首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cryptococcus neoformans is an opportunistic fungal pathogen that causes life-threatening pneumonia and meningoencephalitis in immune compromised individuals. Previous studies have shown that immunization of BALB/c mice with an IFN-γ-producing C. neoformans strain, H99γ, results in complete protection against a second pulmonary challenge with an otherwise lethal cryptococcal strain. The current study evaluated local anamnestic cell-mediated immune responses against pulmonary cryptococcosis in mice immunized with C. neoformans strain H99γ compared to mice immunized with heat-killed C. neoformans (HKC.n.). Mice immunized with C. neoformans strain H99γ had significantly reduced pulmonary fungal burden post-secondary challenge compared to mice immunized with HKC.n. Protection against pulmonary cryptococcosis was associated with increased pulmonary granulomatous formation and leukocyte infiltration followed by a rapid resolution of pulmonary inflammation, which protected the lungs from severe allergic bronchopulmonary mycosis (ABPM)-pathology that developed in the lungs of mice immunized with HKC.n. Pulmonary challenge of interleukin (IL)-4 receptor, IL-12p40, IL-12p35, IFN-γ, T cell and B cell deficient mice with C. neoformans strain H99γ demonstrated a requirement for Th1-type T cell-mediated immunity, but not B cell-mediated immunity, for the induction of H99γ-mediated protective immune responses against pulmonary C. neoformans infection. CD4+ T cells, CD11c+ cells, and Gr-1+ cells were increased in both proportion and absolute number in protected mice. In addition, significantly increased production of Th1-type/pro-inflammatory cytokines and chemokines, and conversely, reduced Th2-type cytokine production was observed in the lungs of protected mice. Interestingly, protection was not associated with increased production of cytokines IFN-γ or TNF-α in lungs of protected mice. In conclusion, immunization with C. neoformans strain H99γ results in the development of protective anti-cryptococcal immune responses that may be measured and subsequently used in the development of immune-based therapies to combat pulmonary cryptococcosis.  相似文献   

2.
The current studies evaluated the role of interleukin (IL)-17A in the induction of protective immunity against pulmonary cryptococcosis in mice. Protection against pulmonary infection with C. neoformans strain H99γ was associated with increased IL-17A production. Signaling through the IFN-γ receptor (R) was required for increased IL-17A production, however, a Th17-type cytokine profile was not observed. Neutrophils were found to be the predominant leukocytic source of IL-17A, rather than T cells, suggesting that the IL-17A produced was not part of a T cell-mediated Th17-type immune response. Depletion of IL-17A in mice during pulmonary infection with C. neoformans strain H99γ resulted in an initial increase in pulmonary fungal burden, but had no effect on cryptococcal burden at later time points. Also, depletion of IL-17A did not affect the local production of other cytokines. IL-17RA−/− mice infected with C. neoformans strain H99γ survived the primary infection as well as a secondary challenge with wild-type cryptococci. However, dissemination of the wild-type strain to the brain was noted in the surviving IL-17RA−/− mice. Altogether, our results suggested that IL-17A may be important for optimal protective immune responsiveness during pulmonary C. neoformans infection, but protective Th1-type immune responses are sufficient for protection against cryptococcal infection.  相似文献   

