首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R Xu  J Wang  C Li  P Johnson  C Lu  M Zhou 《PloS one》2012,7(8):e43079

Introduction

Salinity and waterlogging are two major abiotic stresses severely limiting barley production. The lack of a reliable screening method makes it very hard to improve the tolerance through breeding programs.

Methods

This work used 188 DH lines from a cross between a Chinese landrace variety, TX9425 (waterlogging and salinity tolerant), and a Japanese malting barley, Naso Nijo (waterlogging and salinity sensitive), to identify QTLs associated with the tolerance.

Results

Four QTLs were found for waterlogging tolerance. The salinity tolerance was evaluated with both a hydroponic system and in potting mixture. In the trial with potting mixture, only one major QTL was identified to associate with salinity tolerance. This QTL explained nearly 50% of the phenotypic variation, which makes it possible for further fine mapping and cloning of the gene. This QTL was also identified in the hydroponic experiment for different salt-related traits. The position of this QTL was located at a similar position to one of the major QTLs for waterlogging tolerance, indicating the possibility of similar mechanisms controlling both waterlogging and salinity tolerance.

Conclusion

The markers associated with the QTL provided a unique opportunity in breeding programs for selection of salinity and waterlogging tolerance.  相似文献   

2.
Salinity stress is a major limitation in barley production. Substantial genetic variation in tolerance occurs among genotypes of barley, so the development of salt-tolerant cultivars is a potentially effective approach for minimizing yield losses. The lack of economically viable methods for screening salinity tolerance in the field remains an obstacle to breeders, and molecular marker-assisted selection is a promising alternative. In this study, salinity tolerance of 172 doubled-haploid lines generated from YYXT (salinity-tolerant) and Franklin (salinity-sensitive) was assessed in glasshouse trials during the vegetative phase. A high-density genetic linkage map was constructed from 76 pairs of simple sequence repeats and 782 Diversity Arrays Technology markers which spanned a total of 1,147 cM. Five significant quantitative trait loci (QTL) for salinity tolerance were identified on chromosomes 1H, 2H, 5H, 6H and 7H, accounting for more than 50% of the phenotypic variation. The tolerant variety, YYXT, contributed the tolerance to four of these QTL and Franklin contributed the tolerance to one QTL on chromosome 1H. Some of these QTL mapped to genomic regions previously associated with salt tolerance in barley and other cereals. Markers associated with the major QTL identified in this study have potential application for marker-assisted selection in breeding for enhanced salt tolerance in barley.  相似文献   

3.

Background

Drought and salinity are two major abiotic stresses that severely limit barley production worldwide. Physiological and genetic complexity of these tolerance traits has significantly slowed the progress of developing stress-tolerant cultivars. Marker-assisted selection (MAS) may potentially overcome this problem. In the current research, seventy two double haploid (DH) lines from a cross between TX9425 (a Chinese landrace variety with superior drought and salinity tolerance) and a sensitive variety, Franklin were used to identify quantitative trait loci (QTL) for drought and salinity tolerance, based on a range of developmental and physiological traits.

Results

Two QTL for drought tolerance (leaf wilting under drought stress) and one QTL for salinity tolerance (plant survival under salt stress) were identified from this population. The QTL on 2H for drought tolerance determined 42% of phenotypic variation, based on three independent experiments. This QTL was closely linked with a gene controlling ear emergency. The QTL on 5H for drought tolerance was less affected by agronomic traits and can be effectively used in breeding programs. A candidate gene for this QTL on 5H was identified based on the draft barley genome sequence. The QTL for proline accumulation, under both drought and salinity stresses, were located on different positions to those for drought and salinity tolerance, indicating no relationship with plant tolerance to either of these stresses.

