首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genomic information has already been applied to prokaryotic species definition and classification. However, the contribution of the genome sequence to prokaryotic genus delimitation has been less studied. To gain insights into genus definition for the prokaryotes, we attempted to reveal the genus-level genomic differences in the current prokaryotic classification system and to delineate the boundary of a genus on the basis of genomic information. The average nucleotide sequence identity between two genomes can be used for prokaryotic species delineation, but it is not suitable for genus demarcation. We used the percentage of conserved proteins (POCP) between two strains to estimate their evolutionary and phenotypic distance. A comprehensive genomic survey indicated that the POCP can serve as a robust genomic index for establishing the genus boundary for prokaryotic groups. Basically, two species belonging to the same genus would share at least half of their proteins. In a specific lineage, the genus and family/order ranks showed slight or no overlap in terms of POCP values. A prokaryotic genus can be defined as a group of species with all pairwise POCP values higher than 50%. Integration of whole-genome data into the current taxonomy system can provide comprehensive information for prokaryotic genus definition and delimitation.  相似文献   

2.
Microbial systematics and phylogeny should form the foundation and guiding light for a comprehensive understanding of different aspects of microbiology. However, there are many critical issues in microbial systematics that are currently not resolved. Some of these include: how to define and delimit a prokaryotic species; development of rationale criteria for the assignment of higher taxonomic ranks; understanding what unique properties distinguish species from different groups; and understanding the branching order and interrelationship among higher prokaryotic clades. The sequencing of genomes from large numbers of cultured as well as uncultured microbes covering prokaryotic diversity provides unique means to achieve these important objectives. Prokaryotic genomes are found to be very diverse and dynamic and horizontal gene transfers (HGTs) are indicated to have played important role in species/genome evolution. Although HGT adds a layer of complexity in terms of understanding the genomes and species evolution, it is contended that vast majority of genes and genetic characteristics that are distinctive characteristics of higher prokaryotic taxa are vertically inherited and based on them a solid foundation for microbial systematics can be developed. We describe two kinds of molecular markers consisting of conserved indels in protein sequences and whole proteins that are specific for different groups that are proving particularly valuable in defining different prokaryotic groups in clear molecular terms and in understanding their interrelationships. The genetic and biochemical studies on these taxa-specific molecular markers also open the way to discover novel biochemical and physiological characteristics that are unique properties of these groups.  相似文献   

3.
Koressaar T  Remm M 《DNA research》2012,19(3):219-230
Prokaryotes are in general believed to possess small, compactly organized genomes, with repetitive sequences forming only a small part of them. Nonetheless, many prokaryotic genomes in fact contain species-specific repeats (>85 bp long genomic sequences with less than 60% identity to other species) as we have previously demonstrated. However, it is not known at present how frequent such species-specific repeats are and what their functional roles in bacterial genomes may be. Therefore, we have conducted a comprehensive survey of prokaryotic species-specific repeats and characterized them to examine as to whether there are functional classes among different repeats or not and how they are mutually related to each other. Of the 613 distinct prokaryotic species analyzed, 97% were found to contain at least one species-specific repeats. It seems interesting to note that the species-specific repeats thus identified appear to be functionally variable in different genomes: in some genomes, they are mostly associated with duplicated protein-coding genes, whereas in some other genomes with rRNA and tRNA genes. Contrary to what may be expected, only one-fourth of the species-specific repeats were found to be associated with mobile genetic elements.  相似文献   

4.
Proposals for genetic thresholds for species delimitation assume that simple genetic data sets (e.g. mitochondrial sequence data) are correlated with speciation; i.e. such data sets accurately reflect organismal lineage divergence. We used taxonomically stratified phenotypic levels of differentiation (populations, subspecies and species) among nine avian lineages using paired, trans-Beringian samples from three lineages each in three orders (Anseriformes, Charadriiformes, and Passeriformes) to test this assumption. Using mitochondrial DNA sequence data and nuclear genomic data (amplified fragment length polymorphisms), we found a lack of concordance between these two genomes in their respective estimates of divergence and little or no relationship between phenotype (taxonomic relatedness) and genetic differentiation between taxon pairs. There are several possible reasons for the discord observed (e.g. selection on one of the genomes or perhaps lineage sorting), but the implications are that genetic estimates of lineage divergence may not be correlated with estimates from other parts of the genome, are not well correlated with the speciation process and are thus not reliable indicators of species limits.  相似文献   

