首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 622 毫秒
1.
2.
3.
4.
5.
6.
7.
Embryonic stem (ES) cells have been tested for potential cell transplantation therapy for CNS disorders. Understanding their differentiation mechanism and identifying factors involved in driving excitatory and inhibitory neuron lineages should enhance the efficacy and efficiency of the cell transplantation therapy. We tested the hypothesis that selective expression of Src family tyrosine kinases is required for phenotype-specific differentiation and functional maturation of ES cell derived neurons. Cultured mouse pluripotent ES cells were treated with retinoic acid (RA) to induce neural differentiation. After RA induction, neurons derived from ES cells showed significant neurite growth, increased expression of Src, Fyn and Lck and an extension of Src kinase expression from cell body to neurite processes. ES cell derived neuron-like cells expressed neurofilament, synaptophysin, glutamate receptors, NMDA and kainate currents, became vulnerable to excitotoxicity and formed functional excitatory synapses. These developmental events were blocked or attenuated when cells were grown in the presence of Src family kinase inhibitor PP2. However, there was no change in the expression of GABAergic-specific protein GAD67 during PP2 treatment. Our data suggest that Src tyrosine kinases are involved in the terminal differentiation of excitatory neuronal phenotype during ES cell neural differentiation after RA induction.  相似文献   

8.
9.
10.
11.
12.
Specification of dorsal spinal cord interneurons   总被引:1,自引:0,他引:1  
  相似文献   

13.
14.
15.
16.
Mutations in the human and mouse PTF1A/Ptf1a genes result in permanent diabetes mellitus and cerebellar agenesis. We show that Ptf1a is present in precursors to GABAergic neurons in spinal cord dorsal horn as well as the cerebellum. A null mutation in Ptf1a reveals its requirement for the dorsal horn GABAergic neurons. Specifically, Ptf1a is required for the generation of early-born (dI4, E10.5) and late-born (dIL(A), E12.5) dorsal interneuron populations identified by homeodomain factors Lhx1/5 and Pax2. Furthermore, in the absence of Ptf1a, the dI4 dorsal interneurons trans-fate to dI5 (Lmx1b(+)), and the dIL(A) to dIL(B) (Lmx1b(+);Tlx3(+)). This mis-specification of neurons results in a complete loss of inhibitory GABAergic neurons and an increase in the excitatory glutamatergic neurons in the dorsal horn of the spinal cord by E16.5. Thus, Ptf1a function is essential for GABAergic over glutamatergic neuronal cell fates in the developing spinal cord, and provides an important genetic link between inhibitory and excitatory interneuron development.  相似文献   

17.
18.
19.
20.
Epigenetic control of neural stem cell fate   总被引:18,自引:0,他引:18  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号