Conclusions

Using QTL mapping, the relationships between QTL for agronomic and physiological traits and plant drought and salinity tolerance were studied. A new QTL for drought tolerance which was not linked to any of the studied traits was identified. This QTL can be effectively used in breeding programs. It was also shown that proline accumulation under stresses was not necessarily linked with drought or salinity tolerance based on methods of phenotyping used in this experiment. The use of proline content in breeding programs can also be limited by the accuracy of phenotyping.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1243-8) contains supplementary material, which is available to authorized users.  相似文献   

4.
The identification and location of sources of genetic resistance to plant diseases are important contributions to the development of resistant varieties. The combination of different sources and types of resistance in the same genotype should assist in the development of durably resistant varieties. Using a doubled haploid (DH), mapping population of barley, we mapped a qualitative resistance gene (Rpsx) to barley stripe rust in the accession CI10587 (PI 243183) to the long arm of chromosome 1(7H). We combined the Rpsx gene, through a series of crosses, with three mapped and validated barley stripe rust resistance QTL alleles located on chromosomes 4(4H) (QTL4), 5(1H) (QTL5), and 7(5H) (QTL7). Three different barley DH populations were developed from these crosses, two combining Rpsx with QTL4 and QTL7, and the third combining Rpsx with QTL5. Disease severity testing in four environments and QTL mapping analyses confirmed the effects and locations of Rpsx, QTL4, and QTL5, thereby validating the original estimates of QTL location and effect. QTL alleles on chromosomes 4(4H) and 5(1H) were effective in decreasing disease severity in the absence of the resistance allele at Rpsx. Quantitative resistance effects were mainly additive, although magnitude interactions were detected. Our results indicate that combining qualitative and quantitative resistance in the same genotype is feasible. However, the durability of such resistance pyramids will require challenge from virulent isolates, which currently are not reported in North America.Communicated by J.W. SnapeOregon Agricultural Experiment Station paper No. 11953  相似文献   

5.

Key message

An effective approach for the further evolution of QTL markers, may be to create mapping populations for locally adapted gene pools, and to phenotype the studied trait under local conditions.

Abstract

Mapping populations of Polish fodder and malting spring barleys (Hordeum vulgare L.) were used to analyze traits describing short-time drought response at the seedlings stage. High-throughput genotyping (Diversity Array Technology (DArT) markers) and phenotyping techniques were used. The results showed high genetic diversity of the studied populations which allowed the creation of high-density linkage maps. There was also high diversity in the physiological responses of the barleys. Quantitative trait locus (QTL) analysis revealed 18 QTLs for nine physiological traits on all chromosomes except 1H in malting barley and 15 QTLs for five physiological traits on chromosomes 2H, 4H, 5H and 6H in fodder barley. Chromosomes 4H and 5H contained QTLs which explained most of the observed phenotypic variations in both populations. There was a major QTL for net photosynthetic rate in the malting barley located on chromosome 5H and two major QTLs for overall photochemical performance (PI) located on 5H and 7H. One major QTL related to photochemical quenching of chlorophyll fluorescence was located on chromosome 4H in fodder barley. Three QTL regions were common to both mapping populations but the corresponding regions explained different drought-induced traits. One region was for QTLs related to PSII photosynthetic activity stress index in malting barley, and the corresponding region in fodder barley was related to the water content stress index. These results are in accordance with previous studies which showed that different traits were responsible for drought tolerance variations in fodder and malting barleys.  相似文献   

6.
Waterlogging stress disturbs plant metabolism through increased ion (manganese and iron) toxicity resulting from the changes in the soil redox potential under hypoxic conditions. Our previous study found a significant correlation between the tolerance to Mn2+ toxicity and waterlogging stress tolerance in barley, suggesting that waterlogging tolerance could be increased by improving the tolerance to Mn2+ toxicity. In this study, a doubled-haploid (DH) population from the cross between barley varieties Yerong and Franklin (waterlogging-tolerant and -sensitive, respectively) was used to identify QTL controlling tolerance to Mn2+ toxicity based on chlorophyll content and plant survival as selection criteria. Four significant QTL for plant survival under Mn2+ stress (QSur.yf.1H, QSur.yf.3H, QSur.yf.4H, and QSur.yf.6H) were identified in this population at the seedling stage. Two significant QTL (QLC.yf.3H and QLC.yf.6H) controlling leaf chlorosis under Mn2+ stress were identified on chromosomes 3H and 6H close to QSur.yf.3H and QSur.yf.6H. The major QTL QSur.yf.3H, located near the marker Bmag0013, explained 21% of the phenotypic variation. The major QTL for plant survival on 3H was validated in a different DH population (TX9425/Naso Nijo). This major QTL could potentially be used in breeding programmes to enhance tolerance to both manganese toxicity and waterlogging.  相似文献   

7.

