首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unbalanced (major route) additional cytogenetic aberrations (ACA) at diagnosis of chronic myeloid leukemia (CML) indicate an increased risk of progression and shorter survival. Moreover, newly arising ACA under imatinib treatment and clonal evolution are considered features of acceleration and define failure of therapy according to the European LeukemiaNet (ELN) recommendations. On the basis of 1151 Philadelphia chromosome positive chronic phase patients of the randomized CML-study IV, we examined the incidence of newly arising ACA under imatinib treatment with regard to the p210BCR-ABL breakpoint variants b2a2 and b3a2. We found a preferential acquisition of unbalanced ACA in patients with b3a2 vs. b2a2 fusion type (ratio: 6.3 vs. 1.6, p = 0.0246) concurring with a faster progress to blast crisis for b3a2 patients (p = 0.0124). ESPL1/Separase, a cysteine endopeptidase, is a key player in chromosomal segregation during mitosis. Separase overexpression and/or hyperactivity has been reported from a wide range of cancers and cause defective mitotic spindles, chromosome missegregation and aneuploidy. We investigated the influence of p210BCR-ABL breakpoint variants and imatinib treatment on expression and proteolytic activity of Separase as measured with a specific fluorogenic assay on CML cell lines (b2a2: KCL-22, BV-173; b3a2: K562, LAMA-84). Despite a drop in Separase protein levels an up to 5.4-fold increase of Separase activity under imatinib treatment was observed exclusively in b3a2 but not in b2a2 cell lines. Mimicking the influence of imatinib on BV-173 and LAMA-84 cells by ESPL1 silencing stimulated Separase proteolytic activity in both b3a2 and b2a2 cell lines. Our data suggest the existence of a fusion type-related feedback mechanism that posttranslationally stimulates Separase proteolytic activity after therapy-induced decreases in Separase protein levels. This could render b3a2 CML cells more prone to aneuploidy and clonal evolution than b2a2 progenitors and may therefore explain the cytogenetic results of CML patients.  相似文献   

2.
Separase, an endopeptidase, plays a pivotal role in the separation of sister chromatids at anaphase by cleaving its substrate cohesin Rad21. Recent study suggests that separase is an oncogene. Overexpression of separase induces aneuploidy and mammary tumorigenesis in mice. Separase is also overexpressed and mislocalized in a wide range of human cancers, including breast, prostate, and osteosarcoma. Currently, there is no quantitative assay to measure separase enzymatic activity. To quantify separase enzymatic activity, we have designed a fluorogenic assay in which 7-amido-4-methyl coumaric acid (AMC)-conjugated Rad21 mitotic cleavage site peptide (Ac-Asp-Arg-Glu-Ile-Nle-Arg-MCA) is used as the substrate of separase. We used this assay to quantify separase activity during cell cycle progression and in a panel of human tumor cell lines as well as leukemia patient samples.  相似文献   

3.
Separase, an endopeptidase required for the separation of sister-chromatides in mitotic anaphase, triggers centriole disengagement during centrosome duplication. In cancer, separase is frequently overexpressed, pointing to a functional role as an aneuploidy promoter associated with centrosomal amplification and genomic instability. Recently, we have shown that centrosomal amplification and subsequent chromosomal aberrations are a hallmark of chronic myeloid leukemia (CML), increasing from chronic phase (CP) toward blast crisis (BC). Moreover, a functional linkage of p210BCR-ABL tyrosine kinase activity with centrosomal amplification and clonal evolution has been established in long-term cell culture experiments. Unexpectedly, therapeutic doses of imatinib (IM) did not counteract; instead induced similar centrosomal alterations in vitro. We investigated the influence of IM and p210BCR-ABL on Separase as a potential driver of centrosomal amplification in CML. Short-term cell cultures of p210BCR-ABL-negative (NHDF, UROtsa, HL-60, U937), positive (K562, LAMA-84) and inducible (U937p210BCR-ABL/c6 (Tet-ON)) human cell lines were treated with therapeutic doses of IM and analyzed by qRT-PCR, Western blot analysis and quantitative Separase activity assays. Decreased Separase protein levels were observed in all cells treated with IM in a dose dependent manner. Accordingly, in all p210BCR-ABL-negative cell lines, decreased proteolytic activity of Separase was found. In contrast, p210BCR-ABL-positive cells showed increased Separase proteolytic activity. This activation of Separase was consistent with changes in the expression levels of Separase regulators (Separase phosphorylation at serine residue 1126, Securin, CyclinB1 and PP2A). Our data suggest that regulation of Separase in IM-treated BCR-ABL-positive cells occurs on both the protein expression and the proteolytic activity levels. Activation of Separase proteolytic activity exclusively in p210BCR-ABL-positive cells during IM treatment may act as a driving force for centrosomal amplification, contributing to genomic instability, clonal evolution and resistance in CML.  相似文献   

