首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
茄科雷尔氏菌(Ralstonia solanacearum)是一种危害严重的土传植物致病菌,其宿主范围广泛,在世界各地严重影响重要经济作物的生产.研究茄科雷尔氏菌的生理特性,探索其致病机理,有利于研发防治青枯病的技术与方法.脂肪酸是细菌细胞重要的组成物质,但是茄科雷尔氏菌脂肪酸合成的机制尚不清晰.本文以茄科雷尔氏菌GMI1000为材料,鉴定了该菌的脂酰Co A脱饱和酶和环丙烷脂肪酸合成酶,并分析了这两种酶在不饱和脂肪酸和环丙烷脂肪酸合成中的作用.结果显示,茄科雷尔氏菌RSc2450编码脂酰Co A脱饱和酶,参与其不饱和脂肪酸合成,但是该菌还存在其他不饱和脂肪酸合成途径.同时发现在茄科雷尔氏菌编码两个可能的环丙烷脂肪酸合成酶蛋白质中,仅有Cfa1(RSc0776)参与了该菌环丙烷脂肪酸的合成,并在低p H和高渗透压的耐受中起作用.该研究结果为深入研究茄科雷尔氏菌脂肪酸合成代谢特点及致病机理奠定了基础.  相似文献   

2.
The first elongation step of fatty acid biosynthesis by a type II dissociated fatty acid synthases is catalyzed by 3-ketoacyl-acyl carrier protein (ACP) synthase III (KASIII, FabH). This enzyme, encoded by the fabH gene, catalyzes a decarboxylative condensation between an acyl coenzyme A (CoA) primer and malonyl-ACP. In organisms such as Escherichia coli, which generate only straight-chain fatty acids (SCFAs), FabH has a substrate preference for acetyl-CoA. In streptomycetes and other organisms which produce a mixture of both SCFAs and branched-chain fatty acids (BCFAs), FabH has been shown to utilize straight- and branched-chain acyl-CoA substrates. We report herein the generation of a Streptomyces coelicolor mutant (YL/ecFabH) in which the chromosomal copy of the fabH gene has been replaced and the essential process of fatty acid biosynthesis is initiated by plasmid-based expression of the E. coli FabH (bearing only 35% amino acid identity to the Streptomyces enzyme). The YL/ecFabH mutant produces predominantly SCFAs (86%). In contrast, BCFAs predominate (~70%) in both the S. coelicolor parental strain and S. coelicolor YL/sgFabH (a ΔfabH mutant carrying a plasmid expressing the Streptomyces glaucescens FabH). These results provide the first unequivocal evidence that the substrate specificity of FabH observed in vitro is a determinant of the fatty acid made in an organism. The YL/ecFabH strain grows significantly slower on both solid and liquid media. The levels of FabH activity in cell extracts of YL/ecFabH were also significantly lower than those in cell extracts of YL/sgFabH, suggesting that a decreased rate of fatty acid synthesis may account for the observed decreased growth rate. The production of low levels of BCFAs in YL/ecFabH suggests either that the E. coli FabH is more tolerant of different acyl-CoAs substrates than previously thought or that there is an additional pathway for initiation of BCFA biosynthesis in Streptomyces coelicolor.  相似文献   

3.
The goal of this research was to develop recombinant Escherichia coli to improve fatty acid synthesis (FAS). Genes encoding acetyl-CoA carboxylase (accA, accB, accC), malonyl-CoA-[acyl-carrier-protein] transacylase (fabD), and acyl-acyl carrier protein thioesterase (EC 3.1.2.14 gene), which are all enzymes that catalyze key steps in the synthesis of fatty acids, were cloned and over-expressed in E. coli MG1655. The acetyl-CoA carboxylase (ACC) enzyme catalyzes the addition of CO2 to acetyl-CoA to generate malonyl-CoA. The enzyme encoded by the fabD gene converts malonyl-CoA to malonyl-[acp], and the EC 3.1.2.14 gene converts fatty acyl-ACP chains to long chain fatty acids. All the genes except for the EC 3.1.2.14 gene were homologous to E. coli genes and were used to improve the enzymatic activities to over-express components of the FAS pathway through metabolic engineering. All recombinant E. coli MG1655 strains containing various gene combinations were developed using the pTrc99A expression vector. To observe changes in metabolism, the in vitro metabolites and fatty acids produced by the recombinants were analyzed. The fatty acids (C16) from recombinant strains were produced 1.23-2.41 times higher than that from the wild type.  相似文献   

