may play a major role in the anti-inflammatory process.  相似文献   

5.
Spinal cord injury (SCI) can induce prolonged spinal cord compression that may result in a reduction of local tissue perfusion, progressive ischemia, and potentially irreversible tissue necrosis. Due to the combination of risk factors and the varied presentation of symptoms, the appropriate method and time course for clinical intervention following SCI are not always evident. In this study, a three-dimensional finite element fluid-structure interaction model of the cervical spinal cord was developed to examine how traditionally sub-clinical compressive mechanical loads impact spinal arterial blood flow. The spinal cord and surrounding dura mater were modeled as linear elastic, isotropic, and incompressible solids, while blood was modeled as a single-phased, incompressible Newtonian fluid. Simulation results indicate that anterior, posterior, and anteroposterior compressions of the cervical spinal cord have significantly different ischemic potentials, with prediction that the posterior component of loading elevates patient risk due to the concomitant reduction of blood flow in the arterial branches. Conversely, anterior loading compromises flow through the anterior spinal artery but minimally impacts branch flow rates. The findings of this study provide novel insight into how sub-clinical spinal cord compression could give rise to certain disease states, and suggest a need to monitor spinal artery perfusion following even mild compressive loading.  相似文献   

6.
There is a high incidence of infertility in males following traumatic spinal cord injury (SCI). Quality of semen is frequently poor in these patients, but the pathophysiological mechanism(s) causing this are not known. Blood-testis barrier (BTB) integrity following SCI has not previously been examined. The objective of this study was to characterize the effects of spinal contusion injury on the BTB in the rat. 63 adult, male Sprague Dawley rats received SCI (n = 28), laminectomy only (n = 7) or served as uninjured, age-matched controls (n = 28). Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), BTB permeability to the vascular contrast agent gadopentate dimeglumine (Gd) was assessed at either 72 hours-, or 10 months post-SCI. DCE-MRI data revealed that BTB permeability to Gd was greater than controls at both 72 h and 10 mo post-SCI. Histological evaluation of testis tissue showed increased BTB permeability to immunoglobulin G at both 72 hours- and 10 months post-SCI, compared to age-matched sham-operated and uninjured controls. Tight junctional integrity within the seminiferous epithelium was assessed; at 72 hours post-SCI, decreased expression of the tight junction protein occludin was observed. Presence of inflammation in the testes was also examined. High expression of the proinflammatory cytokine interleukin-1 beta was detected in testis tissue. CD68+ immune cell infiltrate and mast cells were also detected within the seminiferous epithelium of both acute and chronic SCI groups but not in controls. In addition, extensive germ cell apoptosis was observed at 72 h post-SCI. Based on these results, we conclude that SCI is followed by compromised BTB integrity by as early as 72 hours post-injury in rats and is accompanied by a substantial immune response within the testis. Furthermore, our results indicate that the BTB remains compromised and testis immune cell infiltration persists for months after the initial injury.  相似文献   

7.
8.
The translational potential of novel treatments should be investigated in severe spinal cord injury (SCI) contusion models. A detailed methodology is described to obtain a consistent model of severe SCI. Use of a stereotactic frame and computer controlled impactor allows for creation of reproducible injury. Hypothermia and urinary tract infection pose significant challenges in the post-operative period. Careful monitoring of animals with daily weight recording and bladder expression allows for early detection of post-operative complications. The functional results of this contusion model are equivalent to transection models. The contusion model can be utilized to evaluate the efficacy of both neuroprotective and neuroregenerative approaches.  相似文献   