3.
Cryptococcus neoformans is an opportunistic fungal pathogen and the causative agent of the disease cryptococcosis. Cryptococcosis is initiated as a pulmonary infection and in conditions of immune deficiency disseminates to the blood stream and central nervous system, resulting in life-threatening meningoencephalitis. A number of studies have focused on the development of a vaccine against Cryptococcus, primarily utilizing protein-conjugated components of the Cryptococcus polysaccharide capsule as antigen. However, there is currently no vaccine against Cryptococcus in the clinic. Previous studies have shown that the glycosphingolipid, glucosylceramide (GlcCer), is a virulence factor in C. neoformans and antibodies against this lipid inhibit fungal growth and cell division. In the present study, we have investigated the possibility of using GlcCer as a therapeutic agent against C. neoformans infections in mouse models of cryptococcosis. GlcCer purified from a non-pathogenic fungus, Candida utilis, was administered intraperitoneally, prior to infecting mice with a lethal dose of C. neoformans. GlcCer administration prevented the dissemination of C. neoformans from the lungs to the brain and led to 60% mouse survival. GlcCer administration did not cause hepatic injury and elicited an anti-GlcCer antibody response, which was observed independent of the route of administration and the strains of mouse. Taken together, our results suggest that fungal GlcCer can protect mice against lethal doses of C. neoformans infection and can provide a viable vaccination strategy against Cryptococcus.  相似文献   

4.
Cryptococcus neoformans is an opportunistic fungal pathogen that can cause life‐threatening meningoencephalitis in immune compromised patients. Previous, studies in our laboratory have shown that prior exposure to an IFN‐γ‐producing C. neoformans strain (H99γ) elicits protective immunity against a second pulmonary C. neoformans challenge. Here, we characterized the antibody response produced in mice protected against experimental pulmonary C. neoformans infection compared to nonprotected mice. Moreover, we evaluated the efficacy of using serum antibody from protected mice to detect immunodominant C. neoformans proteins. Protected mice were shown to produce significantly more C. neoformans‐specific antibodies following a second experimental pulmonary cryptococcal challenge compared to nonprotected mice. Immunoblot analysis of C. neoformans proteins resolved by 2‐DE using serum from nonprotected mice failed to show any reactivity. In contrast, serum from protected mice was reactive with several cryptococcal protein spots. Analysis of these spots by capillary HPLC‐ESI‐MS/MS identified several cryptococcal proteins shown to be associated with the pathogenesis of cryptococcosis. Our studies demonstrate that mice immunized with C. neoformans strain H99γ produce antibodies that are immune reactive against specific cryptococcal proteins that may provide a basis for the development of immune based therapies that induce protective anticryptococcal immune responses.  相似文献   

5.
The pathogenic yeast Cryptococcus neoformans causes cryptococcosis, a life-threatening fungal disease. C. neoformans has multiple virulence mechanisms that are non-host specific, induce damage and interfere with immune clearance. Microarray analysis of C. neoformans strains serially passaged in mice associated a small gene (CNAG_02591) with virulence. This gene, hereafter identified as HVA1 (hypervirulence-associated protein 1), encodes a protein that has homologs of unknown function in plant and animal fungi, consistent with a conserved mechanism. Expression of HVA1 was negatively correlated with virulence and was reduced in vitro and in vivo in both mouse- and Galleria-passaged strains of C. neoformans. Phenotypic analysis in hva1Δ and hva1Δ+HVA1 strains revealed no significant differences in established virulence factors. Mice infected intravenously with the hva1Δ strain had higher fungal burden in the spleen and brain, but lower fungal burden in the lungs, and died faster than mice infected with H99W or the hva1Δ+HVA1 strain. Metabolomics analysis demonstrated a general increase in all amino acids measured in the disrupted strain and a block in the TCA cycle at isocitrate dehydrogenase, possibly due to alterations in the nicotinamide cofactor pool. Macrophage fungal burden experiments recapitulated the mouse hypervirulent phenotype of the hva1Δ strain only in the presence of exogenous NADPH. The crystal structure of the Hva1 protein was solved, and a comparison of structurally similar proteins correlated with the metabolomics data and potential interactions with NADPH. We report a new gene that modulates virulence through a mechanism associated with changes in fungal metabolism.  相似文献   

