首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many microbial consortia are established upon metabolic interactions. Elucidating such interactions is a priority in understanding the population dynamics of these microbial consortia. In this study, we investigated the interaction dynamics of the vitamin C biosynthesis consortium comprising of Ketogulonicigenium vulgare and Bacillus megaterium. We systematically quantified the dynamic evolution of the ecosystem??s population and metabolism in response to a wide range of seeding concentrations and compositions of the two microorganisms. The consortium population dynamics was determined by quantitative PCR. The metabolomic profile of the community was systematically investigated by gas chromatography coupled with time-of-flight mass spectrometry. Our results showed that B. megaterium was responsible for initiating the reproduction of K. vulgare, meanwhile, K. vulgare could promote the growth of B. megaterium. Principal component analysis of the metabolomic profiling elucidated variations of intermediates in central carbon metabolism, nucleotide and amino acids metabolism in this microbial consortium. These findings provided new insights into the characterization of the community dynamics and the optimization of co-culture fermentation for vitamin C biosynthesis.  相似文献   

2.
A novel two-helper-strain co-culture system (TSCS) was developed to enhance 2-keto-l-gulonic acid (2-KLG) productivity for vitamin C production. Bacillus megaterium and B. cereus (with a seeding culture ratio of 1:3, v/v), used as helper strains, increased the 2-KLG yield using Ketogulonigenium vulgare compared to the conventional one-helper-strain (either B. cereus or B. megaterium) co-culture system (OSCS). After 45 h cultivation, 2-KLG concentration in the TSCS (69 g l?1) increased by 8.9 and 7 % over that of the OSCS (B. cereus: 63.4 g l?1; B. megaterium: 64.5 g l?1). The fermentation period of TSCS was 4 h shorter than that of OSCS (B. cereus). The increased cell numbers of K. vulgare stimulated by the two helper strains possibly explain the enhanced 2-KLG yield. The results imply that TSCS is a viable method for enhancing industrial production of 2-KLG.  相似文献   

3.
This article presents a modeling approach for industrial 2-keto-l-gulonic acid (2-KGA) fed-batch fermentation by the mixed culture of Ketogulonicigenium vulgare (K. vulgare) and Bacillus megaterium (B. megaterium). A macrokinetic model of K. vulgare is constructed based on the simplified metabolic pathways. The reaction rates obtained from the macrokinetic model are then coupled into a bioreactor model such that the relationship between substrate feeding rates and the main state variables, e.g., the concentrations of the biomass, substrate and product, is constructed. A differential evolution algorithm using the Lozi map as the random number generator is utilized to perform the model parameters identification, with the industrial data of 2-KGA fed-batch fermentation. Validation results demonstrate that the model simulations of substrate and product concentrations are well in coincidence with the measurements. Furthermore, the model simulations of biomass concentrations reflect principally the growth kinetics of the two microbes in the mixed culture.  相似文献   

4.
The fermentation process of 2-keto-L-gulonic acid (2KGA) from L-sorbose was developed using a two-stage continuous fermentation system. The mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium DSM 4026 produced 90 g/L of 2KGA from 120 g/L of L-sorbose at the dilution rate of 0.01 h−1 in a single-stage continuous fermentation process. But after the production period was beyond 150 h, the significant decrease of 2KGA productivity was observed. When the non-spore forming bacteria Xanthomonas maltophilia IFO 12692 was used instead of B. megaterium DSM 4026 as a partner strain for K. vulgare DSM 4025, the 2KGA productivity was significantly improved in a two-stage continuous culture mode, in which two fermentors of the same size and volume were connected in series. In this mode, with two sets of 3-L jar fermentors, the steady state could be continued to over 1,331.5 h at least, when the dilution rates were 0.0382 h−1 and 0.0380 hour−1, respectively, for the first and second fermentors. The overall productivity was calculated to be 2.15 g/L/h at 113.1 g/L and a molar conversion yield of 90.1%. In the up-scaling fermentation to 30-L jar fermentors, 118.5 g/L of 2KGA was produced when dilution rates in both stages were 0.0430 hour−1, and the overall productivity was calculated to be 2.55 g/L/h.  相似文献   

