首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The recent unprecedented emergence of arboviruses transmitted by Culicoides biting midges in northern Europe has necessitated the development of techniques to differentiate competent vector species. At present these techniques are entirely reliant upon interpretation of semi-quantitative RT-PCR (sqPCR) data in the form of Cq values used to infer the presence of viral RNA in samples.

Methodology/Principal Findings

This study investigates the advantages and limitations of sqPCR in this role by comparing infection and dissemination rates of Schmallenberg virus (SBV) in two colony lines of Culicoides. Through the use of these behaviorally malleable lines we provide tools for demarcating arbovirus infection and dissemination rates in Culicoides which to date have prevented clear implication of primary vector species in northern Europe. The study demonstrates biological transmission of SBV in an arthropod vector, supporting the conclusions from field-caught Culicoides and provides a general framework for future assessment of vector competence of Culicoides for arboviruses using sqPCR.

Conclusions/Significance

When adopting novel diagnostic technologies, correctly implicating vectors of arboviral pathogens requires a coherent laboratory framework to fully understand the implications of results produced in the field. This study illustrates these difficulties and provides a full examination of sqPCR in this role for the Culicoides-arbovirus system.  相似文献   

2.

Background

West Nile virus (WNV) is a highly pathogenic flavivirus transmitted by Culex spp. mosquitoes. In North America (NA), lineage 1 WNV caused the largest outbreak of neuroinvasive disease to date, while a novel pathogenic lineage 2 strain circulates in southern Europe. To estimate WNV lineage 2 epidemic potential it is paramount to know if mosquitoes from currently WNV-free areas can support further spread of this epidemic.

Methodology/Principal Findings

We assessed WNV vector competence of Culex pipiens mosquitoes originating from north-western Europe (NWE) in direct comparison with those from NA. We exposed mosquitoes to infectious blood meals of lineage 1 or 2 WNV and determined the infection and transmission rates. We explored reasons for vector competence differences by comparing intrathoracic injection versus blood meal infection, and we investigated the influence of temperature. We found that NWE mosquitoes are highly competent for both WNV lineages, with transmission rates up to 25%. Compared to NA mosquitoes, transmission rates for lineage 2 WNV were significantly elevated in NWE mosquitoes due to better virus dissemination from the midgut and a shorter extrinsic incubation time. WNV infection rates further increased with temperature increase.

Conclusions/Significance

Our study provides experimental evidence to indicate markedly different risk levels between both continents for lineage 2 WNV transmission and suggests a degree of genotype-genotype specificity in the interaction between virus and vector. Our experiments with varying temperatures explain the current localized WNV activity in southern Europe, yet imply further epidemic spread throughout NWE during periods with favourable climatic conditions. This emphasizes the need for intensified surveillance of virus activity in current WNV disease-free regions and warrants increased awareness in clinics throughout Europe.  相似文献   

3.

Background

Seadornavirus is a genus of viruses in the family Reoviridae, which consists of Banna virus, Kadipiro virus, and Liao ning virus. Banna virus is considered a potential pathogen for zoonotic diseases. Here, we describe a newly discovered Seadornavirus isolated from mosquitos (Culex tritaeniorhynchus) in Yunnan Province, China, which is related to Banna virus, and referred to as Mangshi virus.

Methods and Results

The Mangshi virus was isolated by cell culture in Aedes albopictus C6/36 cells, in which it replicated and caused cytopathic effects, but not in mammalian BHK-21 or Vero cells. Polyacrylamide gel analysis revealed a genome consisting of 12 segments of double-stranded RNA, with a “6–4–2” pattern in which the migrating bands were different from those of the Banna virus. Complete genome sequencing was performed by full-length amplification of cDNAs. Sequence analysis showed that seven highly conserved nucleotides and three highly conserved nucleotides were present at the ends of the 5′- and 3′-UTRs in each of 12 genome segments. The amino acid identities of Mangshi virus shared with Balaton virus varied from 27.3% (VP11) to 72.3% (VP1) with Banna virus varying from 18.0% (VP11) to 63.9% (VP1). Phylogenetic analysis based on amino acid sequences demonstrated that Mangshi virus is a member of the genus Seadornavirus and is most closely related to, but distinct from, Balaton virus and Banna virus in the genus Seadornavirus of the family Reoviridae.