Background

Individuals may develop tolerance to the induction of adverse pulmonary effects following repeated exposures to inhaled toxicants. Previously, we demonstrated that genetic background plays an important role in the development of pulmonary tolerance to inhaled zinc oxide (ZnO) in inbred mouse strains, as assessed by polymorphonuclear leukocytes (PMNs), macrophages, and total protein in bronchoalveolar lavage (BAL) phenotypes. The BALB/cByJ (CBy) and DBA/2J (D2) strains were identified as tolerant and non-tolerant, respectively. The present study was designed to identify candidate genes that control the development of pulmonary tolerance to inhaled ZnO.

Methods

Genome-wide linkage analyses were performed on a CByD2F2 mouse cohort phenotyped for BAL protein, PMNs, and macrophages following 5 consecutive days of exposure to 1.0 mg/m3 inhaled ZnO for 3 hours/day. A haplotype analysis was carried out to determine the contribution of each quantitative trait locus (QTL) and QTL combination to the overall BAL protein phenotype. Candidate genes were identified within each QTL interval using the positional candidate gene approach.

Results

A significant quantitative trait locus (QTL) on chromosome 1, as well as suggestive QTLs on chromosomes 4 and 5, for the BAL protein phenotype, was established. Suggestive QTLs for the BAL PMN and macrophage phenotypes were also identified on chromosomes 1 and 5, respectively. Analysis of specific haplotypes supports the combined effect of three QTLs in the overall protein phenotype. Toll-like receptor 5 (Tlr5) was identified as an interesting candidate gene within the significant QTL for BAL protein on chromosome 1. Wild-derived Tlr5-mutant MOLF/Ei mice were tolerant to BAL protein following repeated ZnO exposure.

Conclusion

Genetic background is an important influence in the acquisition of pulmonary tolerance to BAL protein, PMNs, and macrophages following ZnO exposure. Promising candidate genes exist within the identified QTL intervals that would be good targets for additional studies, including Tlr5. The implications of tolerance to health risks in humans are numerous, and this study furthers the understanding of gene-environment interactions that are likely to be important factors from person-to-person in regulating the development of pulmonary tolerance to inhaled toxicants.  相似文献   

8.

Objective

Proliferation and migration of vascular smooth muscle cells (SMCs) are central for arterial diseases including atherosclerosis and restenosis. We hypothesized that the underlying mechanisms may be modeled by carotid ligation in mice. In FVB/N inbred mice, ligation leads to abundant neointima formation with proliferating media-derived SMCs, whereas in C57BL/6 mice hardly any neointima is formed. In the present study, we aimed to identify the chromosomal location of the causative gene variants in an F2 intercross between these two mouse strains.

Methods and Results

The neointimal cross-sectional area was significantly different between FVB/N, C57BL/6 and F1 female mice 4 weeks after ligation. Carotid artery ligation and a genome scan using 800 informative SNP markers were then performed in 157 female F2 mice. Using quantitative trait loci (QTL) analysis, we identified suggestive, but no genome-wide significant, QTLs on chromosomes 7 and 12 for neointimal cross-sectional area and on chromosome 14 for media area. Further analysis of the cross revealed 4 QTLs for plasma cholesterol, which combined explained 69% of the variation among F2 mice.

Conclusions

We identified suggestive QTLs for neointima and media area after carotid ligation in an intercross of FVB/N and C57BL/6 mice, but none that reached genome-wide significance indicating a complex genetic architecture of the traits. Genome-wide significant QTLs for total cholesterol levels were identified on chromosomes 1, 3, 9, and 12.  相似文献   

9.
Powdery mildew and scald can cause significant yield loss in barley. In order to identify new resistance genes for powdery mildew and scald in barley, two barley doubled haploid (DH) populations were screened for adult plant resistance in the field and glasshouse under natural infection. The mapping populations included 92 DH lines from the cross of TX9425 × Franklin and 177 DH lines from the cross of Yerong × Franklin. Two quantitative trait loci (QTL) for resistance to powdery mildew were identified in the TX9425 × Franklin population. These QTL were mapped to chromosomes 7H and 5H, respectively. The phenotypic variation explained by the two QTL detected in this population was 22 and 17%, respectively. Three significant QTL were identified from the Yerong × Franklin population for the resistance to powdery mildew; the major one, detected on the short arm of chromosome 1H, explained 66% of phenotypic variation. The major QTL for scald resistance, identified from two different populations which shared a common parent, Franklin, were mapped in the similar position on 3H. However, the Franklin allele provided resistance to one population but susceptibility to the other population. The Yerong allele on 3H showed much better resistance to scald than the Franklin allele, which has not been reported before. Using high-density maps for both populations, some markers which were very close to the resistance genes were identified. Transgression beyond the parents in disease resistances of the DH populations indicates that both small-effect QTLs and genetic background may also have significant contributions towards the resistance.  相似文献   

