首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Escherichia coli cytotoxic necrotizing factor 1 (CNF1) and the Bordetella dermonecrotic toxin (DNT) activate Rho GTPases by deamidation of Gln(63) of RhoA (Gln(61) of Cdc42 and Rac). In addition, both toxins possess in vitro transglutaminase activity in the presence of primary amines. Here we characterized the region of Rho essential for substrate recognition by the toxins using Rho/Ras chimeras as protein substrates. The chimeric protein Ras55Rho was deamidated or transglutaminated by CNF1. Rat pheochromocytoma PC12 cells microinjected with Ras55Rho developed formation of neurite-like structures after treatment with the CNF1 holotoxin indicating activation of the Ha-Ras chimera and Ras-like effects in intact cells. The Ras59Rho78Ras chimera protein contained the minimal Rho sequence allowing deamidation or transglutamination by CNF1. A peptide covering mainly the switch II region and consisting of amino acid residues Asp(59) through Asp(78) of RhoA was substrate for CNF1. Changes of amino acid residues Arg(68) or Leu(72) of RhoA into the corresponding residues of Ras (R68ARhoA and L72QRhoA) inhibited deamidation and transglutamination of the mutants by CNF1. In contrast to CNF1, DNT did not modify Rho/Ras chimeras or the switch II peptide (Asp(59) through Asp(78)). Glucosylation of RhoA at Thr(37) blocked deamidation by DNT but not by CNF. The data indicate that CNF1 recognizes Rho GTPases exclusively in the switch II region, whereas the substrate recognition by DNT is characterized by additional structural requirements.  相似文献   

2.
RhoA, a member of the Rho sub-family of small GTPases, plays a significant signaling role in cell morphogenesis, migration, neuronal development, cell division and adhesion. So far, 4 structures of RhoA:GDP/GTP analogs and 14 structures of RhoA in complex with other proteins have been reported. All RhoA:GDP/GTP analog complexes have been crystallized in primitive lattices and RhoA is monomeric. This is the first time a RhoA:GTP analog complex has been crystallized as a dimer in a centered lattice. The present structure reveals structural differences in the switch-I (residues 28?C42) and switch-II (residues 61?C66) regions, which play important roles in interactions with downstream targets to transduce signals, when compared to the previously reported structures.  相似文献   

3.
Rho family guanosine triphosphatases (GTPases), such as RhoA, Cdc42, and Rac1, play a fundamental role in various cellular processes. The activation of Rho proteins is catalyzed by guanine nucleotide-exchange factors (GEFs), which promote the exchange of GDP for GTP. The precise mechanisms regulating the activation of Rho proteins are not fully understood. Herein, we demonstrate that RhoA activity is regulated by cylindromatosis (CYLD), a deubiquitinase harboring multiple functions. In addition, we find that RhoA-mediated cytoskeletal rearrangement, chromosome separation, and cell polarization are altered in CYLD-depleted cells. Mechanistically, CYLD does not interact with RhoA; instead, it interacts with and deubiquitinates leukemia-associated RhoGEF (LARG). Our data further show that CYLD-mediated deubiquitination of LARG enhances its ability to stimulate the GDP/GTP exchange on RhoA. These data thus identify LARG as a new substrate of CYLD and provide novel insights into the regulation of RhoA activation. Our results also suggest that the LARG-RhoA signaling pathway may play a role in diverse CYLD-mediated cellular events.  相似文献   

4.
Dbl homology (DH) domains are almost always followed immediately by pleckstrin homology (PH) domains in Dbl family proteins, and these DH-PH fragments directly activate GDP-bound Rho GTPases by catalyzing the exchange of GDP for GTP. New crystal structures of the DH-PH domains from leukemia-associated Rho guanine nucleotide exchange factor (RhoGEF) and PDZ-RhoGEF bound to RhoA reveal how DH-PH domains cooperate to specifically activate Rho GTPases.  相似文献   

5.
Rho GTPases对肿瘤血管生成相关分子的作用   总被引:10,自引:1,他引:9  
探讨RhoGTPases的 3个主要分子RhoA、Rac1和Cdc4 2对肿瘤血管生成相关分子的作用 .构建负显性RhoA、Rac1和Cdc4 2的真核表达质粒 ,在Lipofectamine2 0 0 0 介导下转染胃癌细胞AGS ,应用ELISA检测细胞培养上清中VEGF的含量 ,应用Western印迹检测肿瘤血管生成相关分子HIF 1α、P5 3和PTEN的表达水平 .成功地构建了负显性RhoA、Rac1和Cdc4 2的真核表达质粒 ,转染胃癌细胞AGS并经G4 18筛选出单克隆 .ELISA表明转染细胞培养上清中VEGF的含量可被明显抑制 ;Western印迹表明 ,负显性RhoGTPases在蛋白水平上可下调HIF 1α表达水平 ,上调P5 3的表达水平 .结果表明 ,Rho家族的 3个主要分子可能通过调节血管生成相关分子的表达来促进肿瘤血管生成 .  相似文献   