4.
5.
BACKGROUND: DNA analysis of endoreduplicating cells is difficult because of the overlap between stem-line G2 + M cells and 4C G1 cells. Simultaneous flow cytometry of DNA and cyclin B1 analytically separates these populations. The objective here was to develop simultaneous flow cytometry of DNA, cyclin B1, and p105 (highly expressed in mitosis) for improved, complete cell cycle phase fraction analysis of endoreduplicating cell populations. METHODS: Monoclonal antibody, GNS-1, reactive with human cyclin B1, was conjugated with fluorescein at three different fluorochrome-to-protein (F/P) ratios and tested for optimal sensitivity in a flow cytometric assay. A formaldehyde-methanol fixation procedure was optimized for retention of p105 within mitotic cells by analytic titration of formaldehyde. p105 was stained indirectly with Cy5-conjugated secondary antibody, followed by GNS-1, and DNA was stained with Hoechst 33342. The specificity of p105 in this assay was tested by comparison of manual and flow cytometric mitotic indices and by sorting and microscopic inspection. RESULTS: F/P 4.1 provided optimal fluorescein labeling of GNS-1. Formaldehyde (0.5%), followed by methanol permeabilization, fixed cells sufficiently to quantify stem-line and endoreduplicated G1, S, G2, and M phase fractions. Kinetic measurements of these fractions for both populations were demonstrated. CONCLUSIONS: The fluorochrome-to-protein ratio is important and can be optimized objectively for these assays. A permeabilization-sensitive antigen (p105), previously requiring formaldehyde/detergent-fixed cell preparations, was shown to work equally well with formaldehyde/ methanol fixation. Three-laser, two-parameter intracellular antigen analysis can be successfully coupled with DNA content analysis. Cell cycle kinetic analysis of endoreduplicating populations should be improved.  相似文献   

6.
CopA3 is a homodimeric α-helical peptide derived from coprisin which is a defensin-like antimicrobial peptide that was identified from the dung beetle, Copris tripartitus. CopA3 has been reported to have anticancer activity against leukemia cancer cells. In the present study, we investigated the anticancer activity of CopA3 in human gastric cancer cells. CopA3 reduced cell viability and it was cytotoxic to gastric cancer cells in the MTS and LDH release assay, respectively. CopA3 was shown to induce necrotic cell death of the gastric cancer cells by flow cytometric analysis and acridine orange/ethidium bromide staining. CopA3-induced cell death was mediated by specific interactions with phosphatidylserine, a membrane component of cancer cells. Taken together, these data indicated that CopA3 mainly caused necrosis of gastric cancer cells, probably through interactions with phosphatidylserine, which suggests the potential utility of CopA3 as a cancer therapeutic. [BMB Reports 2015; 48(6): 324-329]  相似文献   