4.
The oleaginous yeast Rhodotorula glutinis has been known to be a potential feedstock for lipid production. In the present study, we investigated the enhancement of expression of malic enzyme (ME; NADP+ dependent; EC 1.1.1.40) from Mucor circinelloides as a strategy to improve lipid content inside the yeast cells. The 26S rDNA and 5.8S rDNA gene fragments isolated from Rhodotorula glutinis were used for homologous integration of ME gene into R. glutinis chromosome under the control of the constitutively highly expressed gene phosphoglycerate kinase 1 to achieve stable expression. We demonstrated that by increasing the expression of the foreign ME gene in R. glutinis, we successfully improved the lipid content by more than twofold. At the end of lipid accumulation phrase (96 h) in the transformants, activity of ME was increased by twofold and lipid content of the yeast cells was increased from 18.74 % of the biomass to 39.35 %. Simultaneously, there were no significant differences in fatty acid profiles between the wild-type strain and the recombinant strain. Over 94 % of total fatty acids were C16:0, C18:0, C16:1, C18:1, and C18:2. Our results indicated that heterologous expression of NADP+-dependent ME involved in fatty acid biosynthesis indeed increased the lipid accumulation in the oleaginous yeast R. glutinis.  相似文献   

5.
Lipoic acid is a sulfur-containing cofactor indispensable for the function of several metabolic enzymes. In microorganisms, lipoic acid can be salvaged from the surroundings by lipoate protein ligase A (LplA), an ATP-dependent enzyme. Alternatively, it can be synthesized by the sequential actions of lipoate protein ligase B (LipB) and lipoyl synthase (LipA). LipB takes up the octanoyl chain from C8-acyl carrier protein (C8-ACP), a byproduct of the type II fatty acid synthesis pathway, and transfers it to a conserved lysine of the lipoyl domain of a dehydrogenase. However, the molecular basis of its substrate recognition is still not fully understood. Using Escherichia coli LipB as a model enzyme, we show here that the octanoyl-transferase mainly recognizes the 4′-phosphopantetheine-tethered acyl-chain of its donor substrate and weakly binds the apo-acyl carrier protein. We demonstrate LipB can accept octanoate from its own ACP and noncognate ACPs, as well as C8-CoA. Furthermore, our 1H saturation transfer difference and 31P NMR studies demonstrate the binding of adenosine, as well as the phosphopantetheine arm of CoA to LipB, akin to binding to LplA. Finally, we show a conserved 71RGG73 loop, analogous to the lipoate-binding loop of LplA, is required for full LipB activity. Collectively, our studies highlight commonalities between LipB and LplA in their mechanism of substrate recognition. This knowledge could be of significance in the treatment of mitochondrial fatty acid synthesis related disorders.  相似文献   

6.
Bacterial fatty acid synthesis in Escherichia coli is initiated by the condensation of an acetyl-CoA with a malonyl-acyl carrier protein (ACP) by the β-ketoacyl-ACP synthase III enzyme, FabH. E. coli ΔfabH knockout strains are viable because of the yiiD gene that allows FabH-independent fatty acid synthesis initiation. However, the molecular function of the yiiD gene product is not known. Here, we show the yiiD gene product is a malonyl-ACP decarboxylase (MadA). MadA has two independently folded domains: an amino-terminal N-acetyl transferase (GNAT) domain (MadAN) and a carboxy-terminal hot dog dimerization domain (MadAC) that encodes the malonyl-ACP decarboxylase function. Members of the proteobacterial Mad protein family are either two domain MadA (GNAT-hot dog) or standalone MadB (hot dog) decarboxylases. Using structure-guided, site-directed mutagenesis of MadB from Shewanella oneidensis, we identified Asn45 on a conserved catalytic loop as critical for decarboxylase activity. We also found that MadA, MadAC, or MadB expression all restored normal cell size and growth rates to an E. coli ΔfabH strain, whereas the expression of MadAN did not. Finally, we verified that GlmU, a bifunctional glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase that synthesizes the key intermediate UDP-GlcNAc, is an ACP binding protein. Acetyl-ACP is the preferred glucosamine-1-phosphate N-acetyl transferase/N-acetyl-glucosamine-1-phosphate uridylyltransferase substrate, in addition to being the substrate for the elongation-condensing enzymes FabB and FabF. Thus, we conclude that the Mad family of malonyl-ACP decarboxylases supplies acetyl-ACP to support the initiation of fatty acid, lipopolysaccharide, peptidoglycan, and enterobacterial common antigen biosynthesis in Proteobacteria.  相似文献   

