首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous studies have shown that microRNA-320 (miR-320) is one of the most down-regulated microRNAs (miRNA) in mouse ovarian granulosa cells (GCs) after TGF-β1 treatment. However, the underlying mechanisms of miR-320 involved in GC function during follicular development remain unknown. In this study, we found that pregnant mare serum gonadotropin treatment resulted in the suppression of miR-320 expression in a time-dependent manner. miR-320 was mainly expressed in GCs and oocytes of mouse ovarian follicles in follicular development. Overexpression of miR-320 inhibited estradiol synthesis and proliferation of GCs through targeting E2F1 and SF-1. E2F1/SF-1 mediated miR-320-induced suppression of GC proliferation and of GC steroidogenesis. FSH down-regulated the expression of miR-320 and regulated the function of miR-320 in mouse GCs. miR-383 promoted the expression of miR-320 and enhanced miR-320-mediated suppression of GC proliferation. Injection of miR-320 into the ovaries of mice partially promoted the production of testosterone and progesterone but inhibited estradiol release in vivo. Moreover, the expression of miR-320 and miR-383 was up-regulated in the follicular fluid of polycystic ovarian syndrome patients, although the expression of E2F1 and SF-1 was down-regulated in GCs. These data demonstrated that miR-320 regulates the proliferation and steroid production by targeting E2F1 and SF-1 in the follicular development. Understanding the regulation of miRNA biogenesis and function in the follicular development will potentiate the usefulness of miRNA in the treatment of reproduction and some steroid-related disorders.  相似文献   

2.
The developmental reorganization of ovarian follicular granulosa cells (GC) during follicular maturation, ovulation, and luteinization require a well-controlled regulation of dynamic gene expression profiles. Recently, microRNAs (miRNAs) were found to be key players of ovarian follicular dynamics. The current study aimed to understand the miRNA regulatory role in follicular-luteal transition by characterizing the miRNA profile through miRNA-seq at different follicular (small, medium, and large) and luteal (early, mid, and late) stages in Indian water buffaloes, mono-ovulatory animals like humans. A total of 517 miRNAs were identified in follicular granulosa cells (GC) and corpus luteum (CL) together. Among them, 2 unique and 40 novel miRNAs were in GC; 15 unique and 45 novel miRNAs were in CL. Among the remaining 415 annotated common miRNAs between GC and CL, 43 have showed significant (p?<?0.05) differential expression between GC and CL. Particularly, 39 and 4 miRNAs showed higher expression in CL and GC, respectively, with respect to each other. Genome mapping analysis revealed that 71.7% of differential miRNAs having higher expression in CL compared to GC, and 93% of the unique miRNAs in CL were mapped to a short chromosomal region of 0.7 Mb (67.4 to 68.1 Mb) on chromosome 21 of cows which is syntenic to the buffalo chromosome 20. Clustering of all these miRNAs at this locus suggests it as a chromosomal hotspot for miRNAs involved in follicular-luteal transition, especially for CL physiological functions.  相似文献   

3.
Lin F  Li R  Pan ZX  Zhou B  Yu de B  Wang XG  Ma XS  Han J  Shen M  Liu HL 《PloS one》2012,7(6):e38640
More than 99% of ovarian follicles undergo atresia in mammals, but the mechanism of follicular atresia remains to be elucidated. In this study, we explored microRNA (miRNA) regulation of follicular atresia in porcine ovary. A miRNA expression profile was constructed for healthy, early atretic, and progressively atretic follicles, and the differentially expressed miRNAs were selected and analyzed. We found that miR-26b, which was upregulated during follicular atresia, increased the number of DNA breaks and promoted granulosa cell apoptosis by targeting the ataxia telangiectasia mutated gene directly in vitro.  相似文献   

4.

Background and Aims

microRNAs (miRNAs) are small, endogenous non-coding RNAs that regulate metabolic processes, including obesity. The levels of circulating miRNAs are affected by metabolic changes in obesity, as well as in diet-induced weight loss. Circulating miRNAs are transported by high-density lipoproteins (HDL) but the regulation of HDL-associated miRNAs after diet-induced weight loss has not been studied. We aim to determine if HDL-associated miR-16, miR-17, miR-126, miR-222 and miR-223 levels are altered by diet-induced weight loss in overweight and obese males.