7.
Separase is a protease whose liberation from its inhibitory chaperone Securin triggers sister chromatid disjunction at anaphase onset in yeast by cleaving cohesin's kleisin subunit. We have created conditional knockout alleles of the mouse Separase and Securin genes. Deletion of both copies of Separase but not Securin causes embryonic lethality. Loss of Securin reduces Separase activity because deletion of just one copy of the Separase gene is lethal to embryos lacking Securin. In embryonic fibroblasts, Separase depletion blocks sister chromatid separation but does not prevent other aspects of mitosis, cytokinesis, or chromosome replication. Thus, fibroblasts lacking Separase become highly polyploid. Hepatocytes stimulated to proliferate in vivo by hepatectomy also become unusually large and polyploid in the absence of Separase but are able to regenerate functional livers. Separase depletion in bone marrow causes aplasia and the presumed death of hematopoietic cells other than erythrocytes. Destruction of sister chromatid cohesion by Separase may be a universal feature of mitosis in eukaryotic cells.  相似文献   

8.
Natural killer (NK) cells and NK cell activities in the rhesus macaque have been incompletely characterized. Using a recently developed rhesus NK target cell line with down-regulated MHC-I (B116Lo) as stimulators and FACS-sorted cells as effectors in a 4-h [51Cr]-release assay we showed that the CD3-CD8lo subpopulation is the primary effector population for NK cell-mediated cytolysis. The majority of these cells co-express CD16, CD11b, NKG2D, and NKp46. To evaluate functional activity at the individual cell level, we employed intracellular cytokine staining and a flow cytometric assay for degranulation, based on cell surface CD107a expression. Flow cytometric analysis revealed that a greater proportion of NK cells degranulated than produced cytokines in response to B116Lo stimulation; the frequency of CD107a-expressing cells within the total NK cell population ranging from 5 to 39%. Somewhat surprisingly, we did not find a significant correlation between lysis, measured by [51Cr]-release assay, and the size of the degranulating NK cell population, implying that additional mechanisms may regulate lytic activity. Use of these approaches should facilitate an improved understanding of NK activity in the rhesus macaque.  相似文献   

9.
Protein cleavage is a central event in many regulated biological processes. We describe a system for detecting intracellular proteolysis based on non-conventional secretion of Gaussia luciferase (GLUC). GLUC exits the cell without benefit of a secretory leader peptide, but can be anchored in the cell by fusion to β-actin. By including protease cleavage sites between GLUC and β-actin, proteolytic cleavage can be detected. Using this assay, we have identified regulators of autophagy, apoptosis and β-actin cleavage.  相似文献   

10.
BACKGROUND: The unique capacity of dendritic cells to present antigens to naive T cells is being increasingly utilized in cancer therapy. The efficacy of cell-based immunotherapy can be analyzed by determination of cytotoxic activity of T cells toward tumor cells in vitro. This study supplies a flow cytometric method to analyze T-cell-mediated cytotoxic activity toward heterogeneous leukemic cell populations at a single-cell level. METHODS: The fluorescent probe SYTO16 and the dead-cell dye 7-aminoactinomycine-D (7-AAD) were used to identify early and late stages of apoptosis in combination with leukemia cell-identifying markers. Determination of viable, apoptotic, and necrotic cells was performed by inclusion of fluorescent beads. RESULTS: In nine acute myeloid leukemia samples and three leukemic cell lines the use of SYTO16 next to the dead-cell marker 7-AAD significantly increased (P = 0.001) the sensitivity of the cytotoxicity assay as compared with single use of 7-AAD. Analysis of several effector-to-target ratios revealed the ability to determine dose-response effects. Enumeration of absolute numbers resulted in coefficients of variation of 4.1% and 8.4% for cell lines and leukemic samples, respectively. CONCLUSION: The presented flow cytometric cytotoxicity assay enables the study of T-cell-mediated apoptosis in a heterogenous leukemia population.  相似文献   