Conclusion

Mangshi virus isolated from mosquitoes (C. tritaeniorhynchus) was identified as a newly discovered virus in the genus Seadornavirus and is phylogenetically close to Banna virus, suggesting that there is genetic diversity of seadornaviruses in tropical and subtropical areas of Southeast Asia.  相似文献   

4.

Background

Culicoides biting midges (Diptera: Ceratopogonidae) are the biological vectors of globally significant arboviruses of livestock including bluetongue virus (BTV), African horse sickness virus (AHSV) and the recently emerging Schmallenberg virus (SBV). From 2006–2009 outbreaks of BTV in northern Europe inflicted major disruption and economic losses to farmers and several attempts were made to implicate Palaearctic Culicoides species as vectors. Results from these studies were difficult to interpret as they used semi-quantitative RT-PCR (sqPCR) assays as the major diagnostic tool, a technique that had not been validated for use in this role. In this study we validate the use of these assays by carrying out time-series detection of BTV RNA in two colony species of Culicoides and compare the results with the more traditional isolation of infectious BTV on cell culture.

Methodology/Principal Findings

A BTV serotype 1 strain mixed with horse blood was fed to several hundred individuals of Culicoides sonorensis (Wirth & Jones) and C. nubeculosus (Mg.) using a membrane-based assay and replete individuals were then incubated at 25°C. At daily intervals 25 Culicoides of each species were removed from incubation, homogenised and BTV quantified in each individual using sqPCR (Cq values) and virus isolation on a KC-C. sonorensis embryonic cell line, followed by antigen enzyme-linked immunosorbent assay (ELISA). In addition, comparisons were also drawn between the results obtained with whole C. sonorensis and with individually dissected individuals to determine the level of BTV dissemination.

Conclusions/Significance

Cq values generated from time-series infection experiments in both C. sonorensis and C. nubeculosus confirmed previous studies that relied upon the isolation and detection of infectious BTV. Implications on the testing of field-collected Culicoides as potential virus vectors by PCR assays and the use of such assays as front-line tools for use in diagnostic laboratories in this role are discussed.  相似文献   

5.

Background

Main impact of Schmallenberg virus (SBV) on livestock consists in reproductive disorders, with teratogenic effects, abortions and stillbirths. SBV pathogenesis and viral placental crossing remain currently poorly understood. Therefore, we implemented an experimental infection of ewes, inoculated with SBV at 45 or 60 days of gestation (dg).

Methodology

“Mourerous” breed ewes were randomly separated in three groups: eight and nine ewes were subcutaneously inoculated with 1 ml of SBV infectious serum at 45 and 60 dg, respectively (G45 and G60). Six other ewes were inoculated subcutaneously with sterile phosphate buffer saline as control group. All SBV inoculated ewes showed RNAemia consistent with previously published studies, they seroconverted and no clinical sign was reported. Lambs were born at term via caesarian-section, and right after birth they were blood sampled and clinically examined. Then both lambs and ewes were euthanatized and necropsied.

Principal Findings/Significance

No lambs showed any malformation suggestive of SBV infection and none of them had RNAemia or anti-SBV antibodies prior to colostrum uptake. Positive SBV RNA detection in organs was rare in both G45 and G60 lambs (2/11 and 1/10, respectively). Nevertheless most of the lambs in G45 (9/11) and G60 (9/10) had at least one extraembryonic structure SBV positive by RTqPCR. The number of positive extraembryonic structures was significantly higher in G60 lambs. Time of inoculation (45 or 60 dg) had no impact on the placental colonization success rate but affected the frequency of detecting the virus in the offspring extraembryonic structures by the time of lambing. SBV readily colonized the placenta when ewes were infected at 45 or 60 dg but infection of the fetuses was limited and did not lead to congenital malformations.  相似文献   