5.
张博  张倩  郭瑞  吕淑霞 《微生物学通报》2023,50(5):2191-2203
二步发酵法是工业化生产维生素C (vitamin C, Vc)的主要方法,其中第二步由伴生菌与产酸菌(普通生酮基古龙酸菌)组合进行混菌发酵产生Vc前体2-酮基-l-古龙酸(2-keto-l-gluonic acid, 2-KLG)的机制,一直是科研人员研究的重要科学问题。通过高通量基因组学、转录组学、蛋白组学、代谢组学等组学技术揭示生物系统中各个组分相互作用关系已经成为主要的研究手段。本文对近年来利用组学技术解析Vc混菌发酵中两菌互作关系、解除发酵系统的氧化胁迫、伴生活性物质、产酸菌群体感应、外源添加物、基因工程改造产酸菌促进产2-KLG等方面的研究进行综述,并为进一步的探索和深入研究提供思路。  相似文献   

6.
In this study, a high yield production bioprocess with recombinant Bacillus megaterium for the production of the extracellular enzyme levansucrase (SacB) was developed. For basic optimization of culture parameters and nutrients, a recombinant B. megaterium reporter strain that produced green fluorescent protein under control of a vector-based xylose-inducible promoter was used. It enabled efficient microtiter plate-based screening via fluorescence analysis. A pH value of pH?6, 20 % of dissolved oxygen, 37 °C, and elevated levels of biotin (100 μg?L?1) were found optimal with regard to high protein yield and reduced overflow metabolism. Among the different compounds tested, fructose and glycerol were identified as the preferred source of carbon. Subsequently, the settings were transferred to a B. megaterium strain recombinantly producing levansucrase SacB based on the plasmid-located xylose-inducible expression system. In shake flask culture under the optimized conditions, the novel strain already secreted the target enzyme in high amounts (14 U?mL?1 on fructose and 17.2 U?mL?1 on glycerol). This was further increased in high cell density fed-batch processes up to 55 U?mL?1, reflecting a levansucrase concentration of 0.52 g?L?1. This is 100-fold more than previous efforts for this enzyme in B. megaterium and more than 10-fold higher than reported values of other extracellular protein produced in this microorganism so far. The recombinant strain could also handle raw glycerol from biodiesel industry which provided the same amount and quality of the recombinant protein and suggests future implementation into existing biorefinery concepts.  相似文献   

7.
In the two-step fermentative production of vitamin C, its precursor 2-keto-l-gulonic acid (2-KLG) was synthesized by Ketogulonicigenium vulgare through co-culture with Bacillus megaterium. The reconstruction of the amino acid metabolic pathway through completed genome sequence annotation demonstrated that K. vulgare was deficient in one or more key enzymes in the de novo biosynthesis pathways of eight different amino acids (l-histidine, l-glycine, l-lysine, l-proline, l-threonine, l-methionine, l-leucine, and l-isoleucine). Among them, l-glycine, l-proline, l-threonine, and l-isoleucine play vital roles in K. vulgare growth and 2-KLG production. The addition of those amino acids increased the 2-KLG productivity by 20.4%, 17.2%, 17.2%, and 11.8%, respectively. Furthermore, food grade gelatin was developed as a substitute for the amino acids to increase the cell concentration, 2-KLG productivity, and l-sorbose consumption rate by 10.2%, 23.4%, and 20.9%, respectively. As a result, the fermentation period decreased to 43 h in a 7-L fermentor.  相似文献   

8.
Molecular analysis of the 16S rDNA of the intestinal microbiota of whiteleg shrimp Litopenaeus vannamei was examined to investigate the effect of a Bacillus mix (Bacillus endophyticus YC3-b, Bacillus endophyticus C2-2, Bacillus tequilensisYC5-2) and the commercial probiotic (Alibio®) on intestinal bacterial communities and resistance to Vibrio infection. PCR and single strain conformation polymorphism (SSCP) analyses were then performed on DNA extracted directly from guts. Injection of shrimp with V. parahaemolyticus at 2.5 × 105 CFU g?1 per shrimp followed 168 h after inoculation with Bacillus mix or the Alibio probiotic or the positive control. Diversity analyses showed that the bacterial community resulting from the Bacillus mix had the highest diversity and evenness and the bacterial community of the control had the lowest diversity. The bacterial community treated with probiotics mainly consisted of α- and γ-proteobacteria, fusobacteria, sphingobacteria, and flavobacteria, while the control mainly consisted of α-proteobacteria and flavobacteria. Differences were grouped using principal component analyses of PCR-SSCP of the microbiota, according to the time of inoculation. In Vibrio parahaemolyticus-infected shrimp, the Bacillus mix (~33 %) induced a significant increase in survival compared to Alibio (~21 %) and the control (~9 %). We conclude that administration of the Bacillus mix induced modulation of the intestinal microbiota of L. vannamei and increased its resistance to V. parahaemolyticus.  相似文献   