Methods

HDL were isolated from 47 subjects following 12 weeks weight loss comparing a high protein diet (HP, 30% of energy) with a normal protein diet (NP, 20% of energy). HDL-associated miRNAs (miR-16, miR-17, miR-126, miR-222 and miR-223) at baseline and after 12 weeks of weight loss were quantified by TaqMan miRNA assays. HDL particle sizes were determined by non-denaturing polyacrylamide gradient gel electrophoresis. Serum concentrations of human HDL constituents were measured immunoturbidometrically or enzymatically.

Results

miR-16, miR-17, miR-126, miR-222 and miR-223 were present on HDL from overweight and obese subjects at baseline and after 12 weeks of the HP and NP weight loss diets. The HP diet induced a significant decrease in HDL-associated miR-223 levels (p = 0.015), which positively correlated with changes in body weight (r = 0.488, p = 0.032). Changes in miR-223 levels were not associated to changes in HDL composition or size.

Conclusion

HDL-associated miR-223 levels are significantly decreased after HP diet-induced weight loss in overweight and obese males. This is the first study reporting changes in HDL-associated miRNA levels with diet-induced weight loss.  相似文献   

5.

Background  

The production of sex steroids by follicular cells is proposed to be influenced by the maturity of the incumbent oocyte. Thus steroid levels may reflect suitability of an oocyte for IVF. We examined follicular fluids and granulosa cell production of steroid from IVF patients in order to test the relationship between steroid levels and fertilization.  相似文献   

6.
Epidermal growth factor receptors (EGFR) contribute to colonic tumorigenesis in experimental models of colon cancer. We previously showed that EGFR was also required for colonic tumor promotion by Western diet. The goal of this study was to identify EGFR-regulated microRNAs that contribute to diet-promoted colonic tumorigenesis. Murine colonic tumors from Egfr(wt) and hypomorphic Egfr(wa2) mice were screened using micro RNA (miRNA) arrays and miR-143 and miR-145 changes confirmed by Northern, real-time PCR, and in situ analysis. Rodent and human sporadic and ulcerative colitis (UC)-associated colon cancers were examined for miR-143 and miR-145. Effects of EGFR on miR-143 and miR-145 expression were assessed in murine and human colonic cells and their putative targets examined in vitro and in vivo. miR-143 and miR-145 were readily detected in normal colonocytes and comparable in Egfr(wt) and Egfr(wa2) mice. These miRNAs were downregulated in azoxymethane and inflammation-associated colonic tumors from Egfr(wt) mice but upregulated in Egfr(wa2) tumors. They were also reduced in human sporadic and UC colon cancers. EGFR signals suppressed miR-143 and miR-145 in human and murine colonic cells. Transfected miR-143 and miR-145 inhibited HCT116 cell growth in vitro and in vivo and downregulated G(1) regulators, K-Ras, MYC, CCND2, cdk6, and E2F3, putative or established targets of these miRNAs. miRNA targets Ras and MYC were increased in colonic tumors from Egfr(wt) but not Egfr(wa2) mice fed a Western diet. EGFR suppresses miR-143 and miR-145 in murine models of colon cancer. Furthermore, Western diet unmasks the tumor suppressor roles of these EGFR-regulated miRNAs.  相似文献   