7.
Radiogas chromatographic studies of the products of fatty acid biosynthesis in mice brain microsomes confirm the existence of a «de novo system from acetyl-CoA and malonyl-CoA and of a least two elongating systems for long chain fatty acids, involving malonyl-CoA. The possibility of an intermediary system leading from C18 to C20 fatty acids has been evoked.Comparison between non mutant and quaking mice indicates that all the microsomal fatty acid biosynthetic systems are depressed. The biosynthetic system elongating fatty acids from C18 is the one which is the most modified quantitatively and qualitatively in quaking. Microsomal and soluble «de novo systems are qualitatively intact.  相似文献   

8.
In previous work (D. Post-Beittenmiller, J.G. Jaworski, J.B. Ohlrogge [1991] J Biol Chem 266: 1858-1865), the in vivo acyl-acyl carrier protein (ACP) pools were measured in spinach (Spinacia oleracea) leaves and changes in their levels were compared to changes in the rates of fatty acid biosynthesis. To further examine the pools of substrates and cofactors for fatty acid biosynthesis and to evaluate metabolic regulation of this pathway, we have now examined the coenzyme A (CoA) and short chain acyl-CoA pools, including acetyl- and malonyl-CoA, in isolated spinach and pea (Pisum sativum) chloroplasts. In addition, the relationships of the acetyl- and malonyl-CoA pools to the acetyl- and malonyl-ACP pools have been evaluated. These studies have led to the following conclusions: (a) Essentially all of the CoA (31-54 μm) in chloroplasts freshly isolated from light-grown spinach leaves or pea seedling was in the form of acetyl-CoA. (b) Chloroplasts contain at least 77% of the total leaf acetyl-CoA, based on comparison of acetyl-CoA levels in chloroplasts and total leaf. (c) CoA-SH was not detected either in freshly isolated chloroplasts or in incubated chloroplasts and is, therefore, less than 2 μm in the stroma. (d) The malonyl-CoA:ACP transacylase reaction is near equilibrium in both light- and dark-incubated chloroplasts, whereas the acetyl-CoA:ACP transacylase reaction is far from equilibrium in light-incubated chloroplasts. However, the acetyl-CoA:ACP transacylase reaction comes nearer to equilibrium when chloroplasts are incubated in the dark. (e) Malonyl-CoA and -ACP could be detected in isolated chloroplasts only during light incubations, and increased with increased rates of fatty acid biosynthesis. In contrast, both acetyl-CoA and acetyl-ACP were detectable in the absence of fatty acid biosynthesis, and acetyl-ACP decreased with increased rates of fatty acid biosynthesis. Together these data have provided direct in situ evidence that acetyl-CoA carboxylase plays a regulatory role in chloroplast fatty acid biosynthesis.  相似文献   

9.
10.
The course of biosynthesis of fatty acids in the seeds of winter rape (Brassica napus L. ssp.oleifera, f.biennis cv. T?ebí?ská) was investigated. After the termination of flowering seed samples were taken at five intervals, the seeds were divided into 4 fractions according to size, and their weight, water content, oil content and fatty acid composition were determined. The oil content was found to increase in all size categories with time, with the exception of a minute drop when complete maturity is reached. Larger seeds contained more oil. The fatty acid composition changes with time in the individual size fractions almost continuously. The same holds for differences between seed sizes of the same sample. The main change in oil composition consists in the decrease of C18 acids in favour of C22 acids. Greatest decrements during maturation were found with oleic acid, less with linoleic acid. In absolute amounts the quantity of all synthesized acids rises, the greatest rise being observed with C22 acids (i.e. predominantly erucic acid). It follows from the mean rates of synthesis of the individual groups (C16, C18, C20, C22) of fatty acids that the fraction of C22 rate of synthesis increases, while that of the C18 acids decreases with the same speed. The results indicate that the fatty acid synthesis is most intense during the second half of seed maturation, the main role being played by accelerating the synthesis of higher acids, especially of erucic acid.  相似文献   