9.
《Process Biochemistry》2010,45(4):602-606
In the two-step Vitamin C fermentative production, its precursor 2-keto-l-gulonic acid (2-KLG) was synthesized by Ketogulonicigenium vulgare through co-culture with Bacillus megaterium. The rates of K. vulgare cell growth and 2-KLG production were closely related with B. megaterium concentration in the co-culture system. To enhance the 2-KLG production efficiency, a strategy of manipulating B. megaterium growth in the co-culture system and properly releasing its intracellular components was introduced. Lysozyme was used specifically to damage B. megaterium cell wall structure and subsequently inhibit its cell growth. When 10,000 U mL−1 lysozyme was fed to the co-culture system at 12 h, the growth rate of K. vulgare, sorbose consumption rate, and 2-KLG productivity could increase 27.4%, 37.1%, and 28.2%, respectively.  相似文献   

10.
In this report, four Bacillus strains were tested for effects on plant fitness and disease protection of oilseed rape (Brassica napus). The strains belonged to newly discovered plant-associated Bacillus amyloliquefaciens and a recently proposed species, Bacillus endophyticus. The fungal pathogens tested represented different infection strategies and included Alternaria brassicae, Botrytis cinerea, Leptosphaeria maculans, and Verticillium longisporum. The B. amyloliquefaciens strains showed no or a weak plant growth promoting activity, whereas the B. endophyticus strain had negative effects on the plant as revealed by phenological analysis. On the other hand, two of the B. amyloliquefaciens strains conferred protection of oilseed rape toward all pathogens tested. In vitro experiments studying the effects of Bacillus exudates on fungal growth showed clear growth inhibition in several but not all cases. The protective effects of Bacillus can therefore, at least in part, be explained by production of antibiotic substances, but other mechanisms must also be involved probably as a result of intricate plant–bacteria interaction. The protective effects observed for certain Bacillus strains make them highly interesting for further studies as biocontrol agents in Brassica cultivation.  相似文献   

11.
Bacillus endophyticus 2102 is an endospore-forming, plant growth-promoting rhizobacterium isolated from a hypersaline pond in South Korea. Here we present the draft sequence of B. endophyticus 2102, which is of interest because of its potential use in the industrial production of algaecides and bioplastics and for the treatment of industrial textile effluents.  相似文献   

12.
Folate derivatives are crucial growth factors for Ketogulonigenium vulgare which is used in mixed culture with Bacillus megaterium for the industrial production of 2-keto-l-gulonic acid (2-KGA), the precursor of l-ascorbic acid (l-AA) or vitamin C (Vc). To improve the growth and 2-KGA production, five genes involved in folate biosynthesis identified in a folate gene cluster from Lactococcus lactis MG1363, including folB, folKE, folP, folQ and folC, were over-expressed in K. vulgare. Intracellular folate concentration in the recombinant strain harboring folate biosynthesis genes cluster under the control of Psdh (sorbose dehydrogenase gene sdh promoter from K. vulgare) was 8 times higher than that of the wildtype K. vulgare DSM 4025 (P < 0.001). In shake flask studies, the cell density and 2-KGA production of the recombinant K. vulgare Rif (pMCS2PsdhfolBC) were increased by 18% (P < 0.001) and 14% (P < 0.001), respectively, under a relatively stable pH 7 condition. In fermentor studies, enhancements around 25% cell density (P < 0.001) and approximately 35% 2-KGA productivity (P < 0.001) were observed in comparison with the controls without over-expressing the folate biosynthesis genes. This was the first successful study of metabolic engineering on K. vulgare for enhanced 2-KGA production.  相似文献   

