首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
For pearl culture, nucleus and mantle grafts are implanted into the gonad of the host oyster. The epithelial cells of the implanted mantle graft elongate and surround the nucleus, and a pearl sac is formed. Shell matrix proteins secreted by the pearl sac play an important role in pearl formation. We studied the gene expression patterns of six shell matrix proteins (msi60, n16, nacrein, msi31, prismalin-14, and aspein) in the epithelial cells associated with pearl sac formation. There were differences in the expression patterns of the six genes in the epithelial cells, and the relative expression levels for msi60 and aspein differed between the mantle graft and pearl sac (48 days after implantation). Therefore, the gene expression patterns of the epithelial cells were genetically undetermined, and changed between before and after pearl sac formation. The gene expression patterns of the epithelial cells of the pearl sac may be regulated by the host oysters.  相似文献   

3.
In this study, we analyzed the combined effect of microalgal concentration and temperature on the shell growth of the bivalve Pinctada margaritifera and the molecular mechanisms underlying this biomineralization process. Shell growth was measured after two months of rearing in experimental conditions, using calcein staining of the calcified structures. Molecular mechanisms were studied though the expression of 11 genes encoding proteins implicated in the biomineralization process, which was assessed in the mantle. We showed that shell growth is influenced by both microalgal concentration and temperature, and that these environmental factors also regulate the expression of most of the genes studied. Gene expression measurement of shell matrix protein thereby appears to be an appropriate indicator for the evaluation of the biomineralization activity in the pearl oyster P. margaritifera under varying environmental conditions. This study provides valuable information on the molecular mechanisms of mollusk shell growth and its environmental control.  相似文献   

4.
5.
Perlucin is an important functional protein that regulates shell and pearl formation. In this study, we cloned the perlucin gene from the freshwater pearl mussel Hyriopsis cumingii, designated as Hcperlucin. The full-length cDNA transcribed from the Hcperlucin gene was 1460 bp long, encoding a putative signal peptide of 20 amino acids and a mature protein of 141 amino acids. The mature Hcperlucin peptide contained six conserved cysteine residues and a carbohydrate recognition domain, similar to other members of the C-type lectin families. In addition, a “QPS” and an invariant “WND” motif near the C-terminal region were also found, which are extremely important for polysaccharide recognition and calcium binding of lectins. The mRNA of Hcperlucin was constitutively expressed in all tested H. cumingii tissues, with the highest expression levels observed in the mantle, adductor, gill and hemocytes. In situ hybridization was used to detect the presence of Hcperlucin mRNA in the mantle, and the result showed that the mRNA was specifically expressed in the epithelial cells of the dorsal mantle pallial, an area known to express genes involved in the biosynthesis of the nacreous layer of the shell. The significant Hcperlucin mRNA expression was detected on day 14 post shell damage and implantation, suggesting that the Hcperlucin might be an important gene in shell nacreous layer and pearl formation. The change of perlucin expression in pearl sac also confirmed that the mantle transplantation results in a new expression pattern of perlucin genes in pearl sac cells that are required for pearl biomineralization. These findings could help better understanding the function of perlucin in the shell and pearl formation.  相似文献   

6.
As a molecular carrier and storage protein, apolipoprotein (Apo) mediates the intracellular uptake of lipids, proteins, vitamins and carotenoids. In this study, we identified a novel Apo gene, designated hcApo, from the freshwater pearl mussel Hyriopsis cumingii. The complete hcApo cDNA consists of 4104 nucleotides with an open reading frame encoding 1155 amino acid residues. The hcApo protein contains a conserved lipoprotein N-terminal domain (LPD-N) that is a characteristic of the large lipid transfer protein (LLTP) superfamily. The hcApo mRNA is constitutively expressed in a wide range of tissues with the highest expression level in the liver. Moreover, differential expression analysis revealed that the hcApo gene is more highly expressed in the liver, kidney, mantle and gill of purple line mussels compared to white line mussels. In situ hybridization investigations of the precise expression site of hcApo mRNA in the mantle showed that hcApo mRNA is specifically expressed in the outer epithelial cells of the middle fold and the inner epithelial cells of the outer fold of the mantle, as well as throughout the outer epithelium of the outer fold and ventral mantle. Another very important finding is that significantly positive correlation existed between the hcApo gene expression level and the total carotenoid content in purple line mussels. These findings may provide a better understanding of the roles of hcApo in the molecular mechanisms of shell formation and coloring of H. cumingii.  相似文献   