10.
Net blotch of barley, caused by Pyrenophora teres Drechs., is an important foliar disease worldwide. Deployment of resistant cultivars is the most economic and eco-friendly control method. This report describes mapping of quantitative trait loci (QTL) associated with net blotch resistance in a doubled-haploid (DH) barley population using diversity arrays technology (DArT) markers. One hundred and fifty DH lines from the cross CDC Dolly (susceptible)/TR251 (resistant) were screened as seedlings in controlled environments with net-form net blotch (NFNB) isolates WRS858 and WRS1607 and spot-form net blotch (SFNB) isolate WRS857. The population was also screened at the adult-plant stage for NFNB resistance in the field in 2005 and 2006. A high-density genetic linkage map of 90 DH lines was constructed using 457 DArT and 11 SSR markers. A major NFNB seedling resistance QTL, designated QRpt6, was mapped to chromosome 6H for isolates WRS858 and WRS1607. QRpt6 was associated with adult-plant resistance in the 2005 and 2006 field trials. Additional QTL for NFNB seedling resistance to the more virulent isolate WRS858 were identified on chromosomes 2H, 4H, and 5H. A seedling resistance QTL (QRpts4) for the SFNB isolate WRS857 was detected on chromosome 4H as was a significant QTL (QRpt7) on chromosome 7H. Three QTL (QRpt6, QRpts4, QRpt7) were associated with resistance to both net blotch forms and lines with one or more of these demonstrated improved resistance. Simple sequence repeat (SSR) markers tightly linked to QRpt6 and QRpts4 were identified and validated in an unrelated barley population. The major 6H QTL, QRpt6, may provide adequate NFNB field resistance in western Canada and could be routinely selected for using molecular markers in a practical breeding program.  相似文献   

11.

Background

Influenza H7N9 and H1N1pdm can cause severe human infections. It is important to investigate the distinguishing clinical features between these two diseases. Several studies have compared the differences in general, however, age and gender adjusted comparisons may be more useful and informative to the health professionals.

Methods

A total of 184 severe H1N1pdm patients and 37 severe H7N9 patients from Jiangsu Province were included in this analysis to perform age and gender adjusted comparison of clinical features.

Results

After adjusting age and gender, no significant differences in chronic medical conditions or treatment were found between severely ill patients with H7N9 and H1N1pdm. Severely ill patients with H7N9 had significantly longer interval from onset of illness to neuraminidase inhibitor treatment and to death. They were more likely to have complications such as acute respiratory distress syndrome (ARDS), liver and renal dysfunctions, and had a significantly higher risk of death.

Conclusion

Our results suggests that age and gender should be adjusted as important confounding factors when comparing the clinical features between severe H7N9 and H1N1pdm patients to avoid any misunderstanding regarding the differences between these two diseases particularly in terms of clinical severity and prognosis.  相似文献   

12.
Root system size (RSS) was measured in 12 diverse barley genotypes and 157 double-haploid lines (DHs), using electric capacitance. The parents of the DHs, Derkado and B83-12/21/5, carry different semi-dwarfing genes, sdw1 and ari-e.GP, respectively. Estimates of RSS were taken in the field thrice during plant development: stem elongation (RSS1), heading (RSS2) and grain filling (RSS3). The 12 barley genotypes were assessed over 3 years and at two or three locations each year; the DH mapping population was assessed at two locations in 2002. Among the 12 barley genotypes, those with the semi-dwarf genes had greater RSS values in all 3 years (28.9, 24.6 and 15.0% in years 1, 2 and 3, respectively) compared to non-semi-dwarf controls. The DH population showed transgressive segregation on both sides of the parent means, indicating polygenic control of RSS. Quantitative trait loci (QTLs) for RSS were found on five of the seven chromosomes: 1H, 3H, 4H, 5H and 7H and these were compared with previously mapped agronomic traits. The TotalRSS QTL on 3H was associated with sdw1 and QTLs for height, plant yield and plant weight. The RSS3 QTL on 5H was associated with ari-e.GP and QTLs for height, plant yield, plant weight, harvest index and tiller number. The RSS3 QTL on 7H was also associated with a TotalRSS QTL and QTLs for plant weight and harvest index. Other RSS QTLs were not associated with any other trait studied. RSS is considered to be a polygenic trait linked to important traits, in particular to yield. The study highlights the effects of semi-dwarfing genes and discusses the potential for breeding for root traits.  相似文献   

13.