13.
Natural colchicinoids and their semisynthetic derivatives are important active ingredients for pharmaceutical applications. Thiocolchicoside (3-demethoxy-3-glucosyloxythiocolchicine) is used in several countries as standard therapy for the treatment of diseases of the muscle–skeletal system, due to its potent antiinflammatory and myorelaxant properties. Manufacturing of thiocolchicoside requires a key step, the regioselective demethylation and glucosylation of chemically derivative thiocolchicine. High selectivity and efficiency of this transformation cannot be achieved in a satisfactory way with a chemical approach. In particular, the chemical demethylation, a part from requiring toxic and aggressive reagents, generates a complex mixture of products with no industrial usefulness. We report herein an efficient, direct and green biotransformation of thiocolchicine into thiocolchicoside, performed by a specific strain of Bacillus megaterium. The same process, with minor modifications, can be used to convert the by-product 3-O-demethyl-thiocolchicine into thiocolchicoside. In addition, we describe the B. megaterium strain selection process and the best conditions for this effective double biotransformation. The final product has a pharmaceutical quality, and the process has been industrialised.  相似文献   

14.
The decolorization potential of two bacterial consortia developed from a textile wastewater treatment plant showed that among the two mixed bacterial culture SKB-II was the most efficient in decolorizing individual as well as mixture of dyes. At 1.3 g L?1 starch supplementation in the basal medium by the end of 120 h decolorization of 80–96% of four out of the six individual azo dyes Congo red, Bordeaux, Ranocid Fast Blue and Blue BCC (10 mg L?1) was noted. The culture exhibited good potential ability in decolorizing 50–60% of all the dyes (Congo red, Bordeaux, Ranocid Fast Blue and Blue BCC) when present as a mixture at 10 mg L?1. The consortium SKB-II consisted of five different bacterial types identified by 16S rDNA sequence alignment as Bacillus vallismortis, Bacillus pumilus, Bacillus cereus, Bacillus subtilis and Bacillus megaterium which were further tested to decolorize dyes. The efficient ability of this developed consortium SKB-II to decolorize individual dyes and textile effluent using packed bed reactors is being carried out.  相似文献   

15.
Bacillus megaterium is widely used as companion bacterium in the two-step biosynthesis of 2-keto-l-gulonic acid (2-KLG) by Ketogulonicigenium vulgare. To screen efficiently target companion strains from large numbers of random mutants, a screen method based on spectrophotometry and 24-well microtiter plates was developed and validated on an integrated library of 450 transposon random insertional mutants and two sporulation-defective mutants. The co-culture processes were classified into three groups (low, intermediate and high performance) by K-mean clustering analysis. In addition, mutant m71 was successfully screened out from the library. The substrate conversion ratio of m71 and K. vulgare co-culture process after 72 h was decreased by about 38% compared with that of the wild-type co-culture process in 750 ml flasks. These results indicated that the proposed high throughput method is feasible for screening target companions for the co-culture process of 2-KLG biosynthesis.  相似文献   

16.
This work was undertaken to obtain information on levels of metabolism in dormant spores of Bacillus species incubated for weeks at physiological temperatures. Spores of Bacillus megaterium and Bacillus subtilis strains were harvested shortly after release from sporangia and incubated under various conditions, and dormant spore metabolism was monitored by 31P nuclear magnetic resonance (NMR) analysis of molecules including 3-phosphoglyceric acid (3PGA) and ribonucleotides. Incubation for up to 30 days at 4, 37, or 50°C in water, at 37 or 50°C in buffer to raise the spore core pH from ∼ 6.3 to 7.8, or at 4°C in spent sporulation medium caused no significant changes in ribonucleotide or 3PGA levels. Stage I germinated spores of Bacillus megaterium that had slightly increased core water content and a core pH of 7.8 also did not degrade 3PGA and accumulated no ribonucleotides, including ATP, during incubation for 8 days at 37°C in buffered saline. In contrast, spores incubated for up to 30 days at 37 or 50°C in spent sporulation medium degraded significant amounts of 3PGA and accumulated ribonucleotides, indicative of RNA degradation, and these processes were increased in B. megaterium spores with a core pH of ∼7.8. However, no ATP was accumulated in these spores. These data indicate that spores of Bacillus species stored in water or buffer at low or high temperatures exhibited minimal, if any, metabolism of endogenous compounds, even when the spore core pH was 7.8 and core water content was increased somewhat. However, there was some metabolism in spores stored in spent sporulation medium.  相似文献   