11.
The activities of mitochondrial and microsomal fatty acid-elongating enzymes have been measured in rat brain during postnatal development and in brains of jimpy, msd, and quaking mice. The microsomal enzyme activity rose from a low in the immature brain to a maximum at 21 days of age and then declined to low levels in the mature brain. The developmental patterns were similar for all acyl-CoAs tested. The maximum activity fell sharply from C16 to C18 and then fell gradually with increase in fatty acid chain length up to C24. The activities for monounsaturated acyl-CoAs were slightly higher than for corresponding saturated esters. The mitochondrial enzyme activity was high in the immature brain and remained virtually unchanged during further brain development. This activity steadily decreased with increasing chain length from C16 to C24. The microsomal enzyme activity was reduced in myelin-deficient mutants compared to their controls. The extent of reduction was most severe for C20- to C24-CoAs followed by C18-CoA and then C16-CoA, for which the activity was reduced only in the jimpy mouse. The activities for C20- to C24-CoAs in jimpy, msd, and quaking mice were 12, 38, and 52% of the control, respectively. The mitochondrial enzyme activity was not affected by these mutations. Fatty acid synthetase activity was similar in the mutant and control mice. These results suggest that the deficiency of long-chain fatty acids in the central nervous system of myelin-deficient mouse mutants is due to reduced synthesis by the microsomal enzyme, which is directly related to myelination. The brain mitochondrial enzyme appears to be unrelated to myelination.  相似文献   

12.
Recently, a new metabolic link between fatty acid de novo biosynthesis and biosynthesis of poly(3-hydroxy-alkanoate) consisting of medium-chain-length constituents (C6 to C14) (PHAMCL), catalyzed by the 3-hydroxydecanoyl-[acyl-carrier-protein]:CoA transacylase (PhaG), has been identified in Pseudomonas putida (B. H. A. Rehm, N. Krüger, and A. Steinbüchel, J. Biol. Chem. 273:24044–24051, 1998). To establish this PHA-biosynthetic pathway in a non-PHA-accumulating bacterium, we functionally coexpressed phaC1 (encoding PHA synthase 1) from Pseudomonas aeruginosa and phaG (encoding the transacylase) from P. putida in Pseudomonas fragi. The recombinant strains of P. fragi were cultivated on gluconate as the sole carbon source, and PHA accumulation to about 14% of the total cellular dry weight was achieved. The respective polyester was isolated, and GPC analysis revealed a weight average molar mass of about 130,000 g mol−1 and a polydispersity of 2.2. The PHA was composed mainly (60 mol%) of 3-hydroxydecanoate. These data strongly suggested that functional expression of phaC1 and phaG established a new pathway for PHAMCL biosynthesis from nonrelated carbon sources in P. fragi. When fatty acids were used as the carbon source, no PHA accumulation was observed in PHA synthase-expressing P. fragi, whereas application of the β-oxidation inhibitor acrylic acid mediated PHAMCL accumulation. The substrate for the PHA synthase PhaC1 is therefore presumably directly provided through the enzymatic activity of the transacylase PhaG by the conversion of (R)-3-hydroxydecanoyl-ACP to (R)-3-hydroxydecanoyl-CoA when the organism is cultivated on gluconate. Here we demonstrate for the first time the establishment of PHAMCL synthesis from nonrelated carbon sources in a non-PHA-accumulating bacterium, employing fatty acid de novo biosynthesis and the enzymes PhaG (a transacylase) and PhaC1 (a PHA synthase).  相似文献   