6.
7.
In 2011, Schmallenberg virus (SBV), a novel member of the Simbu serogroup, genus Orthobunyavirus, was identified as the causative agent of a disease in ruminants in Europe. Based on the current knowledge on arthropods involved in the transmission of Simbu group viruses, a role of both midges and mosquitoes in the SBV transmission cycle cannot be excluded beforehand. The persistence of SBV in mosquitoes overwintering at SBV‐affected farms in the Netherlands was investigated. No evidence for the presence of SBV in 868 hibernating mosquitoes (Culex, Anopheles, and Culiseta spp., collected from January to March 2012) was found. This suggests that mosquitoes do not play an important role, if any, in the persistence of SBV during the winter months in northwestern Europe.  相似文献   

8.
Microbial control of mosquitoes via the use of symbiotic or pathogenic microbes, such as Wolbachia and entomopathogenic fungi, are promising alternatives to synthetic insecticides to tackle the rapid increase in insecticide resistance and vector-borne disease outbreaks. This study evaluated the susceptibility and host responses of two important mosquito vectors, Ae. albopictus and Cx. pipiens, that naturally carry Wolbachia, to infections by entomopathogenic fungi. Our study indicated that while Wolbachia presence did not provide a protective advantage against entomopathogenic fungal infection, it nevertheless influenced the bacterial / fungal load and the expression of select anti-microbial effectors and phenoloxidase cascade genes in mosquitoes. Furthermore, although host responses from Ae. albopictus and Cx. pipiens were mostly similar, we observed contrasting phenotypes with regards to susceptibility and immune responses to fungal entomopathogenic infection in these two mosquitoes. This study provides new insights into the intricate multipartite interaction between the mosquito host, its native symbiont and pathogenic microbes that might be employed to control mosquito populations.  相似文献   

9.

Background

Chikungunya virus (CHIKV), mainly transmitted in urban areas by the mosquitoes Aedes aegypti and Aedes albopictus, constitutes a major public health problem. In late 2013, CHIKV emerged on Saint-Martin Island in the Caribbean and spread throughout the region reaching more than 40 countries. Thus far, Ae. aegypti mosquitoes have been implicated as the sole vector in the outbreaks, leading to the hypothesis that CHIKV spread could be limited only to regions where this mosquito species is dominant.

Methodology/Principal Findings

We determined the ability of local populations of Ae. aegypti and Ae. albopictus from the Americas and Europe to transmit the CHIKV strain of the Asian genotype isolated from Saint-Martin Island (CHIKV_SM) during the recent epidemic, and an East-Central-South African (ECSA) genotype CHIKV strain isolated from La Réunion Island (CHIKV_LR) as a well-characterized control virus. We also evaluated the effect of temperature on transmission of CHIKV_SM by European Ae. albopictus. We found that (i) Aedes aegypti from Saint-Martin Island transmit CHIKV_SM and CHIKV_LR with similar efficiency, (ii) Ae. aegypti from the Americas display similar transmission efficiency for CHIKV_SM, (iii) American and European populations of the alternative vector species Ae. albopictus were as competent as Ae. aegypti populations with respect to transmission of CHIKV_SM and (iv) exposure of European Ae. albopictus to low temperatures (20°C) significantly reduced the transmission potential for CHIKV_SM.

Conclusions/Significance

CHIKV strains belonging to the ECSA genotype could also have initiated local transmission in the new world. Additionally, the ongoing CHIKV outbreak in the Americas could potentially spread throughout Ae. aegypti- and Ae. albopictus-infested regions of the Americas with possible imported cases of CHIKV to Ae. albopictus-infested regions in Europe. Colder temperatures may decrease the local transmission of CHIKV_SM by European Ae. albopictus, potentially explaining the lack of autochthonous transmission of CHIKV_SM in Europe despite the hundreds of imported CHIKV cases returning from the Caribbean.  相似文献   