17.
Photoreactivation of ultraviolet radiation-induced DNA damage was examined in exponential-phase cells of six mesophilic species of the genus Bacillus. Under the experimental conditions used, it was observed that the laboratory strains B. cereus strain T and B. thuringiensis var. thuringiensis strain NRRL-B4039 exhibited strong photoreactivation (86-fold and 70-fold respectively). Bacillus licheniformis strain ATCC 8480 exhibited moderate (15-fold) photoreactivation. Weak photoreactivation was observed in B. subtilis strain 168 (4-fold) and B. megaterium strain QM B1551 (3.4-fold). Bacillus amyloliquefaciens strain H demonstrated no detectable photoreactivation.  相似文献   

18.
The antibacterial activity against bacterial plant pathogens and its relationships with the presence of the cyclic lipopeptide (cLP) biosynthetic genes ituC (iturin), bmyB (bacillomycin), fenD (fengycin) and srfAA (surfactin), and their corresponding antimicrobial peptide products have been studied in a collection of 64 strains of Bacillus spp. isolated from plant environments. The most frequent antimicrobial peptide (AMP) genes were bmyB, srfAA and fenD (34-50% of isolates). Most isolates (98.4%) produced surfactin isoforms, 90.6% iturins and 79.7% fengycins. The antibacterial activity was very frequent and generally intense among the collection of strains because 75% of the isolates were active against at least 6 of the 8 bacterial plant pathogens tested. Hierarchical and correspondence analysis confirmed the presence of two clearly differentiated groups. One group consisted of Bacillus strains that showed a strong antibacterial activity, presented several cLPs genes and produced several isoforms of cLPs simultaneously, mainly composed of B. subtilis and B. amyloliquefaciens, although the last one was exclusive to this group. Another group was characterized by strains with very low or none antibacterial activity, that showed one or none of the cLP genes and produced a few or none of the corresponding cLPs, and was the most heterogenous group including B. subtilis, B. licheniformis, B. megaterium, B. pumilus, B. cereus and B. thuringiensis, although the last two were exclusive to this group. This work demonstrated that the antagonistic capacity of plant-associated Bacillus against plant pathogenic bacteria is related to the presence of cLP genes and to the production of the corresponding cLPs, and it is mainly associated to the species B. subtilis and B. amyloliquefaciens. Our findings would help to increase the yield and efficiency of screening methods to obtain candidate strains to biocontrol agents with a mechanism of action relaying on the production of antimicrobial cLPs.  相似文献   

19.
A set of kinetic models have been developed for the production of 2-keto-L-gulonic acid from L-sorbose by a mixed culture of Gluconobacter oxydans and Bacillus megaterium. A metabolic pathway is proposed for Gluconobacter oxydans, and a macrokinetic model has been developed for Gluconobacter oxydans, where the balances of some key metabolites, ATP and NADH are taken into account. An unstructured model is proposed for concomitant bacterium Bacillus megaterium. In the macrokinetic model and unstructured model, the mechanism of interaction between Gluconobacter oxydans and Bacillus megaterium is investigated and modeled. The specific substrate uptake rate and the specific growth rate obtained from the macrokinetic model are then coupled into a bioreactor model such that the relationship between the substrate feeding rate and the main state variables, such as the medium volume, the biomass concentrations, the substrate, and the is set up. A closed loop regulator model is introduced to approximate the induction of enzyme pool during lag phase after inoculation. Experimental results demonstrate that the model is able to describe 2-keto-L-gulonic acid fermentation process with reasonable accuracy.  相似文献   

20.
Cyclic lipopeptides are produced by a soil Bacillus megaterium strain and several other Bacillus species. In this work, they are detected both in the Bacillus intact cells and the cells culture medium by MALDI-TOF mass spectrometry. The cyclic lipopeptides self-assemble in water media producing negatively charged and large aggregates (300–800 nm of mean hydrodynamic radius) as evaluated by dynamic light scattering and zeta-potential analysis. The aggregate size depends on pH and ionic strength. However, it is not affected by changes in the osmolarity of the outer medium suggesting the absence of an internal aqueous compartment despite the occurrence of low molecular weight phospholipids in their composition as determined from inorganic phosphorus analysis. The activity against a sensitive Bacillus cereus strain was evaluated from inhibition halos and B. cereus lysis. Essential features determining the antibiotic activity on susceptible Bacillus cereus cells are the preserved cyclic moiety conferring cyclic lipopeptides resistance to proteases and the medium pH. The aggregates are inactive per se at the pH of the culture medium which is around 6 or below. The knock out of the sensitive cells only takes place when the aggregates are disassembled due to a high negative charge at pH above 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号