13.
Complementation analysis of a polyhydroxyalkanoate (PHA)-negative mutant of Aeromonas caviae proved that ORF3 in the pha locus (a 402-bp gene located downstream of the PHA synthase gene) participates in PHA biosynthesis on alkanoic acids, and the ORF3 gene is here referred to as phaJAc. Escherichia coli BL21(DE3) carrying phaJAc under the control of the T7 promoter overexpressed enoyl coenzyme A (enoyl-CoA) hydratase, which was purified by one-step anion-exchange chromatography. The N-terminal amino acid sequence of the purified hydratase corresponded to the amino acid sequence deduced from the nucleotide sequence of phaJAc except for the initial Met residue. The enoyl-CoA hydratase encoded by phaJAc exhibited (R)-specific hydration activity toward trans-2-enoyl-CoA with four to six carbon atoms. These results have demonstrated that (R)-specific hydration of 2-enoyl-CoA catalyzed by the translated product of phaJAc is a channeling pathway for supplying (R)-3-hydroxyacyl-CoA monomer units from fatty acid β-oxidation to poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis in A. caviae.  相似文献   

14.
Streptolydigin, a secondary metabolite produced by Streptomyces lydicus, is a potent inhibitor of bacterial RNA polymerases. It has been suggested that streptolydigin biosynthesis is associated with polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS). Thus, there is great interest in understanding the role of fatty acid biosynthesis in the biosynthesis of streptolydigin. In this paper, we cloned a type II fatty acid synthase (FAS II) gene cluster of fabDHCF from the genome of S. lydicus and constructed the SlyfabCF-disrupted mutant. Sequence analysis showed that SlyfabDHCF is 3.7 kb in length and encodes four separated proteins with conserved motifs and active residues, as shown in the FAS II of other bacteria. The SlyfabCF disruption inhibited streptolydigin biosynthesis and retarded mycelial growth, which were likely caused by the inhibition of fatty acid synthesis. Streptolydigin was not detected in the culture of the mutant strain by liquid chromatography–mass spectrometry. Meanwhile, the streptolol moiety of streptolydigin accumulated in cultures. As encoded by fabCF, acyl carrier protein (ACP) and β-ketoacyl-ACP synthase II are required for streptolydigin biosynthesis and likely involved in the step between PKS and NRPS. Our results provide the first genetic and metabolic evidence that SlyfabCF is shared by fatty acid synthesis and antibiotic streptolydigin synthesis.  相似文献   

15.
Biosynthetic activity for mycolic acid occurred in the fluffy layer fraction but not in the 5000g supernatant of Bacterionema matruchotii. With [1-14C]palmitic acid as precursor for the in vitro system, the predominant product was identified as C32:0 mycolic acid by radio-gas-liquid chromatographie (radio-GLC) and gas chromatographic/mass spectroscopic analyses; if [1-14C]stearic acid was used, two major radioactive peaks appeared on GLC: one corresponding to the peak of (C34:0 + C34:1) mycolic acids and the other to (C36:0 + C36:1) mycolic acids. By pyrolysis/radio-GLC analysis, C32:0 mycolic acid synthesized by [1-14C]palmitic acid was pyrolyzed at 300 °C to form palmitaldehyde (the mero moiety) and methyl palmitate (the branch moiety). The pH optimum for the incorporation of [1-14C]palmitate into bacterionema mycolic acids was 6.4 and the reaction required a divalent cation. The in vitro system utilized myristic, palmitic, stearic and oleic acids (probably via their activated forms) well as precursors, among which myristic and palmitic acids were more effective than the rest. Avidin showed no effect on the biosynthesis of mycolic acid from 14C-palmitate whereas cerulenin, a specific inhibitor of β-ketoacyl synthetase in de novo fatty acid synthesis, inhibited the reaction at a relatively higher concentration. Thin-layer chromatographic analysis of lipids extracted from the reacting mixture without alkaline hydrolysis showed that both exogenous [1-14] fatty acid and synthesized mycolic acids were bound to an unknown compound by an alkali-labile linkage and this association seemed to occur prior to the condensation of two molecules of fatty acid.  相似文献   