11.
Faithful segregation of homologous chromosomes during the first meiotic division is essential for further embryo development. The question at issue is whether the same mechanisms ensuring correct separation of sister chromatids in mitosis are at work during the first meiotic division. In mitosis, sister chromatids are linked by a cohesin complex holding them together until their disjunction at anaphase. Their disjunction is mediated by Separase, which cleaves the cohesin. The activation of Separase requires prior degradation of its associated inhibitor, called securin. Securin is a target of the APC/C (Anaphase Promoting Complex/Cyclosome), a cell cycle-regulated ubiquitin ligase that ubiquitinates securin at the metaphase-to-anaphase transition and thereby targets it for degradation by the 26S proteasome. After securin degradation, Separase cleaves the cohesins and triggers chromatid separation, a prerequisite for anaphase. In yeast and worms, the segregation of homologous chromosomes in meiosis I depends on the APC/C and Separase activity. Yet, it is unclear if Separase is required for the first meiotic division in vertebrates because APC/C activity is thought to be dispensable in frog oocytes. We therefore investigated if Separase activity is required for correct chromosome segregation in meiosis I in mouse oocytes.  相似文献   

12.
Centriole disengagement is considered an essential step for licensing a new round of centriole duplication in the next cell cycle. Separase is critical for centriole disengagement. Here, we showed that pericentrin B (PCNTB) is specifically cleaved by separase at the exit of mitosis. The cleavage-resistant PCNTB mutant blocks the centriole disengagement and duplication. We also observed that an artificial cleavage of PCNTB during M phase induced premature disengagement of centrioles. Based on these results, we concluded that the separase-dependent cleavage of PCNTB is necessary and sufficient for centriole disengagement during mitosis.  相似文献   

13.
A flow cytometric method was developed for the assay of beta-galactosidase in single Escherichia coli cells. A new fluorogenic substrate for beta-galactosidase, C(12)FDG, contains a lipophilic group that allows the substrate to penetrate through cell membranes under normal conditions. When the substrate is hydrolyzed by intracellular beta-galactosidase, a green fluorescent product is formed and retained inside the cell. Consequently, the stained beta-galactosidase-positive cells exhibit fluorescence, which is detected by flow cytometry. This new assay was used to analyze the segregational instability caused by a reduction in specific growth rate of the plasmid-bearing cells in the T7 expression system. Induction results in a substantial accumulation of intracellular beta-galactosidase along with a rapid increase in the fraction of plasmid-free cells. Once the cells lose the plasmid, they no longer produce beta-galactosidase, which is reduced by at least half every generation; thus, after staining, the fluorescent, plasmid-bearing cells can be distinguished from the nonfluorescent, plasmid-free cells using flow cytometry. This article describes the feasibility of the flow cytometric assay for single E. coli cells and reports the optimal assay conditions. A direct relationship between beta-galactosidase activity and green fluorescence intensity was found, and the fractions of recombinant cells in batch cultures were analyzed after various levels of induction.  相似文献   

14.
Using site-directed mutagenesis, we eliminated three potential N-glycosylation sites (N86, N212, and N266) of human deoxyribonuclease II (DNase II), conserved in mammalian enzymes, and a proteolytic processing site (Q46-R47), forming a propeptide subunit of the enzyme. We expressed a series of these mutant DNase II constructs in COS-7 and Hep G2 cells. Liberation of each glycosylation site at N86 and N266 and the cleavage site interfered dramatically with expression of the intracellular and secreted DNase II activities, irrespective of cell line transfected. A chimeric mutant in which the signal peptide of the DNase II was replaced with that of human DNase I had no intracellular or secreted enzyme activity. Therefore, a simultaneous attachment of a carbohydrate moiety to N86 and N266, cleavage of the propeptide from the single DNase II precursor, and the inherent signal peptide might be required for subcellular sorting and proteolytic maturation of the enzyme.  相似文献   