10.
11.
Mosquitoes in the Culex pipiens complex are considered to be involved in the transmission of a range of pathogens, including West Nile virus (WNV). Although its taxonomic status is still debated, the complex includes species, both globally distributed or with a more limited distribution, morphologically similar and characterised by different physiological and behavioural traits, which affect their ability as vectors. In many European countries, Cx. pipiens and its sibling species Culex torrentium occur in sympatry, exhibiting similar bionomic and morphological characters, but only Cx. pipiens appears to play a vector role in WNV transmission. This species consists of two biotypes, pipiens and molestus, which can interbreed when in sympatry, and their hybrids can act as WNV-bridge vectors, due to intermediate ecological features. Considering the yearly WNV outbreaks since 2008 and given the morphological difficulties in recognising species and biotypes, our aim was to molecularly identify and characterised Cx. pipiens and Cx. torrentium in Italy, using recently developed molecular assays. Culex torrentium was not detected; as in other European countries, the pipiens and molestus biotypes were widely found in sympatry with hybrids in most environments. The UPGMA cluster analysis applied to CQ11 genotypic frequencies mainly revealed two groups of Cx. pipiens populations that differed in ecological features. The high propensity of the molestus biotype to exist in hypogean environments, where the habitat’s physical characteristics hinder and preclude the gene flow, was shown. These results confirmed the CQ11 assay as a reliable diagnostic method, consistent with the ecological and physiological aspects of the populations analysed. Since the assessment of the actual role of three biotypes in the WNV circulation remains a crucial point to be elucidated, this extensive molecular screening of Cx. pipiens populations can provide new insights into the ecology of the species and may give useful indications to plan and implement WNV surveillance activities in Italy.  相似文献   

12.
13.
14.

Background

Cinnamomum cassia bark is a popular culinary spice used for flavoring and in traditional medicine. C. cassia extract (CE) induces apoptosis in many cell lines. In the present study, particular differences in the mechanism of the anti-proliferative property of C. cassia on two breast cancer cell lines, MCF-7 and MDA-MB-231, were elucidated.

Methodology/Principal Findings

The hexane extract of C. cassia demonstrated high anti-proliferative activity against MCF-7 and MDA-MB-231 cells (IC50, 34±3.52 and 32.42 ±0.37 μg/ml, respectively). Oxidative stress due to disruption of antioxidant enzyme (SOD, GPx and CAT) activity is suggested as the probable cause for apoptosis initiation. Though the main apoptosis pathway in both cell lines was found to be through caspase-8 activation, caspase-9 was also activated in MDA-MB-231 cells but suppressed in MCF-7 cells. Gene expression studies revealed that AKT1, the caspase-9 suppressor, was up-regulated in MCF-7 cells while down-regulated in MDA-MB-231 cells. Although, AKT1 protein expression in both cell lines was down-regulated, a steady increase in MCF-7 cells was observed after a sharp decrease of suppression of AKT1. Trans-cinnamaldehyde and coumarin were isolated and identified and found to be mainly responsible for the observed anti-proliferative activity of CE (Cinnamomum cassia).

Conclusion

Activation of caspase-8 is reported for the first time to be involved as the main apoptosis pathway in breast cancer cell lines upon treatment with C. cassia. The double effects of C. cassia on AKT1 gene expression in MCF-7 cells is reported for the first time in this study.  相似文献   

15.

Background

Increasing incidences of insecticide resistance in malaria vectors are threatening the sustainable use of contemporary chemical vector control measures. Fungal entomopathogens provide a possible additional tool for the control of insecticide-resistant malaria mosquitoes. This study investigated the compatibility of the pyrethroid insecticide permethrin and two mosquito-pathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, against a laboratory colony and field population of West African insecticide-resistant Anopheles gambiae s.s. mosquitoes.

Methodology/Findings

A range of fungus-insecticide combinations was used to test effects of timing and sequence of exposure. Both the laboratory-reared and field-collected mosquitoes were highly resistant to permethrin but susceptible to B. bassiana and M. anisopliae infection, inducing 100% mortality within nine days. Combinations of insecticide and fungus showed synergistic effects on mosquito survival. Fungal infection increased permethrin-induced mortality rates in wild An. gambiae s.s. mosquitoes and reciprocally, exposure to permethrin increased subsequent fungal-induced mortality rates in both colonies. Simultaneous co-exposure induced the highest mortality; up to 70.3±2% for a combined Beauveria and permethrin exposure within a time range of one gonotrophic cycle (4 days).

Conclusions/Significance

Combining fungi and permethrin induced a higher impact on mosquito survival than the use of these control agents alone. The observed synergism in efficacy shows the potential for integrated fungus-insecticide control measures to dramatically reduce malaria transmission and enable control at more moderate levels of coverage even in areas where insecticide resistance has rendered pyrethroids essentially ineffective.  相似文献   

16.