7.
Understanding the molecular composition and the formation mechanism of shell matrix framework is of great interest for biomineralization in mollusk shell. The cDNAs encoding a novel matrix protein family (KRMP) were cloned from the mantle of pearl oyster, Pinctada fucata. Analysis of the deduced amino acid sequences revealed that KRMP have a high proportion of lysine, glycine, and tyrosine, and their predict isoelectric points are higher than any other identified shell matrix protein to our knowledge. The deduced amino acid sequences of KRMP can be divided into three regions, including an N-terminal signal peptide, a lysine-rich basic region interacting with acidic proteins or CO(3)(2-), and a Gly/Tyr-rich region involved in the protein cross-link via quinone-tanning process. RT-PCR and in situ hybridization demonstrated that KRMP mRNA was specifically expressed in the mantle edge, involved in the prismatic layer formation. Taken together, it seems that KRMP is a matrix protein family participating in the framework formation of prismatic layer.  相似文献   

8.
Biomineralization is a common biological phenomenon resulting in strong tissue, such as bone, tooth, and shell. Pinctada fucata martensii is an ideal animal for the study of biomineralization. Here, microarray technique was used to identify biomineralization gene in mantle edge (ME), mantle center (MC), and both ME and MC (ME-MC) for this pearl oyster. Results revealed that 804, 306, and 1127 contigs expressed at least three times higher in ME, MC, and ME-MC as those in other tissues. Blast against non-redundant database showed that 130 contigs (16.17 %), 53 contigs (17.32 %), and 248 contigs (22.01 %) hit reference genes (E?≤??10), among which 91 contigs, 48 contigs, and 168 contigs could be assigned to 32, 26, and 63 biomineralization genes in tissue of ME, MC, and ME-MC at a threshold of 3 times upregulated expression level. The ratios of biomineralization contigs to homologous contigs were similar at 3 times, 10 times, and 100 times of upregulated expression level in either ME, MC, or ME-MC. Moreover, the ratio of biomineralization contigs was highest in MC. Although mRNA distribution characters were similar to those in other studies for eight biomineralization genes of PFMG3, Pif, nacrein, MSI7, mantle gene 6, Pfty1, prismin, and the shematrin, most biomineralization genes presented different expression profiles from existing reports. These results provided massive fundamental information for further study of biomineralization gene function, and it may be helpful for revealing gene nets of biomineralization and the molecular mechanisms underlining formation of shell and pearl for the oyster.  相似文献   

9.
Mantle tissue plays an important role in shell biomineralization by secreting matrix proteins for shell formation. However, the mechanism by which it regulates matrix protein secretion is poorly understood, largely because of the lack of cellular tools for in vitro study and techniques to evaluate matrix protein secretion. We have isolated the outer epithelial cells of the mantle of the pearl oyster, Pinctada fucata, and evaluated cellular metabolism by measuring the secretion of the matrix protein, nacrein. A novel sensitive sandwich enzyme-linked immunosorbent assay (ELISA) was established to quantify nacrein. Mantle explant culture was demonstrated to provide dissociated tissue cells with high viability. Single dissociated cell types from explant culture were separated by density in a discontinuous Percoll gradient. The outer epithelial cells were isolated from other cell types by their higher density and identified by immunolabeling and ultrastructure analysis. ELISA assays revealed that the outer epithelial cells retained the ability to secrete nacrein in vitro. Moreover, increased nacrein secretion resulted from an increased Ca(2+) concentration in the culture media of the outer epithelial cells, in a concentration-dependent manner. These results confirm that outer epithelial cell culture and the ELISA method are useful tools for studying the regulatory mechanisms of shell biomineralization.  相似文献   