15.
MTT reduction is usually analysed by colorimetric assay to study mitochondrial dehydrogenase activity as a test of cytotoxicity. This enzymatic reaction produces dark-blue granules of formazan, which increase cell refringency. In this work, we define the conditions for MTT use in quantitative flow cytometric analysis. MTT reduction provides a non-fluorescent dye usable by this technique to study an intracellular NADH-dependent dehydrogenase activity in vital cells. We observe that formazan production increases asymptotically with cell concentration and that this temperature-dependent Michaelis enzymatic reduction is produced essentially by mitochondrial dehydrogenases. In isolated mitochondria from rat hepatocytes and in whole L1210 murine leukemia cells, the Michaelis constants (KM) observed in the presence of respiratory substrates were, respectively, 10 microM and 500 microM. The inhibition of mitochondrial protein synthesis by chloramphenicol, which induces a rise of MTT reduction due to the correlative stimulation of glycolysis (Pasteur effect), is a limit of the MTT assay as a cytotoxicity test.  相似文献   

16.
BACKGROUND: Calpains are intracellular, calcium-sensitive, neutral cysteine proteases that play crucial roles in many physiological and pathological processes. Calpain regulation is complex and activity is poorly correlated with calpain protein levels. Therefore a full understanding of calpain function requires robust methods for measuring activity. METHODS: We describe and characterize a flow cytometric method for measuring calpain activity in live cells. This method uses the BOC-LM-CMAC reagent that readily diffuses into cells where it reacts with free thiols to enhance retention. RESULTS: We show that the reagent is cleaved specifically by calpains and follows saturation kinetics. We use the assay to measure calpain activation following PDGF stimulation of rat fibroblasts. We also show that the calpain inhibitor PD150606 inhibits calpain with a K(i) of 12.5 muM and show that Mek inhibitors PD89059 and U0126 also suppress calpain activity. We also show that the assay can measure calpain activity in subpopulations of cells present in unfractionated cord blood or in HL60 human myelomonocytic leukemia cells. CONCLUSION: Taken together, these experiments demonstrate that this assay is a reliable and useful method for measuring calpain activity in multiple cell types.  相似文献   

17.
Fluorogenic substrates [Ala-Pro](2)-cresyl violet and Ala-Pro-rhodamine 110 have been tested for microscopic detection of protease activity of dipeptidyl peptidase IV (DPPIV) in living cells. DPPIV activity is one of the many functions of the multifunctional or moonlighting protein CD26/DPPIV. As a model we used Jurkat cells, which are T-cells that lack CD26/DPPIV expression, and CD26/DPPIV-transfected Jurkat cells. Ala-Pro-rhodamine 110 is not fluorescent, but after proteolytic cleavage rhodamine 110 fluoresces. [Ala-Pro](2)-cresyl violet is fluorescent by itself but proteolytic cleavage into cresyl violet induces a shift to longer wavelengths. This phenomenon enables the simultaneous determination of local (intracellular) substrate and product concentrations, which is important for analysis of kinetics of the cleavage reaction. [Ala-Pro](2)-cresyl violet, but not Ala-Pro-rhodamine 110, appeared to be specific for DPPIV. When microscopic analysis is performed on living cells during the first minutes of the enzyme reaction, DPPIV activity can be precisely localized in cells with the use of [Ala-Pro](2)-cresyl violet. Fluorescent product is rapidly internalized into submembrane granules in transfected Jurkat cells and is redistributed intracellularly via internalization pathways that have been described for CD26/DPPIV. We conclude that [Ala-Pro](2)-cresyl violet is a good fluorogenic substrate to localize DPPIV activity in living cells when the correct wavelengths are used for excitation and emission and images are captured in the early stages of the enzyme reaction.  相似文献   