6.
Phagocytosis occurs primarily through two main processes in macrophages: the Fcγ receptor- and the integrin αMβ2-mediated processes. Complement C3bi-opsonized particles are known to be engulfed through integrin αMβ2-mediated process, which is regulated by RhoA GTPase. C3 toxin fused with Tat-peptide (Tat-C3 toxin), an inhibitor of the Rho GTPases, was shown to markedly inhibit the phagocytosis of serum (C3bi)-opsonized zymosans (SOZs). However, 8CPT-2Me-cAMP, an activator of exchange protein directly activated by cAMP (Epac, Rap1 guanine nucleotide exchange factor), restored the phagocytosis of the SOZs that was previously inhibited by the Tat-C3 toxin. In addition, a constitutively active form of Rap1 GTPase (CA-Rap1) also restored the phagocytosis that was previously reduced by a dominant negative form of RhoA GTPase (DN-RhoA). This suggests that Rap1 can replace the function of RhoA in the phagocytosis. Inversely, CA-RhoA rescued the phagocytosis that was suppressed by DN-Rap1. These findings suggest that both RhoA and Rap1 GTPases collectively regulate the phagocytosis of SOZs. In addition, filamentous actin was reduced by the Tat-C3 toxin, which was again restored by 8CPT-2Me-cAMP. Small interfering profilin suppressed the phagocytosis, suggesting that profilin is essential for the phagocytosis of SOZs. Furthermore, 8CPT-2Me-cAMP increased the co-immunoprecipitation of profilin with Rap1, whereas Tat-C3 toxin decreased that of profilin with RhoA. Co-immunoprecipitations of profilin with actin, Rap1, and RhoA GTPases were augmented in the presence of GTPγS rather than GDP. Therefore, we propose that both Rap1 and RhoA GTPases regulate the formation of filamentous actin through the interaction between actin and profilin, thereby collectively inducing the phagocytosis of SOZs in macrophages.  相似文献   

7.
8.
The DH‐PH domain tandems of Dbl‐homology guanine nucleotide exchange factors catalyze the exchange of GTP for GDP in Rho‐family GTPases, and thus initiate a wide variety of cellular signaling cascades. Although several crystal structures of complexes of DH‐PH tandems with cognate, nucleotide free Rho GTPases are known, they provide limited information about the dynamics of the complex and it is not clear how accurately they represent the structures in solution. We used a complementary combination of nuclear magnetic resonance (NMR), small‐angle X‐ray scattering (SAXS), and hydrogen‐deuterium exchange mass spectrometry (DXMS) to study the solution structure and dynamics of the DH‐PH tandem of RhoA‐specific exchange factor PDZRhoGEF, both in isolation and in complex with nucleotide free RhoA. We show that in solution the DH‐PH tandem behaves as a rigid entity and that the mutual disposition of the DH and PH domains remains identical within experimental error to that seen in the crystal structure of the complex, thus validating the latter as an accurate model of the complex in vivo. We also show that the nucleotide‐free RhoA exhibits elevated dynamics when in complex with DH‐PH, a phenomenon not observed in the crystal structure, presumably due to the restraining effects of crystal contacts. The complex is readily and rapidly dissociated in the presence of both GDP and GTP nucleotides, with no evidence of intermediate ternary complexes.  相似文献   

9.
The Ras family of small GTPases control diverse signaling pathways through a conserved “switch” mechanism, which is turned on by binding of GTP and turned off by GTP hydrolysis to GDP. Full understanding of GTPase switch functions requires reliable, quantitative assays for nucleotide binding and hydrolysis. Fluorescently labeled guanine nucleotides, such as 2′(3′)-O-(N-methylanthraniloyl) (mant)-substituted GTP and GDP analogs, have been widely used to investigate the molecular properties of small GTPases, including Ras and Rho. Using a recently developed NMR method, we show that the kinetics of nucleotide hydrolysis and exchange by three small GTPases, alone and in the presence of their cognate GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors, are affected by the presence of the fluorescent mant moiety. Intrinsic hydrolysis of mantGTP by Ras homolog enriched in brain (Rheb) is ∼10 times faster than that of GTP, whereas it is 3.4 times slower with RhoA. On the other hand, the mant tag inhibits TSC2GAP-catalyzed GTP hydrolysis by Rheb but promotes p120 RasGAP-catalyzed GTP hydrolysis by H-Ras. Guanine nucleotide exchange factor-catalyzed nucleotide exchange for both H-Ras and RhoA was inhibited by mant-substituted nucleotides, and the degree of inhibition depends highly on the GTPase and whether the assay measures association of mantGTP with, or dissociation of mantGDP from the GTPase. These results indicate that the mant moiety has significant and unpredictable effects on GTPase reaction kinetics and underscore the importance of validating its use in each assay.  相似文献   