16.
In order to examine potential regulatory steps in plant fatty acid biosynthesis, we have developed procedures for the analysis of the major acyl-acyl carrier protein (ACP) intermediates of this pathway. These techniques have been used to separate and identify acyl-ACPs with chain configurations ranging from 2:0 to 18:1 and to determine the relative in vivo concentrations of acyl-ACPs in spinach leaf and developing seed. In both leaf and seed as much as 60% of the total ACPs were nonesterified (free), with the remaining proportion consisting of acyl-ACP intermediates leading to the formation of palmitate, stearate, and oleate. In spinach leaf the proportions of the various acyl groups esterified to each ACP isoform were indistinguishable, indicating that these isoforms are utilized similarly in de novo fatty acid biosynthesis in vivo. However, the acyl group distribution pattern of seed ACP-II differed significantly from that of leaf ACP-II. The malonyl-ACP levels were less than the 4:0-ACP and 6:0-ACP levels in leaf, and in contrast, the malonyl-ACP-II levels in seed were approximately 3-fold higher than the 4:0-ACP-II and 6:0-ACP-II levels. In addition, the ratio of oleoyl-ACP-II (18:1) to stearoyl-ACP-II (18:0) was higher in seed than in leaf. These data suggest that the differences in acyl-ACP patterns reflect a tissue/organ-specific difference rather than an isoform-specific difference. In extracts prepared from leaf samples collected in the dark, the levels of acetyl-ACPs were approximately 5-fold higher compared to samples collected in the light. The levels of free ACPs showed an inverse response, increasing in the light and decreasing in the dark. Notably there was no concomitant increase in the malonyl-ACP levels. The most likely explanation for the major increase in acetyl-ACP levels in the dark is that light/dark control over the rate of fatty acid biosynthesis occurs at the reaction catalyzed by acetyl-CoA carboxylase.  相似文献   

17.
Cat's claw (Doxantha unguis-cati L.) vine accumulates nearly 80% palmitoleic acid (16:1Δ9) plus cis-vaccenic acid (18:1Δ11) in its seed oil. To characterize the biosynthetic origin of these unusual fatty acids, cDNAs for acyl-acyl carrier protein (acyl-ACP) desaturases were isolated from developing cat's claw seeds. The predominant acyl-ACP desaturase cDNA identified encoded a polypeptide that is closely related to the stearoyl (Δ9–18:0)-ACP desaturase from castor (Ricinis communis L.) and other species. Upon expression in Escherichia coli, the cat's claw polypeptide functioned as a Δ9 acyl-ACP desaturase but displayed a distinct substrate specificity for palmitate (16:0)-ACP rather than stearate (18:0)-ACP. Comparison of the predicted amino acid sequence of the cat's claw enzyme with that of the castor Δ9–18:0-ACP desaturase suggested that a single amino acid substitution (L118W) might account in large part for the differences in substrate specificity between the two desaturases. Consistent with this prediction, conversion of leucine-118 to tryptophan in the mature castor Δ9–18:0-ACP desaturase resulted in an 80-fold increase in the relative specificity of this enzyme for 16:0-ACP. The alteration in substrate specificity observed in the L118W mutant is in agreement with a crystallographic model of the proposed substrate-binding pocket of the castor Δ9–18:0-ACP desaturase.  相似文献   