6.
Cryptococcus neoformans is a pathogenic yeast that can form titan cells in the lungs, which are fungal cells of abnormal enlarged size. Little is known about the factors that trigger titan cells. In particular, it is not known how the host environment influences this transition. In this work, we describe the formation of titan cells in two mouse strains, CD1 and C57BL/6J. We found that the proportion of C. neoformans titan cells was significantly higher in C57BL/6J mice than in CD1. This higher proportion of titan cells was associated with a higher dissemination of the yeasts to the brain. Histology sections demonstrated eosinophilia in infected animals, although it was significantly lower in the CD1 mice which presented infiltration of lymphocytes. Both mouse strains presented infiltration of granulocytes, but the amount of eosinophils was higher in C57BL/6J. CD1 mice showed a significant accumulation of IFN‐γ, TNF‐α and IL17, while C57BL/BL mice had an increase in the anti‐inflammatory cytokine IL‐4. IgM antibodies to the polysaccharide capsule and total IgE were more abundant in the sera from C57BL/6J, confirming that these animals present a Th2‐type response. We conclude that titan cell formation in C. neoformans depends, not only on microbe factors, but also on the host environment.  相似文献   

7.
Cryptococcus neoformans, the predominant etiological agent of cryptococcosis, can cause life-threatening infections of the central nervous system in immunocompromised and immunocompetent individuals. Cryptococcal meningoencephalitis is the most common disseminated fungal infection in AIDS patients, and remains the third most common invasive fungal infection among organ transplant recipients. The administration of highly active antiretroviral therapy (HAART) has resulted in a decrease in the number of cases of AIDS-related cryptococcosis in developed countries, but in developing countries where HAART is not readily available, Cryptococcus is still a major concern. Therefore, there is an urgent need for the development of novel therapies and/or vaccines to combat cryptococcosis. Understanding the protective immune responses against Cryptococcus is critical for development of vaccines and immunotherapies to combat cryptococcosis. Consequently, this review focuses on our current knowledge of protective immune responses to C. neoformans, with an emphasis on innate immune responses.  相似文献   

8.
Type I interferons (IFNs), predominantly IFN-α and -β, play critical roles in both innate and adaptive immune responses against viral infections. Interferon regulatory factor 7 (IRF7), a key innate immune molecule in the type I IFN signaling pathway, is essential for the type I IFN response to many viruses, including lymphocytic choriomeningitis virus (LCMV). Here, we show that although IRF7 knockout (KO) mice failed to control the replication of LCMV in the early stages of infection, they were capable of clearing LCMV infection. Despite the lack of type I IFN production, IRF7 KO mice generated normal CD4+ T cell responses, and the expansion of naïve CD8+ T cells into primary CD8+ T cells specific for LCMV GP33–41 was relatively normal. In contrast, the expansion of the LCMV NP396-specific CD8+ T cells was severely impaired in IRF7 KO mice. We demonstrated that this defective CD8+ T cell response is due neither to an impaired antigen-presenting system nor to any intrinsic role of IRF7 in CD8+ T cells. The lack of a type I IFN response in IRF7 KO mice did not affect the formation of memory CD8+ T cells. Thus, the present study provides new insight into the impact of the innate immune system on viral pathogenesis and demonstrates the critical contribution of innate immunity in controlling virus replication in the early stages of infection, which may shape the quality of CD8+ T cell responses.  相似文献   