5.
参考基因组是现代功能基因组学的核心框架,以此为基础的现代基因组学技术在过去20年对植物遗传变异发掘、功能基因克隆等研究起了巨大的推动作用.然而,越来越多的研究发现,单一或少数参考基因组不能完整代表和呈现物种或特定群体内的所有基因组变异,因此其在功能基因组学研究中应用存在很大的局限性,甚至会导致错误的结果.泛基因组是指物...  相似文献   

6.
Gardnerella vaginalis is associated with a spectrum of clinical conditions, suggesting high degrees of genetic heterogeneity among stains. Seventeen G. vaginalis isolates were subjected to a battery of comparative genomic analyses to determine their level of relatedness. For each measure, the degree of difference among the G. vaginalis strains was the highest observed among 23 pathogenic bacterial species for which at least eight genomes are available. Genome sizes ranged from 1.491 to 1.716 Mb; GC contents ranged from 41.18% to 43.40%; and the core genome, consisting of only 746 genes, makes up only 51.6% of each strain's genome on average and accounts for only 27% of the species supragenome. Neighbor-grouping analyses, using both distributed gene possession data and core gene allelic data, each identified two major sets of strains, each of which is composed of two groups. Each of the four groups has its own characteristic genome size, GC ratio, and greatly expanded core gene content, making the genomic diversity of each group within the range for other bacterial species. To test whether these 4 groups corresponded to genetically isolated clades, we inferred the phylogeny of each distributed gene that was present in at least two strains and absent in at least two strains; this analysis identified frequent homologous recombination within groups but not between groups or sets. G. vaginalis appears to include four nonrecombining groups/clades of organisms with distinct gene pools and genomic properties, which may confer distinct ecological properties. Consequently, it may be appropriate to treat these four groups as separate species.  相似文献   

7.
The fundamental unit of biological diversity is the species. However, a remarkable extent of intraspecies diversity in bacteria was discovered by genome sequencing, and it reveals the need to develop clear criteria to group strains within a species. Two main types of analyses used to quantify intraspecies variation at the genome level are the average nucleotide identity (ANI), which detects the DNA conservation of the core genome, and the DNA content, which calculates the proportion of DNA shared by two genomes. Both estimates are based on BLAST alignments for the definition of DNA sequences common to the genome pair. Interestingly, however, results using these methods on intraspecies pairs are not well correlated. This prompted us to develop a genomic-distance index taking into account both criteria of diversity, which are based on DNA maximal unique matches (MUM) shared by two genomes. The values, called MUMi, for MUM index, correlate better with the ANI than with the DNA content. Moreover, the MUMi groups strains in a way that is congruent with routinely used multilocus sequence-typing trees, as well as with ANI-based trees. We used the MUMi to determine the relatedness of all available genome pairs at the species and genus levels. Our analysis reveals a certain consistency in the current notion of bacterial species, in that the bulk of intraspecies and intragenus values are clearly separable. It also confirms that some species are much more diverse than most. As the MUMi is fast to calculate, it offers the possibility of measuring genome distances on the whole database of available genomes.  相似文献   

8.
There is no widely accepted concept of species for prokaryotes, and assignment of isolates to species is based on measures of phenotypic or genome similarity. The current methods for defining prokaryotic species are inadequate and incapable of keeping pace with the levels of diversity that are being uncovered in nature. Prokaryotic taxonomy is being influenced by advances in microbial population genetics, ecology and genomics, and by the ease with which sequence data can be obtained. Here, we review the classical approaches to prokaryotic species definition and discuss the current and future impact of multilocus nucleotide-sequence-based approaches to prokaryotic systematics. We also consider the potential, and difficulties, of assigning species status to biologically or ecologically meaningful sequence clusters.  相似文献   