18.
Separase is a protease that triggers chromosome segregation at anaphase onset by cleaving cohesin, the chromosomal protein complex responsible for sister chromatid cohesion. After anaphase, cells exit from mitosis; that is, they complete downregulation of cyclin-dependent kinase activity, undergo cytokinesis and enter G1 of the next cell cycle. Here we show that separase activation at the onset of anaphase is sufficient to promote release from the nucleolus and activation of the budding yeast phosphatase, Cdc14, a key step in mitotic exit. The ability of separase to activate Cdc14 is independent of its protease function but may involve promoting phosphorylation of the Cdc14 inhibitor Net1. This novel separase function is coregulated with its proteolytic activity by the separase inhibitor securin. This helps to explain the coupling of anaphase and mitotic exit--after securin degradation at anaphase onset, separase cleaves cohesin to trigger chromosome segregation and concurrently uses a non-proteolytic mechanism to initiate mitotic exit.  相似文献   

19.
The eukaryotic subtilisin prohormone convertase 2 (PC2) is known to require in vivo exposure to the neuroendocrine protein 7B2 in order to produce an enzymatically active species capable of proteolytic action on prohormone substrates. In the present study, we examined the role of the pentabasic site within 27-kDa 7B2 in this process. We prepared two His-tagged recombinant 7B2s by overexpression in bacteria: 7B2-Ser-Ser (SS), with an inactivating mutation in the CT peptide from Lys171-Lys172 (KK) to SS, rendering the CT peptide non-inhibitory; blockade-SS, a double mutant of both the CT peptide as well as of the pentabasic furin cleavage site. These purified proteins were used in a cell-free proPC2 activation assay. Both 7B2-SS as well as blockade-SS were able to facilitate the activation of proPC2 (as judged by efficient production of enzyme activity), suggesting that cleavage at the furin site is not required for 7B2s lacking inhibitory CT peptides. Plasmids encoding proPC2 and various 7B2s were transiently transfected into human embryonic kidney (HEK293) cells and PC2 enzymatic activity and CT forms in each overnight conditioned medium were measured. Cells transfected with proPC2 and wild-type 7B2 secreted CT peptide cleavage products, but cells transfected with proPC2 and the blockade mutant overwhelmingly secreted intact, 27-kDa, blockaded 7B2. Medium obtained from HEK293 cells transfected with proPC2 and either wild-type 7B2, 7B2-SS, or blockade-SS exhibited PC2 activity, but medium from cells expressing the 7B2 blockade mutant did not. We conclude that cleavage at the 7B2 furin consensus site is required to produce PC2 capable of efficient proteolytic inactivation of the CT peptide.  相似文献   

20.
The parathyroid hormone-related protein (PTHrP) precursor requires proteolytic processing to generate PTHrP-related peptide products that possess regulatory functions in the control of PTH-like (parathyroid-like) actions and cell growth, calcium transport, and osteoclast activity. Biologically active peptide domains within the PTHrP precursor are typically flanked at their NH2- and COOH-termini by basic residue cleavage sites consisting of multibasic, dibasic, and monobasic residues. These basic residues are predicted to serve as proteolytic cleavage sites for converting the PTHrP precursor into active peptide products. The coexpression of the prohormone processing enzyme PTP ("prohormone thiol protease") in PTHrP-containing lung cancer cells, and the lack of PTP in cell lines that contain little PTHrP, implicate PTP as a candidate processing enzyme for proPTHrP. Therefore, in this study, PTP cleavage of recombinant proPTHrP(1-141) precursor was evaluated by MALDI mass spectrometry to identify peptide products and cleavage sites. PTP cleaved the PTHrP precursor at the predicted basic residue cleavage sites to generate biologically active PTHrP-related peptides that correspond to the NH2-terminal domain (residues 1-37) that possesses PTH-like and growth regulatory activities, the mid-region domain (residues 38-93) that regulates calcium transport, and the COOH-terminal domain (residues 102-141) that modulates osteoclast activity. Lack of cleavage at other types of amino acids demonstrated the specificity of PTP processing at basic residue cleavage sites. Overall, these results demonstrate the ability of PTP to cleave the PTHrP precursor at multibasic, dibasic, and monobasic residue cleavage sites to generate active PTHrP-related peptides. The presence of PTP immunoreactivity in PTHrP-containing lung cancer cells suggests PTP as a candidate processing enzyme for the PTHrP precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号