18.
The cerulenin-insensitive -ketoacyl-acyl carrier protein (ACP) synthase III (KAS III, EC 2.3.1.41) catalyzes the first condensing step of the fatty-acid synthase (FAS) reaction in plants and bacteria, using directly acetyl-CoA as substrate for condensation with malonyl-ACP. In order to identify a possible site for regulation of the biosynthesis of medium-chain fatty acids, the influence of acyl-ACPs of different chain-lengths (C4,C6,C8 and C10) on the activity of KAS III was investigated in vitro using an FAS preparation from seeds of Cuphea lanceolata Ait. (a crop accumulating up to 90% decanoic acid into triacylglycerols) that had been treated with 100 M cerulenin. All acyl-ACPs investigated led to a decrease in the activity of KAS III towards acetyl-CoA, an effect apparently related to the length of the acyl chain. Analysis of the reaction products of the assay revealed that short-chain acyl-ACPs elongated to a very small extent simultaneously with acetyl-CoA. This extent of elongation did not correlate with the decrease in KAS III-activity levels. These data excluded the possibility of competition between acetyl-CoA and acyl-ACPs, but indicated that acyl-ACPs inhibited the enzyme. Decanoyl-ACP caused the highest decrease in enzyme activity (IC50 = 0.45 M), thus being a potent inhibitor of KAS III. Michaelis-Menten kinetics revealed that the inhibition of KAS III by decanoyl-ACP was non-competitive in relation to malonyl-ACP and uncompetitive in relation to acetyl-CoA. Moreover, our data indicate that KAS III has a strict specificity for the elongation of acetyl-CoA. An inhibition of KAS III by acyl-ACPs was observed in experiments using FAS preparations from rape seeds and spinach leaves, but the inhibition of KAS III from C. lanceolata seeds by decanoyl-ACP was approximately 1.5-fold higher. The data provide evidence that acyl-ACPs are involved in the modulation of plant fatty-acid biosynthesis by a feed-back mechanism.Abbreviations ACP acyl carrier protein - DTT dithiothreitol - TCA trichloroacetic acid - ecACP acyl carrier protein from Escherichia coli - FAS fatty-acid synthase - IC50 concentration causing 50% inhibition - KAS -ketoacyl-ACP synthase - NEM N-ethylmaleimide In honour of Professor Hartmut K. Lichtenthaler's sixtieth birthdayThis work was supported by a grant from the German Ministry of Research and Technology (BMFT) and in part by the Fonds der Chemischen Industrie and the Ministry of Science and Research of the State Northrhine-Westfalia. The authors wish to thank Prof. G. Röbbelen (University of Göttingen, Göttingen, Germany) for kindly providing the plant material. This paper is part of the doctoral thesis of Fritzi Maike Brück.  相似文献   

19.
In isolated tobacco leaves l-valine-U-14C gave rise to labeled even-numbered isobranched fatty acids containing 16 to 26 carbon atoms and iso C29, iso C31, and iso C33 paraffins. l-Isoleucine-U-14C on the other hand produced labeled odd-numbered anteiso C17 to C27 fatty acids and anteiso C30 and C32 paraffins. Trichloroacetic acid inhibited the incorporation of isobutyrate into C20 and higher fatty acids and paraffins without affecting the synthesis of the C16 and C18 fatty acids. Thus the very long branched fatty acids are biosynthetically related to the paraffins. In Senecio odoris leaves acetate-1-14C was incorporated into the paraffins (mainly n-C31) only in the epidermis although acetate was readily incorporated into fatty acids in the mesophyll tissue. Similarly only the epidermal tissue incorporated acetate into fatty acids longer than C18 suggesting that the epidermis is the site of synthesis of both paraffins and the very long fatty acids. In broccoli leaves n-C12 acid labeled with 14C in the carboxyl carbon and 3H in the methylene carbons was incorporated into C29 paraffin without the loss of 14C relative to 3H. Since n-C18 acid is known to be incorporated into the paraffin without loss of carboxyl carbon these results suggest that the condensation of C12 acid with C18 acid is not responsible for n-C29 paraffin synthesis in this tissue. Thus all the experimental evidence thus far obtained strongly suggests that elongation of fatty acids followed by decarboxylation is the most likely pathway for paraffin biosynthesis in leaves.  相似文献   

20.
Lipid and fatty acid metabolism has been well studied in model microbial organisms like Escherichia coli and Bacillus subtilis. The major precursor of fatty acid biosynthesis is also the major product of fatty acid degradation (β-oxidation), acetyl-CoA, which is a key metabolite for all organisms. Controlling carbon flux to fatty acid biosynthesis and from β-oxidation allows for the biosynthesis of natural products of biotechnological importance. Ralstonia eutropha can utilize acetyl-CoA from fatty acid metabolism to produce intracellular polyhydroxyalkanoate (PHA). R. eutropha can also be engineered to utilize fatty acid metabolism intermediates to produce different PHA precursors. Metabolism of lipids and fatty acids can be rerouted to convert carbon into other value-added compounds like biofuels. This review discusses the lipid and fatty acid metabolic pathways in R. eutropha and how they can be used to construct reagents for the biosynthesis of products of industrial importance. Specifically, how the use of lipids or fatty acids as the sole carbon source in R. eutropha cultures adds value to these biotechnological products will be discussed here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号