Background

A fresh, good quality egg has a firm and gelatinous albumen that anchors the yolk and restricts growth of microbiological pathogens. As the egg ages, the gel-like structure collapses, resulting in thin and runny albumen. Occasionally thin albumen is found in a fresh egg, giving the impression of a low quality product. A mapping population consisting of 1599 F2 hens from a cross between White Rock and Rhode Island Red lines was set up, to identify loci controlling albumen quality. The phenotype for albumen quality was evaluated by albumen height and in Haugh units (HU) measured on three consecutive eggs from each F2 hen at the age of 40 weeks. For the fine-mapping analysis, albumen height and HU were used simultaneously to eliminate contribution of the egg size to the phenotype.

Results

Linkage analysis in a small population of seven half-sib families (668 F2) with 162 microsatellite markers spread across 27 chromosomes revealed two genome-wide significant regions with additive effects for HU on chromosomes 7 and Z. In addition, two putative genome-wide quantitative trait loci (QTL) regions were identified on chromosomes 4 and 26. The QTL effects ranged from 2 to 4% of the phenotypic variance. The genome-wide significant QTL regions on chromosomes 7 and Z were selected for fine-mapping in the full set composed of 16 half-sib families. In addition, their existence was confirmed by an association analysis in an independent commercial Hy-Line pure line.

Conclusions

We identified four chicken genomic regions that affect albumen quality. Our results also suggest that genes that affect albumen quality act both directly and indirectly through several different mechanisms. For instance, the QTL regions on both fine-mapped chromosomes 7 and Z overlapped with a previously reported QTL for eggshell quality, indicating that eggshell membranes may play a role in albumen quality.  相似文献   

14.
High beta-glucan (BG) barleys (Hordeum vulgare L.) have major potential as food ingredients due to their well-known health benefits. Quantitative trait loci (QTL) associated with BG have been reported in traditional barley varieties with intermediate levels of BG, but no QTL studies have been reported in hull-less barley varieties with high BG levels. In this study, QTL analysis was performed to identify markers linked to high BG and amylose in the hull-less barley varieties Falcon (4–5 % BG) and Azhul (8–9 % BG) using a newly developed recombinant inbred line (RIL) mapping population. The population was grown over 3 years (2007–2009) at sites in Yuma, AZ, USA; Leeston, New Zealand; Aberdeen, ID, USA; and Tetonia, ID, USA. We identified 17 QTL associated with either BG or amylose content. QTL contributing to high BG were located on chromosomes 3H, 4H, 5H, 6H and 7H, while QTL contributing to amylose were located on chromosomes 1H, 5H and 7H. Additionally, we identified QTL affecting both BG and amylose content located on chromosomes 1H and 7H. Transgressive segregation was observed in some of the RILs and exceptions were discovered contradicting an inverse relationship between BG and amylose. This work will provide the basis for gene cloning and marker-assisted selection in combination with traditional field selection to improve barley breeding for high BG content.  相似文献   

15.

Background

To investigate the hemodynamic characteristics of glaucoma eyes with disc hemorrhage (DH) by disc fluorescein angiography, and its relationship with glaucomatous changes of the optic disc and surrounding retinal nerve fiber layer (RNFL).

Methods

This study included 35 glaucoma eyes with DH who were followed up at least 5 years and had DH at presentation. Eyes were classified as eyes with DH at the border of localized RNFL defects and eyes with DH not related to localized RNFL defects. Prevalence of DH and location of the proximal border were recorded from disc photographs. Fluorescein angiography was performed 3 months after detecting the DH. Arm-retina time, arteriovenous transit time, disc filling time, choroidal filling time, and venous filling time were measured as retinal circulation parameters. The presence of disc filling defects and disc leaks were evaluated.

