首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
近年来非点源污染已经成为水污染的主要来源,对非点源污染发生机理和控制方法的研究有着重要的科学和现实意义.为了研究不同土地利用方式对非点源污染的影响,本文基于土地利用变化模型CLUE-S模拟了城市规划、历史趋势和生态保护3个预案下浑河-太子河流域土地利用未来变化.应用SWAT模型对非点源污染进行了模拟研究,并结合实测数据对模拟结果进行了评价.结合两个模型研究了3个土地利用预案下非点源污染对土地利用和景观格局变化的响应.结果表明: SWAT模型在浑河-太子河流域模拟精度较高,该模型在研究区具有适用性.城市规划和历史趋势预案下非点源污染负荷不断增加,城市规划方案下最高,生态保护预案下非点源污染负荷呈不断下降趋势.不同土地利用和景观格局对非点源污染有一定的影响,科学合理的生态建设能够有效减少非点源污染负荷.研究结果可以为流域的非点源污染研究提供案例,为非点源污染防治和最佳管理措施的制定提供科学依据,为相关政策制定提供参考.  相似文献   

2.
基于增强回归树的流域非点源污染影响因子分析   总被引:5,自引:0,他引:5  
地表水的非点源污染在点源污染不断得到控制的前提下已经成为水环境污染的首要问题.非点源污染影响因子的复杂性及不确定性一直是流域非点源污染研究的重点和难点.本文利用SWAT(Soil and Water Assessment Tool)模型,以辽河子流域汎河流域为例,模拟了2003—2012年的非点源污染状况,对其空间分布状况进行了分析,并应用增强回归树的方法定量分析各种影响因子(坡度、土地利用类型、高程和土壤类型)对该流域非点源污染的贡献率.结果表明: 在汎河流域,非点源污染呈现较高的空间异质性,其中总氮的空间分布差异较大,总磷的空间分布差异较小.坡度因子与载体泥沙、总氮和总磷均呈极显著正相关关系(P<0.01),对泥沙和总磷有显著影响,其贡献率分别为46.5%、38.2%;土地利用因子对载体泥沙、总磷的负荷量有重要影响,其贡献率分别达到27.2%、35.3%;高程较低、坡度较缓的耕地地区易产生较高的总磷负荷量;褐色土壤最易流失总磷,而草甸土易流失总磷,且易受泥沙侵蚀.本研究利用增强回归树模型克服了流域非点源污染影响因子的复杂性,可加深对非点源污染产生机制的理解.  相似文献   

3.
Nonpoint source (NPS) pollution is considered the main reason for water deterioration, but there has been no attempt to incorporate vertical variations of NPS pollution into watershed management, especially in mountainous areas. In this study, the vertical variations of pollutant yields were explored in the Three Gorges Reservoir Region (TGRR) and the relationships between topographic attributes and pollutant yields were established. Based on our results, the pollutant yields decreased significantly from low altitude to median altitude and leveled off rapidly from median altitude to high altitude, indicating logarithmic relationships between pollutant yields and altitudes. The pollutant yields peaked at an altitude of 200–500 m, where agricultural land and gentle slopes (0–8°) are concentrated. Unlike the horizontal distributions, these vertical variations were not always related to precipitation patterns but did vary obviously with land uses and slopes. This paper also indicates that altitude data and proportions of land use could be a reliable estimate of NPS yields at different altitudes, with significant implications for land use planning and watershed management.  相似文献   

4.
Best Management Practices (BMPs) are one of the most effective methods to control nonpoint source (NPS) pollution at a watershed scale. In this paper, the use of a topography analysis incorporated optimization method (TAIOM) was proposed, which integrates topography analysis with cost-effective optimization. The surface status, slope and the type of land use were evaluated as inputs for the optimization engine. A genetic algorithm program was coded to obtain the final optimization. The TAIOM was validated in conjunction with the Soil and Water Assessment Tool (SWAT) in the Yulin watershed in Southwestern China. The results showed that the TAIOM was more cost-effective than traditional optimization methods. The distribution of selected BMPs throughout landscapes comprising relatively flat plains and gentle slopes, suggests the need for a more operationally effective scheme, such as the TAIOM, to determine the practicability of BMPs before widespread adoption. The TAIOM developed in this study can easily be extended to other watersheds to help decision makers control NPS pollution.  相似文献   

5.