7.
8.
Ovarian follicles luteinize after ovulation, requiring structural and molecular remodeling along with exponential increases in steroidogenesis. Cholesterol substrates for luteal steroidogenesis are imported via scavenger receptor-BI (SR-BI) and the low-density lipoprotein (LDL) receptor from circulating high-density lipoproteins and LDL. SR-BI mRNA is expressed in pig ovaries at all stages of folliculogenesis and in the corpus luteum (CL). An 82-kDa form of SR-BI predominates throughout, is weakly present in granulosa cells, and is robustly expressed in the CL, along with the less abundant 57-kDa form. Digestion of N-linked carbohydrates substantially reduced the SR-BI mass in luteal cells, indicating that differences between forms is attributable to glycosylation. Immunohistochemistry revealed SR-BI to be concentrated in the cytoplasm of follicular granulosa cells, although found mostly at the periphery of luteal cells. To examine receptor dynamics during gonadotropin-induced luteinization, pigs were treated with an ovulatory stimulus, and ovaries were collected at intervals to ovulation. SR-BI in granulosa cell cytoplasm increased through the periovulatory period, with migration to the cell periphery as the CL matured. In vitro culture of follicles with human chorionic gonadotropin induced time-dependent upregulation of 82-kDa SR-BI in granulosa cells. SR-BI and LDL receptor were reciprocally expressed, with the latter highest in follicular granulosa cells, declining precipitously with CL formation. We conclude that luteinization causes upregulation of SR-BI expression, its posttranslational maturation by glycosylation, and insertion into luteal cell membranes. Expression of the LDL receptor is extinguished during luteinization, indicating dynamic regulation of cholesterol importation to maintain elevated steroid output by the CL.  相似文献   

9.
Abnormal glucose metabolism in the brain is recognized to be associated with cognitive decline. Because grapes are rich in polyphenols that produce antioxidative and blood sugar-lowering effects, we investigated how grape consumption affects the expression and/or phosphorylation of neurodegeneration-related brain proteins in aged rats fed a high-fructose–high-fat (HFHF) diet. Wistar rats were maintained on the HFHF diet from the age of 8 weeks to 66 weeks, and then on an HFHF diet containing either 3% or 6% grape powder as an intervention for 12 weeks. Western blotting was performed to measure the expression/phosphorylation levels of several cortical and hippocampal proteins, including amyloid precursor protein (APP), tau, phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), receptor for advanced glycation end products (RAGEs), erythroid 2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF). Inclusion of up to 6% grape powder in the diet markedly reduced RAGE expression and tau hyperphosphorylation, but upregulated the expression of Nrf2 and BDNF, as well as the phosphorylation of PI3K and ERK, in the brain tissues of aged rats fed the HFHF diet. Thus, grape powder consumption produced beneficial effects in HFHF-diet-fed rats, exhibiting the potential to ameliorate changes in neurodegeneration-related proteins in the brain.  相似文献   

10.
11.
Interleukin 8 (IL-8) is a chemoattractant involved in the recruitment and activation of neutrophils and is associated with the ovulate process. We examined the possible role of IL-8 in steroid production by bovine granulosa cells before and after ovulation. The concentration of IL-8 in the follicular fluid of estrogen-active dominant (EAD) and pre-ovulatory follicles (POF) was higher than that of small follicles (SF). CXCR1 mRNA expression was higher in the granulosa cells of EAD and POF than that of SF. In contrast, CXCR2 mRNA expression was lower in granulosa cells of EAD and POF than in SF. IL-8 inhibited estradiol (E2) production in follicle-stimulating hormone (FSH)-treated granulosa cells at 48 h of culture. IL-8 also suppressed CYP19A1 mRNA expression in FSH-treated granulosa cells. IL-8 stimulated progesterone (P4) production in luteinizing hormone (LH)-treated granulosa cells at 48 h of culture. Although IL-8 did not alter the expression of genes associated with P4 production, it induced StAR protein expression in LH-treated granulosa cells. The expression of CXCR1 mRNA in corpus luteum (CL) did not change during the luteal phase. In contrast, the expression of CXCR2 mRNA in middle CL was significantly higher than in early and regression CL during the luteal phase. In luteinizing granulosa cells, an in vitro model of granulosa cell luteinization, CXCR2 mRNA expression was downregulated, whereas CXCR1 mRNA expression was unchanged. IL-8 also stimulated P4 production in luteinizing granulosa cells. These data provide evidence that IL-8 functions not only as a chemokine, but also act as a regulator of steroid synthesis in granulosa cells to promote luteinization after ovulation.  相似文献   