9.
We investigated the involvement of tPA after SCI in rats and effect of treatment with human umbilical cord blood derived stem cells. tPA expression and activity were determined in vivo after SCI in rats and in vitro in rat embryonic spinal neurons in response to injury with staurosporine, hydrogen peroxide and glutamate. The activity and/or expression of tPA increased after SCI and reached peak levels on day 21 post-SCI. Notably, the tPA mRNA activity was upregulated by 310-fold compared to controls on day 21 post-SCI. As expected, MBP expression is minimal at the time of peak tPA activity and vice versa. Implantation of hUCB after SCI resulted in the downregulation of elevated tPA activity/expression in vivo in rats as well as in vitro in spinal neurons. Our results demonstrated the involvement of tPA in the secondary pathogenesis after SCI as well as the therapeutic potential of hUCB.  相似文献   

10.
To characterize the changes in axonal function in the motor and somatosensory tracts of the cord after spinal cord injury (SCI) and to correlate these changes with spinal cord blood flow (SCBF), the relationships among the severity of SCI, motor and somatosensory evoked potentials (MEPs and SSEPs) and SCBF were examined. Fifteen rats received a 1.5 g (n = 5), 20 g (n = 5) or 56 g (n = 5) clip compression injury of the cord at C8. SCBF at the injury site was measured by the hydrogen clearance technique 35 min before and 30 min after SCI. Concomitantly MEPs from the cord at T10 (MEP-C) and from the sciatic nerve (MEP-N) and SSEPs were recorded.A linear relationship (r = −0.89, P < 0.002) was found between the severity of SCI and the reduction in SCBF at the injury site. Linear discriminant analysis revealed that both the MEP (P < 0.0001) and SSEP (P < 0.003) were significantly related to the severity of SCI. Furthermore, the amplitude of the MEP (r = 0.65, P < 0.0001) and SSEP (r = 0.58, P < 0.0011) was significantly correlated with the posttraumatic SCBF. Multiple regression revealed that both the severity of cord injury and the degree of posttraumatic ischemia were significantly related to axonal dysfunction after SCI. While the MEP was more sensitive to injury than the SSEP, the SSEP more accurately distinguished between mild and moderate severities of cord injury.Axonal conduction in the motor and somatosensory tracts of the cord was significantly correlated with the reduction in posttraumatic SCBF and, therefore, these data provide quantitative evidence linking posttraumatic ischemia to axonal dysfunction following acute cord injury. Furthermore, this study validates the hypothesis that the combined recording of MEPs and SSEPs is an accurate technique to assess the physiological integrity of the cord after injury.  相似文献   

11.
大鼠脊髓损伤继发骨质疏松的实验研究   总被引:3,自引:0,他引:3  
目的 研究脊髓损伤后继发骨质疏松的骨组织超微结构、血液生化改变情况 ,以及损伤平面上下骨质是否均受累 ,程度是否相同。方法 实验动物为体重 30 0~ 32 0g,4~ 5月龄Wistar大鼠 110只 ,均为雄性。对照组仅行胸1 0 椎板切除不破坏硬膜 ,不损伤脊髓 ,实验组大鼠于胸1 0 椎体水平切除椎板 ,行Allen’s(6 0gcm)法损伤脊髓 ,术后两周脊髓损伤按BBB(Basso ,BeattieandBresnahan )法评分为 0分或 1分 ,观察各对照组实验组血钙、血磷、碱性磷酸酶改变情况 ,观察了肱骨外科颈、胫骨平台部以骨细胞为主的超微结构改变情况。结果与结论 大鼠骨髓损伤平面上下骨质均受累 ,但不同部位的骨骼继发骨质疏松的程度不同 ,骨质疏松后骨细胞超微结构改变显著。  相似文献   