10.
Dias SM  Cerione RA 《Biochemistry》2007,46(22):6547-6558
RhoC is a member of the Rho family of Ras-related (small) GTPases and shares significant sequence similarity with the founding member of the family, RhoA. However, despite their similarity, RhoA and RhoC exhibit different binding preferences for effector proteins and give rise to distinct cellular outcomes, with RhoC being directly implicated in the invasiveness of cancer cells and the development of metastasis. While the structural analyses of the signaling-active and -inactive states of RhoA have been performed, thus far, the work on RhoC has been limited to an X-ray structure for its complex with the effector protein, mDia1 (for mammalian Diaphanous 1). Therefore, in order to gain insights into the molecular basis for RhoC activation, as well as clues regarding how it mediates distinct cellular responses relative to those induced by RhoA, we have undertaken a structural comparison of RhoC in its GDP-bound (signaling-inactive) state versus its GTP-bound (signaling-active) state as induced by the nonhydrolyzable GTP analogues, guanosine 5'-(beta,gamma-iminotriphosphate) (GppNHp) and guanosine 5'-(3-O-thiotriphosphate) (GTPgammaS). Interestingly, we find that GppNHp-bound RhoC only shows differences in its switch II domain, relative to GDP-bound RhoC, whereas GTPgammaS-bound RhoC exhibits differences in both its switch I and switch II domains. Given that each of the nonhydrolyzable GTP analogues is able to promote the binding of RhoC to effector proteins, these results suggest that RhoC can undergo at least two conformational transitions during its conversion from a signaling-inactive to a signaling-active state, similar to what has recently been proposed for the H-Ras and M-Ras proteins. In contrast, the available X-ray structures for RhoA suggest that it undergoes only a single conformational transition to a signaling-active state. These and other differences regarding the changes in the switch domains accompanying the activation of RhoA and RhoC provide plausible explanations for the functional specificity exhibited by the two GTPases.  相似文献   

11.
目的:观察ω-3多不饱和脂肪酸(ω-3 Polyunsaturated fatty acid,ω-3 PUFA)对人前列腺癌PC-3细胞和乳腺癌MDA-MB-231细胞Rho蛋白翻译后修饰的影响。方法:60μmol/L的二十碳五烯酸(eicosapentaenoic acid,EPA)和二十二碳六烯酸(docosahex-aenoic acid,DHA)处理PC-3和MDA-MB-231细胞24h后,检测EPA和DHA对法尼基蛋白转移酶活性的影响,对Rho蛋白的法尼基化修饰的影响,对Rho蛋白与GTP结合能力的影响。结果:EPA及DHA均能显著下调PC-3和MDA-MB-231细胞法尼基蛋白转移酶活性(P<0.01),抑制Rho蛋白(RhoA、Rac1、Rac2和Cdc42)的法尼基化修饰(P<0.01),并降低PC-3细胞Rho蛋白(RhoA、Rac1和Cdc42)与GTP的结合能力(P<0.05)。结论:ω-3 PUFA可能通过抑制肿瘤细胞Rho蛋白翻译后修饰,而影响肿瘤细胞的生物学特性。  相似文献   

12.
Rho GTPases have two interconvertible forms and two cellular localizations. In their GTP-bound conformation, they bind to the cell membrane and are activated. In the inactive GDP-bound conformation, they associate with a cytosolic protein called GDP dissociation inhibitor (GDI). We previously reported that the RhoA component of the RhoA/Rho-GDI complex was not accessible to the Clostridium botulinum C3 ADP-ribosyl transferase, unless the complex had been incubated with phosphoinositides. We show here that PtdIns, PtdIns4P, PtdIns3,4P2, PtdIns4,5P2 and PtdInsP3 enhance not only the C3-dependent ADP-ribosylation, but also the GDP/GTP exchange in the RhoA component of the prenylated RhoA/Rho-GDI complex. In contrast, in the nonprenylated RhoA/Rho-GDI complex, the levels of ADP-ribosylation and GDP/GTP exchange are of the same order as those measured on free RhoA and are not modified by phosphoinositides. In both cases, phosphoinositides partially opened, but did not fully dissociate the complex. Upon treatment of the prenylated RhoA/Rho-GDI complex with phosphoinositides, a GTP-dependent transfer to neutrophil membranes was evidenced. Using an overlay assay with the prenylated RhoA/Rho-GDI complex pretreated with PtdIns4P and labeled with [alpha32P]GTP, three membrane proteins with molecular masses between 26 and 32 kDa were radiolabeled. We conclude that in the presence of phosphoinositides, the prenylated RhoA/Rho-GDI complex partially opens, which allows RhoA to exchange GDP for GTP. The opened GTP-RhoA/Rho-GDI complex acquires the capacity to target specific membrane proteins.  相似文献   