10.
11.
12.
For pearl culture, the pearl oyster is forced open and a nucleus is implanted into the gonad with a mantle graft. The outer mantle epithelial cells of the implanted mantle graft elongate and surrounding the nucleus a pearl sac is formed. Shell matrix proteins secreted by the pearl sac play an important role in the regulation of pearl formation. Recently, seven shell matrix proteins were identified from the pearl oyster Pinctada fucata. However, there is a paucity of information on the function of these proteins and their gene expression patterns. Our study aims to elucidate the relationship between pearl type, quality, and gene expression patterns of six shell matrix proteins (msi60, n16, nacrein, msi31, prismalin-14, and aspein) in the pearl sac based on real-time PCR analysis. After culturing for about 2 months, the pearl sac tissues were collected from 22 individuals: 12 with high quality (HP), nine with low quality (LP), and one with organic (ORG) pearl formation. The surface of each of the 12 HP pearls was composed only of a nacreous layer; in contrast, that of the nine LP pearls was composed of nacreous and prismatic layers. The six target gene expressions were detected in all individuals. However, delta threshold cycle (ΔC T) for msi31 was significantly higher in the HP than in the LP individuals (Mann–Whitney’s U test, p = 0.02). This means that the relative expression level of msi31, which constitutes the framework of the prismatic layer, was higher in the LP than in the HP individuals.  相似文献   

13.
The growth of molluscan shell crystals is generally thought to be initiated from the extrapallial fluid by matrix proteins, however, the cellular mechanisms of shell formation pathway remain unknown. Here, we first report amorphous calcium carbonate (ACC) precipitation by cellular biomineralization in primary mantle cell cultures of Pinctada fucata. Through real-time PCR and western blot analyses, we demonstrate that mantle cells retain the ability to synthesize and secrete ACCBP, Pif80 and nacrein in vitro. In addition, the cells also maintained high levels of alkaline phosphatase and carbonic anhydrase activity, enzymes responsible for shell formation. On the basis of polarized light microscopy and scanning electron microscopy, we observed intracellular crystals production by mantle cells in vitro. Fourier transform infrared spectroscopy and X-ray diffraction analyses revealed the crystals to be ACC, and de novo biomineralization was confirmed by following the incorporation of Sr into calcium carbonate. Our results demonstrate the ability of mantle cells to perform fundamental biomineralization processes via amorphous calcium carbonate, and these cells may be directly involved in pearl oyster shell formation.  相似文献   

14.
The production of a cultured pearl is the result of a complex interplay between the donor and recipient oysters. However, there is a paucity of information on the relationship between donor and recipient oyster gene expression patterns and pearl quality. Shell matrix proteins affect not only the formation of the shell, but also that of the pearls. We compared the gene expression patterns of five shell matrix proteins (msi60, nacrein, msi31, prismalin-14, and aspein) in the mantle edge (ME), which forms the prismatic layer, and the mantle center (MC), which forms the nacreous layer, between high- (HP) and low quality pearl- (LP) producing recipient oysters. After culturing for about two months, ME and MC tissues were collected from nine recipient oysters: four with HP, five with LP. In the ME, the average threshold cycle (ΔC(T)) for aspein was higher in HP than in LP (t-test, p = 0.03). Additionally, in the MC, the average ΔC(T) for msi60 was lower in HP than in LP (p = 0.06). This means the relative expression level of msi60 in the mantle of HP was higher than that of LP, and expression level of aspein in the mantle of HP was lower than that of LP. Pearl quality was closely related to the expression patterns of shell matrix protein genes of recipient oysters.  相似文献   