9.
C. neoformans is a leading cause of fatal mycosis linked to CNS dissemination. Laccase, encoded by the LAC1 gene, is an important virulence factor implicated in brain dissemination yet little is known about the mechanism(s) accounting for this observation. Here, we investigated whether the presence or absence of laccase altered the local immune response in the lungs by comparing infections with the highly virulent strain, H99 (which expresses laccase) and mutant strain of H99 deficient in laccase (lac1Δ) in a mouse model of pulmonary infection. We found that LAC1 gene deletion decreased the pulmonary fungal burden and abolished CNS dissemination at weeks 2 and 3. Furthermore, LAC1 deletion lead to: 1) diminished pulmonary eosinophilia; 2) increased accumulation of CD4+ and CD8+ T cells; 3) increased Th1 and Th17 cytokines yet decreased Th2 cytokines; and 4) lung macrophage shifting of the lung macrophage phenotype from M2- towards M1-type activation. Next, we used adoptively transferred CD4+ T cells isolated from pulmonary lymph nodes of mice infected with either lac1Δ or H99 to evaluate the role of laccase-induced immunomodulation on CNS dissemination. We found that in comparison to PBS treated mice, adoptively transferred CD4+ T cells isolated from lac1Δ-infected mice decreased CNS dissemination, while those isolated from H99-infected mice increased CNS dissemination. Collectively, our findings reveal that immune modulation away from Th1/Th17 responses and towards Th2 responses represents a novel mechanism through which laccase can contribute to cryptococcal virulence. Furthermore, our data support the hypothesis that laccase-induced changes in polarization of CD4+ T cells contribute to CNS dissemination.  相似文献   

10.
11.
The polysaccharide capsule of the fungus Cryptococcus neoformans is its main virulence factor. In this study, we determined the effects of mannitol and glucose on the capsule and exopolysaccharide production. Growth in mannitol significantly increased capsular volume compared with cultivation in glucose. However, cells grown in glucose concentrations higher than 62.5 mM produced more exopolysaccharide than cells grown in mannitol. The fibre lengths and glycosyl composition of capsular polysaccharide from yeast grown in mannitol was structurally different from that of yeast grown in glucose. Furthermore, mannitol treatment of mice infected intratracheally with C. neoformans resulted in fungal cells with significantly larger capsules and the mice had reduced fungal dissemination to the brain. Our results demonstrate the capacity of carbohydrate source and concentration to modify the expression of a major virulence factor of C. neoformans. These findings may impact the clinical management of cryptococcosis.  相似文献   

12.
13.
Cryptococcus neoformans, the main causative agent of cryptococcosis, is a fungal pathogen that causes life‐threatening meningoencephalitis in immunocompromised patients. To date, there is no vaccine or immunotherapy approved to treat cryptococcosis. Cell‐ and antibody‐mediated immune responses collaborate to mediate optimal protection against C. neoformans infections. Accordingly, we identified cryptococcal protein fractions capable of stimulating cell‐ and antibody‐mediated immune responses and determined their efficacy to elicit protection against cryptococcosis. Proteins were extracted from C. neoformans and fractionated based on molecular mass. The fractions were then evaluated by immunoblot analysis for reactivity to serum extracted from protectively immunized mice and in cytokine recall assays for their efficacy to induce pro‐inflammatory and Th1‐type cytokine responses associated with protection. MS analysis revealed a number of proteins with roles in stress response, signal transduction, carbohydrate metabolism, amino acid synthesis, and protein synthesis. Immunization with select protein fractions containing immunodominant antigens induced significantly prolonged survival against experimental pulmonary cryptococcosis. Our studies support using the combination of immunological and proteomic approaches to identify proteins that elicit antigen‐specific antibody and Th1‐type cytokine responses. The immunodominant antigens that were discovered represent attractive candidates for the development of novel subunit vaccines for treatment and/or prevention of cryptococcosis.  相似文献   