13.
Activation of Rho-family GTPases involves the removal of bound GDP and the subsequent loading of GTP, all catalyzed by guanine nucleotide exchange factors (GEFs) of the Dbl-family. Despite high sequence conservation among Rho GTPases, Dbl proteins possess a wide spectrum of discriminatory potentials for Rho-family members. To rationalize this specificity, we have determined crystal structures of the conserved, catalytic fragments (Dbl and pleckstrin homology domains) of the exchange factors intersectin and Dbs in complex with their cognate GTPases, Cdc42 and RhoA, respectively. Structure-based mutagenesis of intersectin and Dbs reveals the key determinants responsible for promoting exchange activity in Cdc42, Rac1 and RhoA. These findings provide critical insight into the structural features necessary for the proper pairing of Dbl-exchange factors with Rho GTPases and now allow for the detailed manipulation of signaling pathways mediated by these oncoproteins in vivo.  相似文献   

14.
Ras and Rho small GTPases possessing a C-terminal polybasic region (PBR) are vital signaling proteins whose misregulation can lead to cancer. Signaling by these proteins depends on their ability to bind guanine nucleotides and their prenylation with a geranylgeranyl or farnesyl isoprenoid moiety and subsequent trafficking to cellular membranes. There is little previous evidence that cellular signals can restrain nonprenylated GTPases from entering the prenylation pathway, leading to the general belief that PBR-possessing GTPases are prenylated as soon as they are synthesized. Here, we present evidence that challenges this belief. We demonstrate that insertion of the dominant negative mutation to inhibit GDP/GTP exchange diminishes prenylation of Rap1A and RhoA, enhances prenylation of Rac1, and does not detectably alter prenylation of K-Ras. Our results indicate that the entrance and passage of these small GTPases through the prenylation pathway is regulated by two splice variants of SmgGDS, a protein that has been reported to promote GDP/GTP exchange by PBR-possessing GTPases and to be up-regulated in several forms of cancer. We show that the previously characterized 558-residue SmgGDS splice variant (SmgGDS-558) selectively associates with prenylated small GTPases and facilitates trafficking of Rap1A to the plasma membrane, whereas the less well characterized 607-residue SmgGDS splice variant (SmgGDS-607) associates with nonprenylated GTPases and regulates the entry of Rap1A, RhoA, and Rac1 into the prenylation pathway. These results indicate that guanine nucleotide exchange and interactions with SmgGDS splice variants can regulate the entrance and passage of PBR-possessing small GTPases through the prenylation pathway.  相似文献   

15.
p115-RhoGEF (p115) belongs to the family of RGS-containing guanine nucleotide exchange factors for Rho GTPases (RGS-RhoGEFs) that are activated by G12 class heterotrimeric G protein α subunits. All RGS-RhoGEFs possess tandemly linked Dbl-homology (DH) and plekstrin-homology (PH) domains, which bind and catalyze the exchange of GDP for GTP on RhoA. We have identified that the linker region connecting the N-terminal RGS-homology (RH) domain and the DH domain inhibits the intrinsic guanine nucleotide exchange (GEF) activity of p115, and determined the crystal structures of the DH/PH domains in the presence or absence of the inhibitory linker region. An N-terminal extension of the canonical DH domain (the GEF switch), which is critical to GEF activity, is well folded in the crystal structure of DH/PH alone, but becomes disordered in the presence of the linker region. The linker region is completely disordered in the crystal structure and partially disordered in the molecular envelope calculated from measurements of small angle x-ray scattering (SAXS). It is possible that Gα subunits activate p115 in part by relieving autoinhibition imposed by the linker region.  相似文献   