9.
Microsporidia are obligatory intracellular parasites related to fungi and since their discovery their classification and origin has been controversial due to their unique morphology. Early taxonomic studies of microsporidia were based on ultrastructural spore features, characteristics of their life cycle and transmission modes. However, taxonomy and phylogeny based solely on these characteristics can be misleading. SSU rRNA is a traditional marker used in taxonomical classifications, but the power of SSU rRNA to resolve phylogenetic relationships between microsporidia is considered weak at the species level, as it may not show enough variation to distinguish closely related species. Overall genome relatedness indices (OGRI), such as average nucleotide identity (ANI), allows fast and easy-to-implement comparative measurements between genomes to assess species boundaries in prokaryotes, with a 95% cutoff value for grouping genomes of the same species. Due to the increasing availability of complete genomes, metrics of genome relatedness have been applied for eukaryotic microbes taxonomy such as microsporidia. However, the distribution of ANI values and cutoff values for species delimitation have not yet been fully tested in microsporidia. In this study we examined the distribution of ANI values for 65 publicly available microsporidian genomes and tested whether the 95% cutoff value is a good estimation for circumscribing species based on their genetic relatedness.  相似文献   

10.
作为DNA序列的重要组成特征,基因组寡核苷酸使用模式及其偏倚的研究已被广泛应用于原核生物基因组的分析。然而,关于寡核苷酸使用模式的偏倚是否具有种群特异性并反映种群的功能这一问题,尚未阐明。我们基于一阶马尔可夫链模型,提出了一个度量寡核苷酸使用模式偏倚的新指标——基因组三核苷酸(trinucleotide,tri-)转移概率偏倚(transition probability bias,TPB)特征向量,或称之为三核苷酸转移概率最大偏倚分布,并分析比较了727条有代表性的原核生物基因组序列tri-TPB特征向量。结果表明,基因组tri-TPB特征向量具有物种特异性,亲缘关系越近的物种,它们的tri-TPB特征向量越相似;同种内的不同菌株具有几乎完全相同的tri-TPB特征向量,并且不依赖于基因组的GC含量;此外,基因组tri-TPB特征向量的相似性与菌株的致病性特征相关。本研究结果为基于全基因组寡核苷酸组成和分布信息的物种及其致病性进化分析提供了新的思路和方法。  相似文献   

11.
Dispersed repetitive DNA sequences have been described recently in eubacteria. To assess the distribution and evolutionary conservation of two distinct prokaryotic repetitive elements, consensus oligonucleotides were used in polymerase chain reaction [PCR] amplification and slot blot hybridization experiments with genomic DNA from diverse eubacterial species. Oligonucleotides matching Repetitive Extragenic Palindromic [REP] elements and Enterobacterial Repetitive Intergenic Consensus [ERIC] sequences were synthesized and tested as opposing PCR primers in the amplification of eubacterial genomic DNA. REP and ERIC consensus oligonucleotides produced clearly resolvable bands by agarose gel electrophoresis following PCR amplification. These band patterns provided unambiguous DNA fingerprints of different eubacterial species and strains. Both REP and ERIC probes hybridized preferentially to genomic DNA from Gram-negative enteric bacteria and related species. Widespread distribution of these repetitive DNA elements in the genomes of various microorganisms should enable rapid identification of bacterial species and strains, and be useful for the analysis of prokaryotic genomes.  相似文献   