12.
Spinal cord injury (SCI) is a devastating clinical condition causing permanent changes in sensorimotor and autonomic functions of the spinal cord (SC) below the site of injury. The secondary ischemia that develops following the initial mechanical insult is a serious complication of the SCI and severely impairs the function and viability of surviving neuronal and non-neuronal cells in the SC. In addition, ischemia is also responsible for the growth of lesion during chronic phase of injury and interferes with the cellular repair and healing processes. Thus there is a need to develop a spinal cord ischemia model for studying the mechanisms of ischemia-induced pathology. Focal ischemia induced by photothrombosis (PT) is a minimally invasive and very well established procedure used to investigate the pathology of ischemia-induced cell death in the brain. Here, we describe the use of PT to induce an ischemic lesion in the spinal cord of mice. Following retro-orbital sinus injection of Rose Bengal, the posterior spinal vein and other capillaries on the dorsal surface of SC were irradiated with a green light resulting in the formation of a thrombus and thus ischemia in the affected region. Results from histology and immunochemistry studies show that PT-induced ischemia caused spinal cord infarction, loss of neurons and reactive gliosis. Using this technique a highly reproducible and relatively easy model of SCI in mice can be achieved that would serve the purpose of scientific investigations into the mechanisms of ischemia induced cell death as well as the efficacy of neuroprotective drugs. This model will also allow exploration of the pathological changes that occur following SCI in live mice like axonal degeneration and regeneration, neuronal and astrocytic Ca2+ signaling using two-photon microscopy.  相似文献   

13.
Spinal cord injury (SCI) initiates a cascade of events and these responses to injury are likely to be mediated and reflected by changes in mRNA concentrations. As a step towards understanding the complex mechanisms underlying repair and regeneration after SCI, the gene expression pattern was examined 4.5 days after complete transection at T8-9 level of rat spinal cord. Improved subtractive hybridization was used to establish a subtracted cDNA library using cDNAs from normal rat spinal cord as driver and cDNAs from injured spinal cord as tester. By expressed sequence tag (EST) sequencing, we obtained 73 EST fragments from this library, representing 40 differentially expressed genes. Among them, 32 were known genes and 8 were novel genes. Functions of all annotated genes were scattered in almost every important field of cell life such as DNA repair, detoxification, mRNA quality control, cell cycle control, and signaling, which reflected the complexity of SCI and regeneration. Then we verified subtraction results with semiquantitative RT-PCR for eight genes. These analyses confirmed, to a large extent, that the subtraction results accurately reflected the molecular changes occurring at 4.5 days post-SCI. The current study identified a number of genes that may shed new light on SCI-related inflammation, neuroprotection, neurite-outgrowth, synaptogenesis, and astrogliosis. In conclusion, the identification of molecular changes using improved subtractive hybridization may lead to a better understanding of molecular mechanisms responsible for repair and regeneration after SCI.  相似文献   

14.
Compression injuries of the murine spinal cord are valuable animal models for the study of spinal cord injury (SCI) and spinal regenerative therapy. The calibrated forceps model of compression injury is a convenient, low cost, and very reproducible animal model for SCI. We used a pair of modified forceps in accordance with the method published by Plemel et al. (2008) to laterally compress the spinal cord to a distance of 0.35 mm. In this video, we will demonstrate a dorsal laminectomy to expose the spinal cord, followed by compression of the spinal cord with the modified forceps. In the video, we will also address issues related to the care of paraplegic laboratory animals. This injury model produces mice that exhibit impairment in sensation, as well as impaired hindlimb locomotor function. Furthermore, this method of injury produces consistent aberrations in the pathology of the SCI, as determined by immunohistochemical methods. After watching this video, viewers should be able to determine the necessary supplies and methods for producing SCI of various severities in the mouse for studies on SCI and/or treatments designed to mitigate impairment after injury.  相似文献   