12.
This study aimed to investigate the miRNA expression patterns in granulosa cells of subordinate (SF) and dominant follicle (DF) during the early luteal phase of the bovine estrous cycle. For this, miRNA enriched total RNA isolated from granulosa cells of SF and DF obtained from heifers slaughtered at day 3 and day 7 of the estrous cycle was used for miRNAs deep sequencing. The results revealed that including 17 candidate novel miRNAs, several known miRNAs (n = 291–318) were detected in SF and DF at days 3 and 7 of the estrous cycle of which 244 miRNAs were common to all follicle groups. The let-7 families, bta-miR-10b, bta-miR-26a, bta-miR-99b and bta-miR-27b were among abundantly expressed miRNAs in both SF and DF at both days of the estrous cycle. Further analysis revealed that the expression patterns of 16 miRNAs including bta-miR-449a, bta-miR-449c and bta-miR-222 were differentially expressed between the granulosa cells of SF and DF at day 3 of the estrous cycle. However, at day 7 of the estrous cycle, 108 miRNAs including bta-miR-409a, bta-miR-383 and bta-miR-184 were differentially expressed between the two groups of granulosa cell revealing the presence of distinct miRNA expression profile changes between the two follicular stages at day 7 than day 3 of the estrous cycle. In addition, unlike the SF, marked temporal miRNA expression dynamics was observed in DF groups between day 3 and 7 of the estrous cycle. Target gene prediction and pathway analysis revealed that major signaling associated with follicular development including Wnt signaling, TGF-beta signaling, oocyte meiosis and GnRH signaling were affected by differentially expressed miRNAs. Thus, this study highlights the miRNA expression patterns of granulosa cells in subordinate and dominant follicles that could be associated with follicular recruitment, selection and dominance during the early luteal phase of the bovine estrous cycle.  相似文献   

13.
Polycystic ovary syndrome (PCOS) is a heterogeneous reproductive disease, characterized by increased ovarian androgen biosynthesis, chronic anovulation and polycystic ovaries. The objective of this study was to identify the altered miRNA expression profiles in follicular fluid derived exosomes isolated from PCOS patients and to investigate the molecular functions of exosomal miR-424-5p. Herein, small RNA sequencing showed that twenty-five miRNAs were differentially expressed between control and PCOS group. The alterations in the miRNA profile were related to the endocrine resistance, cell growth and proliferation, cellular senescence and insulin signaling pathway. Among these differentially expressed miRNAs, we found that the expression of miR-424-5p was significantly decreased in PCOS exosomes and primary granulosa cells (GCs). Exosome-enriched miR-424-5p significantly promoted GCs senescence and suppressed cell proliferation. Similar to the results obtained in the cells transfected with miR-424-5p mimic, miR-424-5p mimic significantly decreased cell proliferation ability and induced senescence, but treatment with miR-424-5p inhibitor got the opposite results. In addition, cell division cycle associated 4 (CDCA4) gene displayed an inverse expression pattern to those of miR-424-5p, was identified as the direct target of miR-424-5p. Overexpression of CDCA4 reversed the effects of exosomal miR-424-5p on GCs via activation of Rb/E2F1 signaling pathway. These results demonstrate that exosomal miR-424-5p inhibits GCs proliferation and induces cellular senescence in PCOS through blocking CDCA4-mediated Rb/E2F1 signaling. Our findings provide new information on abnormal follicular development in PCOS.  相似文献   

14.
15.
miR-1275 is one of the microRNAs (miRNAs) that are differentially expressed during follicular atresia in pig ovaries, as identified by a miRNA microarray assay in our previous study [1]. However, its functions in follicular atresia remain unknown. In this study, we showed that miR-1275 promotes early apoptosis of porcine granulosa cells (pGCs) and the initiation of follicular atresia, and inhibits E2 release and expression of CYP19A1, the key gene in E2 production. Bioinformatics and luciferase reporter assays revealed that liver receptor homolog (LRH)-1, not CYP19A1, is a direct functional target of miR-1275. In vitro overexpression and knockdown experiments showed that LRH-1 significantly repressed apoptosis and induced E2 secretion and CYP19A1 expression in pGCs. LRH-1, whose expression was regulated by miR-1275, prevented apoptosis in pGCs. Furthermore, luciferase and chromatin immunoprecipitation assays demonstrated that LRH-1 protein bound to the CYP19A1 promoter and increased its activity. Our findings suggest that miR-1275 attenuates LRH-1 expression by directly binding to its 3’UTR. This prevents the interaction of LRH-1 protein with the CYP19A1 promoter, represses E2 synthesis, promotes pGC apoptosis, and initiates follicular atresia in porcine ovaries.  相似文献   