Background

Microbiota of Anopheles midgut can modulate vector immunity and block Plasmodium development. Investigation on the bacterial biodiversity in Anopheles, and specifically on the identification of bacteria that might be used in malaria transmission blocking approaches, has been mainly conducted on malaria vectors of Africa. Vietnam is an endemic country for both malaria and Bancroftian filariasis whose parasitic agents can be transmitted by the same Anopheles species. No information on the microbiota of Anopheles mosquitoes in Vietnam was available previous to this study.

Method

The culture dependent approach, using different mediums, and culture independent (16S rRNA PCR – TTGE) method were used to investigate the bacterial biodiversity in the abdomen of 5 Anopheles species collected from Dak Nong Province, central-south Vietnam. Molecular methods, sequencing and phylogenetic analysis were used to characterize the microbiota.

Results and Discussion

The microbiota in wild-caught Anopheles was diverse with the presence of 47 bacterial OTUs belonging to 30 genera, including bacterial genera impacting Plasmodium development. The bacteria were affiliated with 4 phyla, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, the latter being the dominant phylum. Four bacterial genera are newly described in Anopheles mosquitoes including Coxiella, Yersinia, Xanthomonas, and Knoellia. The bacterial diversity per specimen was low ranging from 1 to 4. The results show the importance of pairing culture and fingerprint methods to better screen the bacterial community in Anopheles mosquitoes.

Conclusion

Sampled Anopheles species from central-south Vietnam contained a diverse bacterial microbiota that needs to be investigated further in order to develop new malaria control approaches. The combination of both culture and DNA fingerprint methods allowed a thorough and complementary screening of the bacterial community in Anopheles mosquitoes.  相似文献   

17.

Background

Meningococcal carriage studies are important to improve our understanding of the epidemiology of meningococcal disease. The aim of this study was to determine the prevalence of meningococcal carriage and the phenotypic and genotypic characteristics of isolates collected from a sample of students in the city of Bogotá, Colombia.

Materials and Methods

A total of 1459 oropharyngeal samples were collected from students aged 15–21 years attending secondary schools and universities. Swabs were plated on a Thayer Martin agar and N. meningitidis was identified by standard microbiology methods and PCR.

Results

The overall carriage prevalence was 6.85%. Carriage was associated with cohabitation with smokers, and oral sex practices. Non-groupable and serogroup Y isolates were the most common capsule types found. Isolates presented a high genetic diversity, and circulation of the hypervirulent clonal complexes ST-23, ST-32 and ST-41/44 were detected.

Conclusion

The meningococcal carriage rate was lower than those reported in Europe and Africa, but higher than in other Latin American countries. Our data also revealed antigenic and genetic diversity of the isolates and the circulation of strains belonging to clonal complexes commonly associated with meningococcal disease.  相似文献   

18.
BackgroundIn Greece vector borne diseases (VBD) and foremost West Nile virus (WNV) pose an important threat to public health and the tourist industry, the primary sector of contribution to the national economy. The island of Crete, is one of Greece’s major tourist destinations receiving annually over 5 million tourists making regional VBD control both a public health and economic priority.MethodologyUnder the auspices of the Region of Crete, a systematic integrative surveillance network targeting mosquitoes and associated pathogens was established in Crete for the years 2018–2020. Using conventional and molecular diagnostic tools we investigated the mosquito species composition and population dynamics, pathogen infection occurrences in vector populations and in sentinel chickens, and the insecticide resistance status of the major vector species.Principal findingsImportant disease vectors were recorded across the island including Culex pipiens, Aedes albopictus, and Anopheles superpictus. Over 75% of the sampled specimens were collected in the western prefectures potentially attributed to the local precipitation patterns, with Cx. pipiens being the most dominant species. Although no pathogens (flaviviruses) were detected in the analysed mosquito specimens, chicken blood serum analyses recorded a 1.7% WNV antibody detection rate in the 2018 samples. Notably detection of the first WNV positive chicken preceded human WNV occurrence in the same region by approximately two weeks. The chitin synthase mutation I1043F (associated with high diflubenzuron resistance) was recorded at an 8% allelic frequency in Lasithi prefecture Cx. pipiens mosquitoes (sampled in 2020) for the first time in Greece. Markedly, Cx. pipiens populations in all four prefectures were found harboring the kdr mutations L1014F/C/S (associated with pyrethroid resistance) at a close to fixation rate, with mutation L1014C being the most commonly found allele (≥74% representation). Voltage gated sodium channel analyses in Ae. albopictus revealed the presence of the kdr mutations F1534C and I1532T (associated with putative mild pyrethroid resistance phenotypes) yet absence of V1016G. Allele F1534C was recorded in all prefectures (at an allelic frequency range of 25–46.6%) while I1532T was detected in populations from Chania, Rethymnon and Heraklion (at frequencies below 7.1%). Finally, no kdr mutations were detected in the Anopheles specimens included in the analyses.Conclusions/SignificanceThe findings of our study are of major concern for VBD control in Crete, highlighting (i) the necessity for establishing seasonal integrated entomological/pathogen surveillance programs, supporting the design of targeted vector control responses and; ii) the need for establishing appropriate insecticide resistance management programs ensuring the efficacy and sustainable use of DFB and pyrethroid based products in vector control.  相似文献   