15.
Nacre formation is an ideal model to study biomineralization processes. Although much has been done about biomineralization mechanism of nacre, little is known as to how cellular signaling regulates this process. We are interested in whether G protein signaling plays a role in mineralization. Degenerate primers against conserved amino acid regions of G proteins were employed to amplify cDNA from the pearl oyster Pinctada fucata. As a result, the cDNA encoding a novel G(s)alpha (pfG(s)alpha) from the pearl oyster was isolated. The G(s)alpha cDNA encodes a polypeptide of 377 amino acid residues, which shares high similarity to the octopus (Octopus vulgaris) G(s)alpha. The well-conserved A, C, G (switch I), switch II functional domains and the carboxyl terminus that is a critical site for interaction with receptors are completely identical to those from other mollusks. However, pfG(s)alpha has a unique amino acid sequence, which encodes switch III and interaction sites of adenylyl cyclase respectively. In situ hybridization and Northern blotting analysis revealed that the oyster G(s)alpha mRNA is widely expressed in a variety of tissues, with highest levels in the outer fold of mantle and epithelia of gill, the regions essential for biomineralization. We also show that overexpression of the pfG(s)alpha in mammalian MC3T3-E1 cells resulted in increased cAMP levels. Mutant pfG(s)alpha that has impaired CTX substrate diminished its ability to induce cAMP production. Furthermore, the alkaline phosphatase (ALP) activity, an indicator for mineralization, is induced by the G(s)alpha in MC3T3-E1 cells. These results indicated that G(s)alpha may be involved in regulation of physiological function, particularly in biological biomineralization.  相似文献   

16.
The initial growth of the nacreous layer is crucial for comprehending the formation of nacreous aragonite. A flat pearl method in the presence of the inner-shell film was conducted to evaluate the role of matrix proteins in the initial stages of nacre biomineralization in vivo. We examined the crystals deposited on a substrate and the expression patterns of the matrix proteins in the mantle facing the substrate. In this study, the aragonite crystals nucleated on the surface at 5 days in the inner-shell film system. In the film-free system, the calcite crystals nucleated at 5 days, a new organic film covered the calcite, and the aragonite nucleated at 10 days. This meant that the nacre lamellae appeared in the inner-shell film system 5 days earlier than that in the film-free system, timing that was consistent with the maximum level of matrix proteins during the first 20 days. In addition, matrix proteins (Nacrein, MSI60, N19, N16 and Pif80) had similar expression patterns in controlling the sequential morphologies of the nacre growth in the inner-film system, while these proteins in the film-free system also had similar patterns of expression. These results suggest that matrix proteins regulate aragonite nucleation and growth with the inner-shell film in vivo.  相似文献   

17.
18.
Understanding the molecular composition is of great interest for both nacre formation mechanism and biomineralization in mollusk shell. A cDNA clone encoding an MSI31 relative, termed MSI7 because of its estimated molecular mass of 7.3 kDa, was isolated from the pearl oyster, Pinctada fucata. This novel protein shares similarity with MSI31, a prismatic framework protein of P. fucata. It is peculiar that MSI7 is much shorter in size, harboring only the Gly-rich sequence that has been proposed to be critical for Ca(2+) binding. In situ hybridization result showed that MSI7 mRNA was expressed specifically at the folds and outer epithelia of the mantle, indicating that MSI7 participates in the framework formation of both the nacreous layer and prismatic layer. In vitro experiment on the function of MSI7 suggested that it accelerates the nucleation and precipitation of CaCO(3). Taken together, we have identified a novel matrix protein of the pearl oyster, which may play an important role in determining the texture of nacre.  相似文献   

19.
20.
Nacre of the Pinctada pearl oyster shells is composed of 98% CaCO3 and 2% organic matrix. The relationship between the organic matrix and the mechanism of nacre formation currently constitutes the main focus regarding the biomineralization process. In this study, we isolated a new nacre matrix protein in P. margaritifera and P. maxima, we called Pmarg- and Pmax-MRNP34 (methionine-rich nacre protein). MRNP34 is a secreted hydrophobic protein, which is remarkably rich in methionine, and which is specifically localised in mineralizing the epithelium cells of the mantle and in the nacre matrix. The structure of this protein is drastically different from those of the other nacre proteins already described. This unusual methionine-rich protein is a new member in the growing list of low complexity domain containing proteins that are associated with biocalcifications. These observations offer new insights to the molecular mechanisms of biomineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号