Results

There were 19 (54.3%) eyes with DH accompanying localized RNFL defects. The arm-retina time was prolonged in eyes with DH not related to RNFL defects (P = 0.044) and the arteriovenous transit time was prolonged in eyes with DH accompanying RNFL defects (P = 0.029). Among eyes with DH accompanying RNFL defects, 11 (57.9%) had vessel filling defects or delayed filling indicating blood flow stasis at the cup margin proximal to where DH occurred. Eyes with DH not related to RNFL defects did not show vessel filling defects or delayed filling.

Conclusions and Relevance

Eyes with DH related to RNFL defects showed prolonged arteriovenous transit time and had frequent vessel filling defects or delayed filling indicating blood flow stasis and thrombus formation at the site DH occurred. These findings suggest that vascular and hemodynamic changes due to glaucomatous structural changes cause DH in relation to localized RNFL defects.  相似文献   

16.

Background and Aims

Phosphate (Pi) deficiency in soils is a major limiting factor for crop growth worldwide. Plant growth under low Pi conditions correlates with root architectural traits and it may therefore be possible to select these traits for crop improvement. The aim of this study was to characterize root architectural traits, and to test quantitative trait loci (QTL) associated with these traits, under low Pi (LP) and high Pi (HP) availability in Brassica napus.

Methods

Root architectural traits were characterized in seedlings of a double haploid (DH) mapping population (n = 190) of B. napus [‘Tapidor’ × ‘Ningyou 7’ (TNDH)] using high-throughput phenotyping methods. Primary root length (PRL), lateral root length (LRL), lateral root number (LRN), lateral root density (LRD) and biomass traits were measured 12 d post-germination in agar at LP and HP.

Key Results

In general, root and biomass traits were highly correlated under LP and HP conditions. ‘Ningyou 7’ had greater LRL, LRN and LRD than ‘Tapidor’, at both LP and HP availability, but smaller PRL. A cluster of highly significant QTL for LRN, LRD and biomass traits at LP availability were identified on chromosome A03; QTL for PRL were identified on chromosomes A07 and C06.

Conclusions

High-throughput phenotyping of Brassica can be used to identify root architectural traits which correlate with shoot biomass. It is feasible that these traits could be used in crop improvement strategies. The identification of QTL linked to root traits under LP and HP conditions provides further insights on the genetic basis of plant tolerance to P deficiency, and these QTL warrant further dissection.  相似文献   

17.

Background

QTL affecting fat deposition related performance traits have been considered in several studies and mapped on numerous porcine chromosomes. However, activity of specific enzymes, protein content and cell structure in fat tissue probably depend on a smaller number of genes than traits related to fat content in carcass. Thus, in this work traits related to metabolic and cytological features of back fat tissue and fat related performance traits were investigated in a genome-wide QTL analysis. QTL similarities and differences were examined between three F2 crosses, and between male and female animals.

Methods

A total of 966 F2 animals originating from crosses between Meishan (M), Pietrain (P) and European wild boar (W) were analysed for traits related to fat performance (11), enzymatic activity (9) and number and volume of fat cells (20). Per cross, 216 (M × P), 169 (W × P) and 195 (W × M) genome-wide distributed marker loci were genotyped. QTL mapping was performed separately for each cross in steps of 1 cM and steps were reduced when the distance between loci was shorter. The additive and dominant components of QTL positions were detected stepwise by using a multiple position model.

Results

A total of 147 genome-wide significant QTL (76 at P < 0.05 and 71 at P < 0.01) were detected for the three crosses. Most of the QTL were identified on SSC1 (between 76-78 and 87-90 cM), SSC7 (predominantly in the MHC region) and SSCX (in the vicinity of the gene CAPN6). Additional genome-wide significant QTL were found on SSC8, 12, 13, 14, 16, and 18. In many cases, the QTL are mainly additive and differ between F2 crosses. Many of the QTL profiles possess multiple peaks especially in regions with a high marker density. Sex specific analyses, performed for example on SSC6, SSC7 and SSCX, show that for some traits the positions differ between male and female animals. For the selected traits, the additive and dominant components that were analysed for QTL positions on different chromosomes, explain in combination up to 23% of the total trait variance.