16.
17.
No unusual steroid-binding proteins that might react with the oocyte or its investments could be detected in follicular fluid. Corticosteroid-binding globulin occurred in follicular fluid from pigs, sheep and cows, and sex hormone-binding globulin occurred in follicular fluid from sheep and cows. The bulk of the steroid in follicular fluid is bound to albumin with low affinity, indicating that steroid molecules can readily be released, and oestrogen can react with the oocyte and granulosa cells in a manner analogous to that demonstrated for target cells bathed with interstitial fluid. Pigs lack a sex-hormone binding globulin in blood plasma and, hence, in follicular fluid. Because no proteins exist in follicular fluid that would compete with antibodies to bind steroids, direct radioimmunoassay of follicular steroids appears to be a valid technique.  相似文献   

18.
19.
Adiponectin is one of the most important, recently discovered adipocytokines that acts at various levels to control male and female fertility through central effects on the hypothalamus-pituitary axis or through peripheral effects on the ovary, uterus, and embryo. We studied simultaneous changes in the gene expression pattern of adiponectin and adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) in granulosa and theca cells, cumulus-oocyte complex, and in corpus luteum in healthy bovine (Bos tarus) follicles at different stages of development. The expression levels of adiponectin, AdipoR1, and AdipoR2 mRNA were lower (P < 0.05) in granulosa and cumulus cells in comparison with that in theca cells and oocyte. In contrast with the oocyte, AdipoR1 in granulosa, theca, and luteal cells was expressed (P < 0.05) more than AdipoR2. Adiponectin expression increased (P < 0.05) in granulosa cells and in cumulus-oocyte complex during follicular development from small to large follicles. Opposite results were observed in theca cells. Expression of adiponectin was highest in the late stages of corpus luteum (CL) regression, whereas lower expression was recorded in active CL (P < 0.05). AdipoR1 and AdipoR2 expression increased during the terminal follicular growth in granulosa and theca cells (P < 0.05) and during the luteal phase progress in CL. There was positive correlation between adiponectin mRNA level in granulosa cells from large follicles and follicular fluid estradiol concentration (r = 0.48, P < 0.05) and negative correlation between adiponectin mRNA abundance in theca cells and follicular fluid progesterone concentration (r = -0.44, P < 0.05). In conclusion, we found that the physiologic status of the ovary has significant effects on the natural expression patterns of adiponectin and its receptors in follicular and luteal cells of bovine ovary.  相似文献   

20.
The objectives of this study included: (1) identify the expression of miRNAs specific to bovine cumulus-oocyte complexes (COCs) during late oogenesis, (2) characterize the expression of candidate miRNAs as well as some miRNA processing genes, and (3) computationally identify and characterize the expression of target mRNAs for candidate miRNAs. Small RNAs in the 16-27 bp range were isolated from pooled COCs aspirated from 1- to 10-mm follicles of beef cattle ovaries and used to construct a cDNA library. A total 1798 putative miRNA sequences from the cDNA library of small RNA were compared to known miRNAs. Sixty-four miRNA clusters matched previously reported sequences in the miRBase database and 5 miRNA clusters had not been reported. TaqMan miRNA assays were used to confirm the expression of let-7b, let-7i, and miR-106a from independent collections of COCs. Real-time PCR assays were used to characterize expression of miRNA processing genes and target mRNAs (MYC and WEE1A) for the candidate miRNAs from independent collections of COCs. Expression data were analyzed using general linear model procedures for analysis of variance. The expression of let-7b and let-7i were not different between the cellular populations from various sized follicles. However, miR-106a expression was greater (P<0.01) in oocytes compared with COCs and granulosa cells. Furthermore, all the miRNA processing genes have greater expression (P<0.001) in oocytes compared with COCs and granulosa cells. The expression of potential target mRNAs for let-7 and let-7i (i.e., MYC), and miR-106a (i.e., WEE1A) were decreased (P<0.05) in oocytes compared with COCs and granulosa cells. These results demonstrate specific miRNAs within bovine COCs during late oogenesis and provide some evidence that miRNAs may play a role regulating maternal mRNAs in bovine oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号