Land use optimization as a resource allocation problem can be defined as the process of assigning different land uses to a region. Sustainable development also involves the exploitation of environmental resources, investment orientation, technology development, and industrial changes in a coordinated form. This paper studies the multi-objective sustainable land use planning problem and proposes an integrated framework, including simulation, forecasting, and optimization approaches for this problem. Land use optimization, a multifaceted process, requires complex decisions, including selection of land uses, forecasting land use allocation percentage, and assigning locations to land uses. The land use allocation percentage in the selected horizons is simulated and predicted by designing a System Dynamics (SD) model based on socio-economic variables. Furthermore, land use assignment is accomplished with a multi-objective integer programming model that is solved using augmented ε-constraint and non-dominated sorting genetic algorithm II (NSGA-II) methods. According to the results of the SD model, land use changes depend on population growth rate and labor productivity variables. Among the possible scenarios, a scenario focusing more on sustainable planning is chosen and the forecasting results of this scenario are used for optimal land use allocation. The computational results show that the augmented ε-constraint method cannot solve this problem even for medium sizes. The NSGA-II method not only solves the problem at large sizes over a reasonable time, but also generates good-quality solutions. NSGA-II showed better performance in metrics, including number of non-dominated Pareto solutions (NNPS), mean ideal distance (MID), and dispersion metric (DM). Integrated framework is implemented to allocate four types of land uses consisting of residential, commercial, industrial, and agricultural to a given region with 900 cells.

  相似文献   

6.
谢晖  邱嘉丽  董建玮  高田田  赖锡军 《生态学报》2022,42(15):6076-6091
面源污染是影响流域水环境和水安全的重要污染来源,对其进行有效防控需要对其负荷以及防控措施效果进行科学高效精准的预测。流域水文模型(Hydrological Simulation Program-FORTRAN,HSPF)具有突出的综合性和灵活性,是面源污染模型的典范。近年来,HSPF模型应用于我国流域面源污染相关的研究和实践有了飞速发展,但同样也面临着模型机理和参数本地化、模型构建精细化、模型结构不确定性较大等方面的挑战。围绕该模型在面源污染模拟与管控中的研究进展,对其在变化环境下的模拟方法和成果,以及应对参数识别、不确定性分析、措施效果评估和总量控制的思路和方法等方面进行了总结,并分析了现代化环境模拟形势下HSPF模型的延伸发展。结合模型相关研究的总结,强调了面向我国流域特色的本地化模型改进、服务河长制精细监管的大尺度精细化模拟、以及模型与大数据统计及人工智能耦合的互馈集合模拟等后续研究是需要重点关注的发展动向。  相似文献   

7.
关键源区识别:农业非点源污染控制方法   总被引:30,自引:1,他引:29  
周慧平  高超  朱晓东 《生态学报》2005,25(12):3368-3374
非点源污染的控制难度大、成本高,必须首先识别流域内的关键源区。对国内外应用的关键源区识别方法从指标筛选、指标体系建立到关键源识别等关键技术环节进行了系统的评述,以促进该方法在我国农业非点源污染控制中的应用。  相似文献   

8.
Uses of models of land use change are primary tools for analyzing the causes and consequences of land use changes, assessing the impacts of land use change on ecosystems and supporting land use planning and policy. However, no single model is able to capture all of key processes essential to explore land use change at different scales and make a full assessment of driving factors and impacts. Based on the multi-scale characteristics of land use change, combination and integration of currently existed models of land use change could be a feasible solution. Taken Sangong watershed as a case study, this paper describes an integrated methodology in which the conversion of land use and its effect model (CLUE), a spatially explicit land use change model, has been combined with a system dynamic model (SD) to analyze land use dynamics at different scales. A SD model is used to calculate area changes in demand for land types as a whole while a CLUE model is used to transfer these demands to land use patterns. Without the spatial consideration, the SD model ensures an appropriate treatment of macro-economic, demographic and technology developments, and changes in economic policies influencing the demand and supply for land use in a specific region. With CLUE model the land use change has been simulated at a high spatial resolution with the spatial consideration of land use suitability, spatial policies and restrictions to satisfy the balance between land use demand and supply. The application of the combination of SD and CLUE model in Sangong watershed suggests that this methodology have the ability to reflect the complex behaviors of land use system at different scales to some extent and be a useful tool for analysis of complex land use driving factors such as land use policies and assessment of its impacts on land use change. The established SD model was fitted or calibrated with the 1987–1998 data and validated with the 1998–2004 data; combining SD model with CLUE-S model, future land use scenarios were analyzed during 2004–2030. This work could be used for better understanding of the possible impacts of land use change on terrestrial ecosystem and provide scientific support for land use planning and managements of the watershed.  相似文献   