14.
CD47 is a widely expressed receptor that regulates immunity by engaging its counter-receptor SIRPα on phagocytes and its secreted ligand thrombospondin-1. Mice lacking CD47 can exhibit enhanced or impaired host responses to bacterial pathogens, but its role in fungal immunity has not been examined. cd47-/- mice on a C57BL/6 background showed significantly increased morbidity and mortality following Candida albicans infection when compared with wild-type mice. Despite normal fungal colonization at earlier times, cd47-/- mice at four days post-infection had increased colonization of brain and kidneys accompanied by stronger inflammatory reactions. Neutrophil and macrophage numbers were significantly elevated in kidneys and neutrophils in the brains of infected cd47-/- mice. However, no defect in phagocytic activity towards C. albicans was observed in cd47-/- bone-marrow-derived macrophages, and neutrophil and macrophage killing of C. albicans was not impaired. CD47-deficiency did not alter the early humoral immune response to C. albicans. Th1, Th2, and Th17 population of CD4+ T cells were expanded in the spleen, and gene expression profiles of spleen and kidney showed stronger pro-inflammatory signaling in infected cd47-/- mice. The chemoattractant chemokines MIP-2α and MIP-2β were highly expressed in infected spleens of cd47-/- mice. G-CSF, GM-CSF, and the inflammasome component NLRP3 were more highly expressed in infected cd47-/- kidneys than in infected wild-type controls. Circulating pro- (TNF-α, IL-6) and anti-inflammatory cytokines (IL-10) were significantly elevated, but IL-17 was decreased. These data indicate that CD47 plays protective roles against disseminated candidiasis and alters pro-inflammatory and immunosuppressive pathways known to regulate innate and T cell immunity.  相似文献   

15.
T cell epitopes have been found to be shared by circulating, seasonal influenza virus strains and the novel pandemic H1N1 influenza infection, but the ability of these common epitopes to provide cross-protection is unknown. We have now directly tested this by examining the ability of live seasonal influenza vaccine (FluMist) to mediate protection against swine-origin H1N1 influenza virus infection. Naive mice demonstrated considerable susceptibility to H1N1 Cal/04/09 infection, whereas FluMist-vaccinated mice had markedly decreased morbidity and mortality. In vivo depletion of CD4(+) or CD8(+) immune cells after vaccination indicated that protective immunity was primarily dependent upon FluMist-induced CD4(+) cells but not CD8(+) T cells. Passive protection studies revealed little role for serum or mucosal Abs in cross-protection. Although H1N1 influenza infection of naive mice induced intensive phagocyte recruitment, pulmonary innate defense against secondary pneumococcal infection was severely suppressed. This increased susceptibility to bacterial infection was correlated with augmented IFN-γ production produced during the recovery stage of H1N1 influenza infection, which was completely suppressed in mice previously immunized with FluMist. Furthermore, susceptibility to secondary bacterial infection was decreased in the absence of type II, but not type I, IFN signaling. Thus, seasonal FluMist treatment not only promoted resistance to pandemic H1N1 influenza infection but also restored innate immunity against complicating secondary bacterial infections.  相似文献   

16.
Cellular immunity to Mycobacterium tuberculosis (Mtb) requires a coordinated response between the innate and adaptive arms of the immune system, resulting in a type 1 cytokine response, which is associated with control of infection. The contribution of innate lymphocytes to immunity against Mtb remains controversial. We established an in vitro system to study this question. Interferon-γ is produced when splenocytes from uninfected mice are cultured with Mtb-infected macrophages, and, under these conditions, bacterial replication is suppressed. This innate control of bacterial replication is dependent on CD1d-restricted invariant NKT (iNKT) cells, and their activation requires CD1d expression by infected macrophages as well as IL-12 and IL-18. We show that iNKT cells, even in limiting quantities, are sufficient to restrict Mtb replication. To determine whether iNKT cells contribute to host defense against tuberculosis in vivo, we adoptively transferred iNKT cells into mice. Primary splenic iNKT cells obtained from uninfected mice significantly reduce the bacterial burden in the lungs of mice infected with virulent Mtb by the aerosol route. Thus, iNKT cells have a direct bactericidal effect, even in the absence of synthetic ligands such as α-galactosylceramide. Our finding that iNKT cells protect mice against aerosol Mtb infection is the first evidence that CD1d-restricted NKT cells mediate protection against Mtb in vivo.  相似文献   

