首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PathVisio is a commonly used pathway editor, visualization and analysis software. Biological pathways have been used by biologists for many years to describe the detailed steps in biological processes. Those powerful, visual representations help researchers to better understand, share and discuss knowledge. Since the first publication of PathVisio in 2008, the original paper was cited more than 170 times and PathVisio was used in many different biological studies. As an online editor PathVisio is also integrated in the community curated pathway database WikiPathways.Here we present the third version of PathVisio with the newest additions and improvements of the application. The core features of PathVisio are pathway drawing, advanced data visualization and pathway statistics. Additionally, PathVisio 3 introduces a new powerful extension systems that allows other developers to contribute additional functionality in form of plugins without changing the core application.PathVisio can be downloaded from http://www.pathvisio.org and in 2014 PathVisio 3 has been downloaded over 5,500 times. There are already more than 15 plugins available in the central plugin repository. PathVisio is a freely available, open-source tool published under the Apache 2.0 license (http://www.apache.org/licenses/LICENSE-2.0). It is implemented in Java and thus runs on all major operating systems. The code repository is available at http://svn.bigcat.unimaas.nl/pathvisio. The support mailing list for users is available on https://groups.google.com/forum/#!forum/wikipathways-discuss and for developers on https://groups.google.com/forum/#!forum/wikipathways-devel.
This is a PLOS Computational Biology software article.
  相似文献   

2.
3.
4.

Background

Dynamic visual exploration of detailed pathway information can help researchers digest and interpret complex mechanisms and genomic datasets.

Results

ChiBE is a free, open-source software tool for visualizing, querying, and analyzing human biological pathways in BioPAX format. The recently released version 2 can search for neighborhoods, paths between molecules, and common regulators/targets of molecules, on large integrated cellular networks in the Pathway Commons database as well as in local BioPAX models. Resulting networks can be automatically laid out for visualization using a graphically rich, process-centric notation. Profiling data from the cBioPortal for Cancer Genomics and expression data from the Gene Expression Omnibus can be overlaid on these networks.

Conclusions

ChiBE’s new capabilities are organized around a genomics-oriented workflow and offer a unique comprehensive pathway analysis solution for genomics researchers. The software is freely available at http://code.google.com/p/chibe.  相似文献   

5.
6.
7.

Background

Epigenome-wide association scans (EWAS) are an increasingly powerful and widely-used approach to assess the role of epigenetic variation in human complex traits. However, this rapidly emerging field lacks dedicated visualisation tools that can display features specific to epigenetic datasets.

Result

We developed coMET, an R package and online tool for visualisation of EWAS results in a genomic region of interest. coMET generates a regional plot of epigenetic-phenotype association results and the estimated DNA methylation correlation between CpG sites (co-methylation), with further options to visualise genomic annotations based on ENCODE data, gene tracks, reference CpG-sites, and user-defined features. The tool can be used to display phenotype association signals and correlation patterns of microarray or sequencing-based DNA methylation data, such as Illumina Infinium 450k, WGBS, or MeDIP-seq, as well as other types of genomic data, such as gene expression profiles. The software is available as a user-friendly online tool from http://epigen.kcl.ac.uk/cometand as an R Bioconductor package. Source code, examples, and full documentation are also available from GitHub.

Conclusion

Our new software allows visualisation of EWAS results with functional genomic annotations and with estimation of co-methylation patterns. coMET is available to a wide audience as an online tool and R package, and can be a valuable resource to interpret results in the fast growing field of epigenetics. The software is designed for epigenetic data, but can also be applied to genomic and functional genomic datasets in any species.  相似文献   

8.

Background

Prostate cancer is currently the most frequently diagnosed malignancy in men and the second leading cause of cancer-related deaths in industrialized countries. Worldwide, an increase in prostate cancer incidence is expected due to an increased life-expectancy, aging of the population and improved diagnosis. Although the specific underlying mechanisms of prostate carcinogenesis remain unknown, prostate cancer is thought to result from a combination of genetic and environmental factors altering key cellular processes. To elucidate these complex interactions and to contribute to the understanding of prostate cancer progression and metastasis, analysis of large scale gene expression studies using bioinformatics approaches is used to decipher regulation of core processes.