Conclusions

Our results reveal specific and partly new QTL positions across genetically diverse pig crosses. For some of the traits associated with specific enzymes, protein content and cell structure in fat tissue, it is the first time that they are included in a QTL analysis. They provide large-scale information to analyse causative genes and useful data for the pig industry.  相似文献   

18.
Dai F  Qiu L  Ye L  Wu D  Zhou M  Zhang G 《PloS one》2011,6(4):e18829

Background

Endogenous phytase plays a crucial role in phytate degradation and is thus closely related to nutrient efficiency in barley products. The understanding of genetic information of phytase in barley can provide a useful tool for breeding new barley varieties with high phytase activity.

Methodology/Principal Findings

Quantitative trait loci (QTL) analysis for phytase activity was conducted using a doubled haploid population. Phytase protein was purified and identified by the LC-ESI MS/MS Shotgun method. Purple acid phosphatase (PAP) gene was sequenced and the position was compared with the QTL controlling phytase activity. A major QTL for phytase activity was mapped to chromosome 5 H in barley. The gene controlling phytase activity in the region was named as mqPhy. The gene HvPAP a was mapped to the same position as mqPhy, supporting the colinearity between HvPAP a and mqPhy.

Conclusions/Significance

It is the first report on QTLs for phytase activity and the results showed that HvPAP a, which shares a same position with the QTL, is a major phytase gene in barley grains.  相似文献   

19.

Background

Hexaploid triticale could be either synthesized by crossing tetraploid wheat with rye, or developed by crossing hexaploid wheat with a hexaploid triticale or an octoploid triticale.

Methodology/Principal Findings

Here two hexaploid triticales with great morphologic divergence derived from common wheat cultivar M8003 (Triticum aestivum L.) × Austrian rye (Secale cereale L.) were reported, exhibiting high resistance for powdery mildew and stripe rust and potential for wheat improvement. Sequential fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) karyotyping revealed that D-genome chromosomes were completely eliminated and the whole A-genome, B-genome and R-genome chromosomes were retained in both lines. Furthermore, plentiful alterations of wheat chromosomes including 5A and 7B were detected in both triticales and additionally altered 5B, 7A chromosome and restructured chromosome 2A was assayed in N9116H and N9116M, respectively, even after selfing for several decades. Besides, meiotic asynchrony was displayed and a variety of storage protein variations were assayed, especially in the HMW/LMW-GS region and secalins region in both triticales.

Conclusion

This study confirms that whole D-genome chromosomes could be preferentially eliminated in the hybrid of common wheat × rye, “genome shock” was accompanying the allopolyploidization of nascent triticales, and great morphologic divergence might result from the genetic variations. Moreover, new hexaploid triticale lines contributing potential resistance resources for wheat improvement were produced.  相似文献   

20.

Background

Patients with dyslipidemia have an increased risk of developing type 2 diabetes, and diabetic patients often have dyslipidemia. Potential genetic connections of fasting plasma glucose with plasma lipid profile were evaluated using hyperlipidemic mice.

Methods

225 male F2 mice were generated from BALB/cJ (BALB) and SM/J(SM) Apoe-deficient (Apoe−/−) mice and fed a Western diet for 5 weeks. Fasting plasma glucose and lipid levels of F2 mice were measured before and after 5 weeks of Western diet and quantitative trait locus (QTL) analysis was performed using data collected from these two time points. 144 SNP(single nucleotide polymorphism) markers across the entire genome were typed.

Results

One major QTL (logarithm of odds ratio (LOD): 6.46) peaked at 12.7 cM on chromosome 9,Bglu16, and 3 suggestive QTLs on chromosomes 15, 18 and X were identified for fasting glucose, and over 10 loci identified for lipid traits. Bglu16 was adjacent to a major QTL, Hdlq17, for high-density lipoprotein (HDL) cholesterol (LOD: 6.31, peak: 19.1 cM). A congenic strain with a donor chromosomal region harboring Bglu16 and Hdlq17 on the Apoe−/− background showed elevations in plasma glucose and HDL levels. Fasting glucose levels were significantly correlated with non-HDL cholesterol and triglyceride levels, especially on the Western diet, but only marginally correlated with HDL levels in F2 mice.

Conclusions

We have demonstrated a correlative relationship between fasting glucose and plasma lipids in a segregating F2 population under hyperlipidemic conditions, and this correlation is partially due to genetic linkage between the two disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号