17.
18.
Type I interferons (IFNs) are secreted by many cell types upon stimulation via pattern recognition receptors and bind to IFN-α/β receptor (IFNAR), which is composed of IFNAR1 and IFNAR2. Although type I IFNs are well known as anti-viral cytokines, limited information is available on their role during fungal infection. In the present study, we addressed this issue by examining the effect of IFNAR1 defects on the host defense response to Cryptococcus neoformans. In IFNAR1KO mice, the number of live colonies was lower and the host immune response mediated not only by Th1 but also by Th2 and Th17-related cytokines was more accelerated in the infected lungs than in WT mice. In addition, mucin production by bronchoepithelial cells and expression of MUC5AC, a major core protein of mucin in the lungs, were significantly higher in IFNAR1KO mice than in WT mice. This increase in mucin and MUC5AC production was significantly inhibited by treatment with neutralizing anti-IL-4 mAb. In contrast, administration of recombinant IFN-αA/D significantly suppressed the production of IL-4, but not of IFN-γ and IL-17A, in the lungs of WT mice after cryptococcal infection. These results indicate that defects of IFNAR1 led to improved clearance of infection with C. neoformans and enhanced synthesis of IFN-γ and the IL-4-dependent production of mucin. They also suggest that type I IFNs may be involved in the negative regulation of early host defense to this infection.  相似文献   

19.
Cryptococcus neoformans is an opportunistic fungal pathogen that causes lung inflammation and meningoencephalitis in immunocompromised people. Previously we showed that mice succumb to intranasal infection by induction of pulmonary interleukin (IL)-4Rα–dependent type 2 immune responses, whereas IL-12-dependent type 1 responses confer resistance. In the experiments presented here, IL-4Rα−/− mice unexpectedly show decreased fungal control early upon infection with C. neoformans, whereas wild-type mice are able to control fungal growth accompanied by enhanced macrophage and dendritic cell recruitment to the site of infection. Lower pulmonary recruitment of macrophages and dendritic cells in IL-4Rα−/− mice is associated with reduced pulmonary expression of CCL2 and CCL20 chemokines. Moreover, IFN-γ and nitric oxide production are diminished in IL-4Rα−/− mice compared to wild-type mice. To directly study the potential mechanism(s) responsible for reduced production of IFN-γ, conventional dendritic cells were stimulated with C. neoformans in the presence of IL-4 which results in increased IL-12 production and reduced IL-10 production. Together, a beneficial role of early IL-4Rα signaling is demonstrated in pulmonary cryptococcosis, which contrasts with the well-known IL-4Rα-mediated detrimental effects in the late phase.  相似文献   

20.
The innate immune response is essential for controlling West Nile virus (WNV) infection but how this response is propagated and regulates adaptive immunity in vivo are not defined. Herein, we show that IPS-1, the central adaptor protein to RIG-I-like receptor (RLR) signaling, is essential for triggering of innate immunity and for effective development and regulation of adaptive immunity against pathogenic WNV. IPS-1−/− mice exhibited increased susceptibility to WNV infection marked by enhanced viral replication and dissemination with early viral entry into the CNS. Infection of cultured bone-marrow (BM) derived dendritic cells (DCs), macrophages (Macs), and primary cortical neurons showed that the IPS-1-dependent RLR signaling was essential for triggering IFN defenses and controlling virus replication in these key target cells of infection. Intriguingly, infected IPS-1−/− mice displayed uncontrolled inflammation that included elevated systemic type I IFN, proinflammatory cytokine and chemokine responses, increased numbers of inflammatory DCs, enhanced humoral responses marked by complete loss of virus neutralization activity, and increased numbers of virus-specific CD8+ T cells and non-specific immune cell proliferation in the periphery and in the CNS. This uncontrolled inflammatory response was associated with a lack of regulatory T cell expansion that normally occurs during acute WNV infection. Thus, the enhanced inflammatory response in the absence of IPS-1 was coupled with a failure to protect against WNV infection. Our data define an innate/adaptive immune interface mediated through IPS-1-dependent RLR signaling that regulates the quantity, quality, and balance of the immune response to WNV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号