Methodology/Principal Findings

In this study, a standardized quality control procedure and statistical analysis (http://www.arrayanalysis.org/) were applied to multiple prostate cancer datasets retrieved from the ArrayExpress data repository and pathway analysis using PathVisio (http://www.pathvisio.org/) was performed. The results led to the identification of three core biological processes that are strongly affected during prostate carcinogenesis: cholesterol biosynthesis, the process of epithelial-to-mesenchymal transition and an increased metabolic activity.

Conclusions

This study illustrates how a standardized bioinformatics evaluation of existing microarray data and subsequent pathway analysis can quickly and cost-effectively provide essential information about important molecular pathways and cellular processes involved in prostate cancer development and disease progression. The presented results may assist in biomarker profiling and the development of novel treatment approaches.  相似文献   

9.
10.
11.
12.

Background

One of the most common goals of hierarchical clustering is finding those branches of a tree that form quantifiably distinct data subtypes. Achieving this goal in a statistically meaningful way requires (a) a measure of distinctness of a branch and (b) a test to determine the significance of the observed measure, applicable to all branches and across multiple scales of dissimilarity.

Results

We formulate a method termed Tree Branches Evaluated Statistically for Tightness (TBEST) for identifying significantly distinct tree branches in hierarchical clusters. For each branch of the tree a measure of distinctness, or tightness, is defined as a rational function of heights, both of the branch and of its parent. A statistical procedure is then developed to determine the significance of the observed values of tightness. We test TBEST as a tool for tree-based data partitioning by applying it to five benchmark datasets, one of them synthetic and the other four each from a different area of biology. For each dataset there is a well-defined partition of the data into classes. In all test cases TBEST performs on par with or better than the existing techniques.

Conclusions

Based on our benchmark analysis, TBEST is a tool of choice for detection of significantly distinct branches in hierarchical trees grown from biological data. An R language implementation of the method is available from the Comprehensive R Archive Network: http://www.cran.r-project.org/web/packages/TBEST/index.html.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1000) contains supplementary material, which is available to authorized users.  相似文献   

13.
14.
15.

Background

DAVID is the most popular tool for interpreting large lists of gene/proteins classically produced in high-throughput experiments. However, the use of DAVID website becomes difficult when analyzing multiple gene lists, for it does not provide an adequate visualization tool to show/compare multiple enrichment results in a concise and informative manner.

Result

We implemented a new R-based graphical tool, BACA (Bubble chArt to Compare Annotations), which uses the DAVID web service for cross-comparing enrichment analysis results derived from multiple large gene lists. BACA is implemented in R and is freely available at the CRAN repository (http://cran.r-project.org/web/packages/BACA/).

Conclusion

The package BACA allows R users to combine multiple annotation charts into one output graph by passing DAVID website.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0477-4) contains supplementary material, which is available to authorized users.  相似文献   

16.

Background

Multifactor dimensionality reduction (MDR) is widely used to analyze interactions of genes to determine the complex relationship between diseases and polymorphisms in humans. However, the astronomical number of high-order combinations makes MDR a highly time-consuming process which can be difficult to implement for multiple tests to identify more complex interactions between genes. This study proposes a new framework, named fast MDR (FMDR), which is a greedy search strategy based on the joint effect property.

Results

Six models with different minor allele frequencies (MAFs) and different sample sizes were used to generate the six simulation data sets. A real data set was obtained from the mitochondrial D-loop of chronic dialysis patients. Comparison of results from the simulation data and real data sets showed that FMDR identified significant gene–gene interaction with less computational complexity than the MDR in high-order interaction analysis.

Conclusion

FMDR improves the MDR difficulties associated with the computational loading of high-order SNPs and can be used to evaluate the relative effects of each individual SNP on disease susceptibility. FMDR is freely available at http://bioinfo.kmu.edu.tw/FMDR.rar.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1717-8) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.

Background

So far many algorithms have been proposed towards the detection of significant genes in microarray analysis problems. Several of those approaches are freely available as R-packages though their engagement in gene expression analysis by non-bioinformaticians is usually a frustrating task. Besides, only some of those packages offer a complete suite of tools starting from initial data import and ending to analysis report. Here we present an R/Bioconductor package that implements a hybrid gene selection method along with a bunch of functions to facilitate a thorough and convenient gene expression profiling analysis.