15.
Human umbilical cord blood stem cells (hUCB), due to their primitive nature and ability to develop into nonhematopoietic cells of various tissue lineages, represent a potentially useful source for cell-based therapies after spinal cord injury (SCI). To evaluate their therapeutic potential, hUCB were stereotactically transplanted into the injury epicenter, one week after SCI in rats. Our results show the presence of a substantial number of surviving hUCB in the injured spinal cord up to five weeks after transplantation. Three weeks after SCI, apoptotic cells were found especially in the dorsal white matter and gray matter, which are positive for both neuron and oligodendrocyte markers. Expression of Fas on both neurons and oligodendrocytes was efficiently downregulated by hUCB. This ultimately resulted in downregulation of caspase-3 extrinsic pathway proteins involving increased expression of FLIP, XIAP and inhibition of PARP cleavage. In hUCB-treated rats, the PI3K/Akt pathway was also involved in antiapoptotic actions. Further, structural integrity of the cytoskeletal proteins α-tubulin, MAP2A&2B and NF-200 has been preserved in hUCB treatments. The behavioral scores of hind limbs of hUCB-treated rats improved significantly than those of the injured group, showing functional recovery. Taken together, our results indicate that hUCB-mediated downregulation of Fas and caspases leads to functional recovery of hind limbs of rats after SCI.  相似文献   

16.
Tamoxifen has been found to be neuroprotective in both transient and permanent experimental ischemic stroke. However, it remains unknown whether this agent shows a similar beneficial effect after spinal cord injury (SCI), and what are its underlying mechanisms. In this study, we investigated the efficacy of tamoxifen treatment in attenuating SCI-induced pathology. Blood–spinal cord barrier (BSCB) permeability, tissue edema formation, microglial activation, neuronal cell death and myelin loss were determined in rats subjected to spinal cord contusion. The results showed that tamoxifen, administered at 30 min post-injury, significantly decreased interleukin-1β (IL-1β) production induced by microglial activation, alleviated the amount of Evans blue leakage and edema formation. In addition, tamoxifen treatment clearly reduced the number of apoptotic neurons post-SCI. The myelin loss and the increase in production of myelin-associated axonal growth inhibitors were also found to be significantly attenuated at day 3 post-injury. Furthermore, rats treated with tamoxifen scored much higher on the locomotor rating scale after SCI than did vehicle-treated rats, suggesting improved functional outcome after SCI. Together, these results demonstrate that tamoxifen provides neuroprotective effects for treatment of SCI-related pathology and disability, and is therefore a potential neuroprotectant for human spinal cord injury therapy.  相似文献   

17.
The adult mammalian spinal cord has limited regenerative capacity in settings such as spinal cord injury (SCI) and multiple sclerosis (MS). Recent studies have revealed that ependymal cells lining the central canal possess latent neural stem cell potential, undergoing proliferation and multi-lineage differentiation following experimental SCI. To determine whether reactive ependymal cells are a realistic endogenous cell population to target in order to promote spinal cord repair, we assessed the spatiotemporal dynamics of ependymal cell proliferation for up to 35 days in three models of spinal pathologies: contusion SCI using the Infinite Horizon impactor, focal demyelination by intraspinal injection of lysophosphatidylcholine (LPC), and autoimmune-mediated multi-focal demyelination using the active experimental autoimmune encephalomyelitis (EAE) model of MS. Contusion SCI at the T9–10 thoracic level stimulated a robust, long-lasting and long-distance wave of ependymal proliferation that peaked at 3 days in the lesion segment, 14 days in the rostral segment, and was still detectable at the cervical level, where it peaked at 21 days. This proliferative wave was suppressed distal to the contusion. Unlike SCI, neither chemical- nor autoimmune-mediated demyelination triggered ependymal cell proliferation at any time point, despite the occurrence of demyelination (LPC and EAE), remyelination (LPC) and significant locomotor defects (EAE). Thus, traumatic SCI induces widespread and enduring activation of reactive ependymal cells, identifying them as a robust cell population to target for therapeutic manipulation after contusion; conversely, neither demyelination, remyelination nor autoimmunity appears sufficient to trigger proliferation of quiescent ependymal cells in models of MS-like demyelinating diseases.  相似文献   

18.

Introduction

While numerous studies have documented evidence for plasticity of the human brain there is little evidence that the human spinal cord can change after injury. Here, we employ a novel spinal fMRI design where we stimulate normal and abnormal sensory dermatomes in persons with traumatic spinal cord injury and perform a connectivity analysis to understand how spinal networks process information.