12.
13.
Biovar 1 of the genus Agrobacterium consists of at least nine genomic species that have not yet received accepted species names. However, rapid identification of these organisms in various biotopes is needed to elucidate crown gall epidemiology, as well as Agrobacterium ecology. For this purpose, the AFLP methodology provides rapid and unambiguous determination of the genomic species status of agrobacteria, as confirmed by additional DNA-DNA hybridizations. The AFLP method has been proven to be reliable and to eliminate the need for DNA-DNA hybridization. In addition, AFLP fragments common to all members of the three major genomic species of agrobacteria, genomic species G1 (reference strain, strain TT111), G4 (reference strain, strain B6, the type strain of Agrobacterium tumefaciens), and G8 (reference strain, strain C58), have been identified, and these fragments facilitate analysis and show the applicability of the method. The maximal infraspecies current genome mispairing (CGM) value found for the biovar 1 taxon is 10.8%, while the smallest CGM value found for pairs of genomic species is 15.2%. This emphasizes the gap in the distribution of genome divergence values upon which the genomic species definition is based. The three main genomic species of agrobacteria in biovar 1 displayed high infraspecies current genome mispairing values (9 to 9.7%). The common fragments of a genomic species are thus likely “species-specific” markers tagging the core genomes of the species.  相似文献   

14.
Bento M  Gustafson JP  Viegas W  Silva M 《Génome》2011,54(3):175-183
Polyploidization is one of the major driving forces in plant evolution and is extremely relevant to speciation and diversity creation. Polyploidization leads to a myriad of genetic and epigenetic alterations that ultimately generate plants and species with increased genome plasticity. Polyploids are the result of the fusion of two or more genomes into the same nucleus and can be classified as allopolyploids (different genomes) or autopolyploids (same genome). Triticeae synthetic allopolyploid species are excellent models to study polyploids evolution, particularly the wheat-rye hybrid triticale, which includes various ploidy levels and genome combinations. In this review, we reanalyze data concerning genomic analysis of octoploid and hexaploid triticale and different synthetic wheat hybrids, in comparison with other polyploid species. This analysis reveals high levels of genomic restructuring events in triticale and wheat hybrids, namely major parental band disappearance and the appearance of novel bands. Furthermore, the data shows that restructuring depends on parental genomes, ploidy level, and sequence type (repetitive, low copy, and (or) coding); is markedly different after wide hybridization or genome doubling; and affects preferentially the larger parental genome. The shared role of genetic and epigenetic modifications in parental genome size homogenization, diploidization establishment, and stabilization of polyploid species is discussed.  相似文献   

15.
The genomes of unicellular organisms form complex 3-dimensional structures. This spatial organization is hypothesized to have a significant role in genomic function. Spatial organization is not limited solely to the three-dimensional folding of the chromosome(s) in genomes but also includes genome positioning, and the folding and compartmentalization of any additional genetic material (e.g. episomes) present within complex genomes. In this comment, I will highlight similarities in the spatial organization of eukaryotic and prokaryotic unicellular genomes.  相似文献   

16.
Reduced bacterial genomes and most genomes of cell organelles (chloroplasts and mitochondria) do not encode the full set of 32 tRNA species required to read all triplets of the genetic code according to the conventional wobble rules. Superwobbling, in which a single tRNA species that contains a uridine in the wobble position of the anticodon reads an entire four-fold degenerate codon box, has been suggested as a possible mechanism for how tRNA sets can be reduced. However, the general feasibility of superwobbling and its efficiency in the various codon boxes have remained unknown. Here we report a complete experimental assessment of the decoding rules in a typical prokaryotic genetic system, the plastid genome. By constructing a large set of transplastomic knock-out mutants for pairs of isoaccepting tRNA species, we show that superwobbling occurs in all codon boxes where it is theoretically possible. Phenotypic characterization of the transplastomic mutant plants revealed that the efficiency of superwobbling varies in a codon box-dependent manner, but—contrary to previous suggestions—it is independent of the number of hydrogen bonds engaged in codon-anticodon interaction. Finally, our data provide experimental evidence of the minimum tRNA set comprising 25 tRNA species, a number lower than previously suggested. Our results demonstrate that all triplets with pyrimidines in third codon position are dually decoded: by a tRNA species utilizing standard base pairing or wobbling and by a second tRNA species employing superwobbling. This has important implications for the interpretation of the genetic code and will aid the construction of synthetic genomes with a minimum-size translational apparatus.  相似文献   