Results

mAPKL is an open-source R/Bioconductor package that implements the mAP-KL hybrid gene selection method. The advantage of this method is that selects a small number of gene exemplars while achieving comparable classification results to other well established algorithms on a variety of datasets and dataset sizes. The mAPKL package is accompanied with extra functionalities including (i) solid data import; (ii) data sampling following a user-defined proportion; (iii) preprocessing through several normalization and transformation alternatives; (iv) classification with the aid of SVM and performance evaluation; (v) network analysis of the significant genes (exemplars), including degree of centrality, closeness, betweeness, clustering coefficient as well as the construction of an edge list table; (vi) gene annotation analysis, (vii) pathway analysis and (viii) auto-generated analysis reporting.

Conclusions

Users are able to run a thorough gene expression analysis in a timely manner starting from raw data and concluding to network characteristics of the selected gene exemplars. Detailed instructions and example data are provided in the R package, which is freely available at Bioconductor under the GPL-2 or later license http://www.bioconductor.org/packages/3.1/bioc/html/mAPKL.html.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0719-5) contains supplementary material, which is available to authorized users.  相似文献   

19.

Background

Transposable elements are mobile DNA repeat sequences, known to have high impact on genes, genome structure and evolution. This has stimulated broad interest in the detailed biological studies of transposable elements. Hence, we have developed an easy-to-use tool for the comparative analysis of the structural organization and functional relationships of transposable elements, to help understand their functional role in genomes.

Results

We named our new software VisualTE and describe it here. VisualTE is a JAVA stand-alone graphical interface that allows users to visualize and analyze all occurrences of transposable element families in annotated genomes. VisualTE reads and extracts transposable elements and genomic information from annotation and repeat data. Result analyses are displayed in several graphical panels that include location and distribution on the chromosome, the occurrence of transposable elements in the genome, their size distribution, and neighboring genes’ features and ontologies. With these hallmarks, VisualTE provides a convenient tool for studying transposable element copies and their functional relationships with genes, at the whole-genome scale, and in diverse organisms.

Conclusions

VisualTE graphical interface makes possible comparative analyses of transposable elements in any annotated sequence as well as structural organization and functional relationships between transposable elements and other genetic object. This tool is freely available at: http://lcb.cnrs-mrs.fr/spip.php?article867.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1351-5) contains supplementary material, which is available to authorized users.  相似文献   

20.

Background

Normal mode analysis (NMA) using elastic network models is a reliable and cost-effective computational method to characterise protein flexibility and by extension, their dynamics. Further insight into the dynamics–function relationship can be gained by comparing protein motions between protein homologs and functional classifications. This can be achieved by comparing normal modes obtained from sets of evolutionary related proteins.

Results

We have developed an automated tool for comparative NMA of a set of pre-aligned protein structures. The user can submit a sequence alignment in the FASTA format and the corresponding coordinate files in the Protein Data Bank (PDB) format. The computed normalised squared atomic fluctuations and atomic deformation energies of the submitted structures can be easily compared on graphs provided by the web user interface. The web server provides pairwise comparison of the dynamics of all proteins included in the submitted set using two measures: the Root Mean Squared Inner Product and the Bhattacharyya Coefficient. The Comparative Analysis has been implemented on our web server for NMA, WEBnm@, which also provides recently upgraded functionality for NMA of single protein structures. This includes new visualisations of protein motion, visualisation of inter-residue correlations and the analysis of conformational change using the overlap analysis. In addition, programmatic access to WEBnm@ is now available through a SOAP-based web service. Webnm@ is available at http://apps.cbu.uib.no/webnma.

Conclusion

WEBnm@ v2.0 is an online tool offering unique capability for comparative NMA on multiple protein structures. Along with a convenient web interface, powerful computing resources, and several methods for mode analyses, WEBnm@ facilitates the assessment of protein flexibility within protein families and superfamilies. These analyses can give a good view of how the structures move and how the flexibility is conserved over the different structures.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0427-6) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号