19.

Background

In Guadeloupe, Aedes aegypti mosquitoes are the only vectors of dengue and chikungunya viruses. For both diseases, vector control is the only tool for preventing epidemics since no vaccine or specific treatment is available. However, to efficiently implement control of mosquitoes vectors, a reliable estimation of the transmission risks is necessary. To become infective an Ae. aegypti female must ingest the virus during a blood meal and will not be able to transmit the virus during another blood-meal until the extrinsic incubation period is completed. Consequently the aged females will carry more infectious risks. The objectives of the present study were to estimate under controlled conditions the expectation of infective life for females and thus the transmission risks in relation with their reproductive cycle and parity status.

Methodology/Principal Findings

Larvae of Ae. aegypti were collected in central Guadeloupe and breed under laboratory conditions until adult emergence. The experiments were performed at constant temperatures (± 1.5°C) of 24°C, 27°C and 30°C on adults females from first generation (F1). Females were kept and fed individually and records of blood-feeding, egg-laying and survival were done daily. Some females were dissected at different physiological stages to observe the ovaries development. The data were analyzed to follow the evolution of parity rates, the number of gonotrophic cycles, the fecundity and to study the mean expectation of life and the mean expectation of infective life for Ae. aegypti females according to temperatures. The expectation of life varies with the parity rates and according to the temperatures, with durations from about 10 days at low parity rates at the higher temperature to an optimal duration of about 35 days when 70% of females are parous at 27°C. Infective life expectancy was found highly variable in the lower parous rates and again the optimal durations were found when more than 50% of females are parous for the mean temperatures of 27°C and 30°C.

Conclusion

Parity rates can be determined for field collected females and could be a good proxy of the expectation of infective life according to temperatures. However, for the same parity rates, the estimation of infective life expectation is very different between Ae. aegypti and Anopheles gambiae mosquitoes. Correlation of field parity rates with transmission risks requires absolutely to be based on Ae. aegypti models, since available Anopheles sp. models underestimate greatly the females longevity.  相似文献   

20.

Background

The simian malaria parasite Plasmodium knowlesi is emerging as a public health problem in Southeast Asia, particularly in Malaysian Borneo where it now accounts for the greatest burden of malaria cases and deaths. Control is hindered by limited understanding of the ecology of potential vector species.

Methodology/Principal Findings

We conducted a one year longitudinal study of P. knowlesi vectors in three sites within an endemic area of Sabah, Malaysia. All mosquitoes were captured using human landing catch. Anopheles mosquitoes were dissected to determine, oocyst, sporozoites and parous rate. Anopheles balabacensis is confirmed as the primary vector of. P. knowlesi (using nested PCR) in Sabah for the first time. Vector densities were significantly higher and more seasonally variable in the village than forest or small scale farming site. However An. balabacensis survival and P. knowlesi infection rates were highest in forest and small scale farm sites. Anopheles balabacensis mostly bites humans outdoors in the early evening between 1800 to 2000hrs.

Conclusions/Significance

This study indicates transmission is unlikely to be prevented by bednets. This combined with its high vectorial capacity poses a threat to malaria elimination programmes within the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号