16.
The atypical Rho GTPase RhoD has previously been shown to have a major impact on the organization and function of the actin filament system. However, when first discovered, RhoD was found to regulate endosome trafficking and dynamics and we therefore sought to investigate this regulation in more detail. We found that exogenously expressed RhoD in human fibroblasts localized to vesicles and the plasma membrane and that the active GTP-bound conformation was required for the plasma membrane localization but not for vesicle localization. In contrast to the GTPase deficient atypical Rho GTPases, which have a stalled GTPase activity, RhoD has an elevated intrinsic GDP/GTP exchange activity, rendering the protein constitutively active. Importantly, RhoD can still hydrolyze GTP and we found that an intact GTPase activity was required for efficient fusion of RhoD-positive vesicles. RhoD has a unique N-terminal extension of 14 amino acid residues, which is not present in the classical Rho GTPases RhoA, Cdc42 and Rac1. Deletion of this N-terminal motif often lead to clustering of RhoD positive vesicles, which were found accumulated at the peripheral membrane border. In addition, the number of vesicles per cell was increased manifold, suggesting that the N-terminal motif has an important regulatory role in vesicle dynamics.  相似文献   

17.
Cell binding to extracellular matrix (ECM) components changes cytoskeletal organization by the activation of Rho family GTPases. Tenascin-C, a developmentally regulated matrix protein, modulates cellular responses to other matrix proteins, such as fibronectin (FN). Here, we report that tenascin-C markedly altered cell phenotype on a three-dimensional fibrin matrix containing FN, resulting in suppression of actin stress fibers and induction of actin-rich filopodia. This distinct morphology was associated with complete suppression of the activation of RhoA, a small GTPase that induces actin stress fiber formation. Enforced activation of RhoA circumvented the effects of tenascin. Effects of active Rho were reversed by a Rho inhibitor C3 transferase. Suppression of GTPase activation allows tenascin-C expression to act as a regulatory switch to reverse the effects of adhesive proteins on Rho function. This represents a novel paradigm for the regulation of cytoskeletal organization by ECM.  相似文献   

18.

Background  

The Rho GTPases A, B and C proteins, members of the Rho family whose activity is regulated by GDP/GTP cycling, function in many cellular pathways controlling proliferation and have recently been implicated in tumorigenesis. Although overexpression of Rho GTPases has been correlated with tumorigenesis, only their GTP-bound forms are able to activate the signalling pathways implicated in tumorigenesis. Thus, the focus of much recent research has been to identify biological tools capable of quantifying the level of cellular GTP-bound Rho, or determining the subcellular location of activation. However useful, these tools used to study the mechanism of Rho activation still have limitations. The aim of the present work was to employ phage display to identify a conformationally-specific single chain fragment variable (scFv) that recognizes the active, GTP-bound, form of Rho GTPases and is able to discriminate it from the inactive, GDP-bound, Rho in endogenous settings.  相似文献   

19.
Rho and Arf family small GTPases are well-known regulators of cellular actin dynamics. We recently identified ARAP3, a member of the ARAP family of dual GTPase activating proteins (GAPs) for Arf and Rho family GTPases, in a screen for PtdIns(3,4,5)P(3) binding proteins. PtdIns(3,4,5)P(3) is the lipid product of class I phosphoinositide 3OH-kinases (PI3Ks) and is a signaling molecule used by growth factor receptors and integrins in the regulation of cell dynamics. We report here that as a Rho GAP, ARAP3 prefers RhoA as a substrate and that it can be activated in vitro by the direct binding of Rap proteins to a neighbouring Ras binding domain (RBD). This activation by Rap is GTP dependent and specific for Rap versus other Ras family members. We found no evidence for direct regulation of ARAP3's Rho GAP activity by PtdIns(3,4,5)P(3) in vitro, but PI3K activity was required for activation by Rap in a cellular context, suggesting that PtdIns(3,4,5)P(3)-dependent translocation of ARAP3 to the plasma membrane may be required for further activation by Rap. Our results indicate that ARAP3 is a Rap-effector that plays an important role in mediating PI3K-dependent crosstalk between Ras, Rho, and Arf family small GTPases.  相似文献   

20.
Rho-modifying C3-like ADP-ribosyltransferases   总被引:2,自引:0,他引:2  
C3-like exoenzymes comprise a family of seven bacterial ADP-ribosyltransferases, which selectively modify RhoA, B, and C at asparagine-41. Crystal structures of C3 exoenzymes are available, allowing novel insights into the structure-function relationships of these exoenzymes. Because ADP-ribosylation specifically inhibits the biological functions of the low-molecular mass GTPases, C3 exoenzymes are established pharmacological tools to study the cellular functions of Rho GTPases. Recent studies, however, indicate that the functional consequences of C3-induced ADP-ribosylation are more complex than previously suggested. In the present review the basic properties of C3 exoenzymes are briefly summarized and new findings are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号