17.
The estimation of quantitative genetic parameters in wild populations is generally limited by the accuracy and completeness of the available pedigree information. Using relatedness at genomewide markers can potentially remove this limitation and lead to less biased and more precise estimates. We estimated heritability, maternal genetic effects and genetic correlations for body size traits in an unmanaged long‐term study population of Soay sheep on St Kilda using three increasingly complete and accurate estimates of relatedness: (i) Pedigree 1, using observation‐derived maternal links and microsatellite‐derived paternal links; (ii) Pedigree 2, using SNP‐derived assignment of both maternity and paternity; and (iii) whole‐genome relatedness at 37 037 autosomal SNPs. In initial analyses, heritability estimates were strikingly similar for all three methods, while standard errors were systematically lower in analyses based on Pedigree 2 and genomic relatedness. Genetic correlations were generally strong, differed little between the three estimates of relatedness and the standard errors declined only very slightly with improved relatedness information. When partitioning maternal effects into separate genetic and environmental components, maternal genetic effects found in juvenile traits increased substantially across the three relatedness estimates. Heritability declined compared to parallel models where only a maternal environment effect was fitted, suggesting that maternal genetic effects are confounded with direct genetic effects and that more accurate estimates of relatedness were better able to separate maternal genetic effects from direct genetic effects. We found that the heritability captured by SNP markers asymptoted at about half the SNPs available, suggesting that denser marker panels are not necessarily required for precise and unbiased heritability estimates. Finally, we present guidelines for the use of genomic relatedness in future quantitative genetics studies in natural populations.  相似文献   

18.
The availability of multiple bacterial genome sequences has revealed a surprising extent of variability among strains of the same species. The human gastric pathogen Helicobacter pylori is known as one of the most genetically diverse species. We have compared the genome sequence of the duodenal ulcer strain P12 and six other H. pylori genomes to elucidate the genetic repertoire and genome evolution mechanisms of this species. In agreement with previous findings, we estimate that the core genome comprises about 1200 genes and that H. pylori possesses an open pan-genome. Strain-specific genes are preferentially located at potential genome rearrangement sites or in distinct plasticity zones, suggesting two different mechanisms of genome evolution. The P12 genome contains three plasticity zones, two of which encode type IV secretion systems and have typical features of genomic islands. We demonstrate for the first time that one of these islands is capable of self-excision and horizontal transfer by a conjugative process. We also show that excision is mediated by a protein of the XerD family of tyrosine recombinases. Thus, in addition to its natural transformation competence, conjugative transfer of genomic islands has to be considered as an important source of genetic diversity in H. pylori.  相似文献   

19.
The genetic structure of bacterial populations can be related to geographical locations of isolation. In some species, there is a strong correlation between geographical distance and genetic distance, which can be caused by different evolutionary mechanisms. Patterns of ancient admixture in Helicobacter pylori can be reconstructed in concordance with past human migration, whereas in Mycobacterium tuberculosis it is the lack of recombination that causes allopatric clusters. In Campylobacter, analyses of genomic data and molecular typing have been successful in determining the reservoir host species, but not geographical origin. We investigated biogeographical variation in highly recombining genes to determine the extent of clustering between genomes from geographically distinct Campylobacter populations. Whole‐genome sequences from 294 Campylobacter isolates from North America and the UK were analysed. Isolates from within the same country shared more recently recombined DNA than isolates from different countries. Using 15 UK/American closely matched pairs of isolates that shared ancestors, we identify regions that have frequently and recently recombined to test their correlation with geographical origin. The seven genes that demonstrated the greatest clustering by geography were used in an attribution model to infer geographical origin which was tested using a further 383 UK clinical isolates to detect signatures of recent foreign travel. Patient records indicated that in 46 cases, travel abroad had occurred <2 weeks prior to sampling, and genomic analysis identified that 34 (74%) of these isolates were of a non‐UK origin. Identification of biogeographical markers in Campylobacter genomes will contribute to improved source attribution of clinical Campylobacter infection and inform intervention strategies to reduce campylobacteriosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号