Methods

Spinal fMRI data was collected at 3 Tesla at two institutions from 38 individuals using the standard SEEP functional MR imaging techniques. Thermal stimulation was applied to four dermatomes in an interleaved timing pattern during each fMRI acquisition. SCI patients were stimulated in dermatomes both above (normal sensation) and below the level of their injury. Sub-group analysis was performed on healthy controls (n = 20), complete SCI (n = 3), incomplete SCI (n = 9) and SCI patients who recovered full function (n = 6).

Results

Patients with chronic incomplete SCI, when stimulated in a dermatome of normal sensation, showed an increased number of active voxels relative to controls (p = 0.025). There was an inverse relationship between the degree of sensory impairment and the number of active voxels in the region of the spinal cord corresponding to that dermatome of abnormal sensation (R2 = 0.93, p<0.001). Lastly, a connectivity analysis demonstrated a significantly increased number of intraspinal connections in incomplete SCI patients relative to controls suggesting altered processing of afferent sensory signals.

Conclusions

In this work we demonstrate the use of spinal fMRI to investigate changes in spinal processing of somatosensory information in the human spinal cord. We provide evidence for plasticity of the human spinal cord after traumatic injury based on an increase in the average number of active voxels in dermatomes of normal sensation in chronic SCI patients and an increased number of intraspinal connections in incomplete SCI patients relative to healthy controls.  相似文献   

19.
While the majority of human spinal cord injuries occur in the cervical spinal cord, the vast majority of laboratory research employs animal models of spinal cord injury (SCI) in which the thoracic spinal cord is injured. Additionally, because most human cord injuries occur as the result of blunt, non-penetrating trauma (e.g. motor vehicle accident, sporting injury) where the spinal cord is violently struck by displaced bone or soft tissues, the majority of SCI researchers are of the opinion that the most clinically relevant injury models are those in which the spinal cord is rapidly contused.1 Therefore, an important step in the preclinical evaluation of novel treatments on their way to human translation is an assessment of their efficacy in a model of contusion SCI within the cervical spinal cord. Here, we describe the technical aspects and resultant anatomical and behavioral outcomes of an unilateral contusive model of cervical SCI that employs the Infinite Horizon spinal cord injury impactor.Sprague Dawley rats underwent a left-sided unilateral laminectomy at C5. To optimize the reproducibility of the biomechanical, functional, and histological outcomes of the injury model, we contused the spinal cords using an impact force of 150 kdyn, an impact trajectory of 22.5° (animals rotated at 22.5°), and an impact location off of midline of 1.4 mm. Functional recovery was assessed using the cylinder rearing test, horizontal ladder test, grooming test and modified Montoya''s staircase test for up to 6 weeks, after which the spinal cords were evaluated histologically for white and grey matter sparing.The injury model presented here imparts consistent and reproducible biomechanical forces to the spinal cord, an important feature of any experimental SCI model. This results in discrete histological damage to the lateral half of the spinal cord which is largely contained to the ipsilateral side of injury. The injury is well tolerated by the animals, but does result in functional deficits of the forelimb that are significant and sustained in the weeks following injury. The cervical unilateral injury model presented here may be a resource to researchers who wish to evaluate potentially promising therapies prior to human translation.  相似文献   

20.
脊髓损伤多由高空坠落、车祸、运动冲击等原因引起,是脊柱外科的一种常见疾病,至今仍是一个治疗难题。低温疗法是一种重要的物理治疗手段,以多种机制减少脊髓损伤后有害因素的产生,是一种有效的脊髓保护途径。其在脊髓损伤的研究中表现出很好的效果,为脊髓损伤的治疗提供了新的思路,然而也发现一些低温治疗导致的全身性或某些系统为主的不良影响,需要我们进一步研究和解决,以期达到更好的治疗效果。本文就低温治疗用于脊髓损伤应用中的研究进展进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号