9.
京津冀城市群作为影响我国经济发展的重要区域,具有多重战略意义。然而,快速的城市扩张在提高社会、经济水平的同时,伴随着资源供求矛盾加深、耕地被侵占、生态退化,以及水、大气环境污染等众多突出问题,如何优化调整城市空间结构与布局,实现社会、经济发展与生态环境保护等多目标的协同优化是京津冀规划管理与决策的关键。从土地覆盖/利用数量和空间布局两个重点方面出发,通过多目标优化模型和CLUE-S模型的构建,提出了多目标权衡下的土地扩张优化情景预案,以期为京津冀城市群扩张布局与土地利用优化配置规划与管理提供科学参考。结果表明:一方面,利用多目标遗传算法(MOGA)可以很好地实现对京津冀土地利用结构优化配置及其与社会、经济及生态效益等多目标的定量化求解,为决策人提供满足不同权衡目标的多种选择,并通过与CLUE-S模型相结合,实现京津冀城市群土地利用格局的空间优化配置情景模拟;另一方面,研究结果表明,综合考虑了社会、经济和生态效益的优化方案中,林地的增加可以相对满足政策要求,增幅较大,耕地较未优化方案减幅放缓,符合耕地保有量的要求,同时,也从空间上减少了对重要生态用地的侵占。本研究的方法与结果可为京津冀城市群土地利用规划与生态安全格局建设提供理论与应用参考。  相似文献   

10.
Effectively identifying soil properties in relation to non-point source (NPS) phosphorus pollution is important for NPS pollution management. Previous studies have focused on particulate P loads in relation to agricultural non-point source pollution. In areas undergoing rapid urbanization, dissolved P loads may be important with respect to conditions of surface infiltration and rainfall runoff. The present study developed an integrated model for the analysis of both dissolved P and particulate P loads, applied to the Meiliang Bay watershed, Taihu Lake, China. The results showed that NPS P loads up to 15 kg/km2 were present, with particulate P loads up to 13 kg/km2. The highest loads were concentrated in the southeastern region of the watershed. Although particle P was the main contributor to NPS P loads state, the contribution of dissolved P was significant, especially in sub-basins with significant amount of artificial land cover. The integration of dissolved P and particulate P loads provided more accurate evaluation of NPS P pollution. NPS P loads were found to correspond to specific soil properties. Soil organic matter and total nitrogen were shown to influence dissolved P loads, while total phosphorus and soil particle composition proportion were more closely related to particulate P loads.  相似文献   

11.
冯青郁  陈利顶  杨磊 《生态学报》2022,42(5):1665-1678
我国的面源污染问题逐渐受到政府和科学界的重视,然而面源污染是一个复杂的系统过程,涉及多种因素和多个过程。面源(NPS)污染模型作为解决面源污染相关问题的研究和管理工具,在进行面源污染总量估算和严重程度评价、污染物流失路径和影响因素分析、治理策略制定等方面都有重要的作用。在我国,虽然针对面源污染模型进行了大量相关研究,既包含对基于国外模型的应用与验证,也包含基于观测数据自主研发的模型,但仍然存在模型应用和验证案例不足、已有的模型应用同中国面源污染特征结合不足、模型发展同面源污染机理研究结合不足等问题,而农业政策环境扩展(APEX)模型在应对这些问题上具有一定的优势。结合我国面源污染模型相关研究存在的问题、APEX模型模块和研究进展进行了介绍,对APEX模型在我国面源污染相关问题的研究中涉及的畜禽养殖、复杂耕作系统、特定BMP和水稻田的模拟等相关问题的应用前景进行了探讨,以期能够促进我国农业面源污染模型的发展。  相似文献   

12.
Quantifying non-point source (NPS) phosphorus (P) pollution loads is essential for watershed nutrients management. This study intended to develop a NPS P indicator which (1) was suitable in semi-humid and semi-arid watersheds of Northern China; (2) integrated the key NPS P loss factors and constructed them in a simple and physically understandable way and (3) kept P loss forms distinctively separate. An inverse distance-based delivery ratio was proposed to count for the P delivery efficiency from source to watercourses. We applied this P indicator in Luan River Watershed (LRW) of northern China under typical hydrological years and seasons. Results demonstrated that this NPS P indicator predicted reasonable NPS TP loads using simple methods and readily obtainable inputs. The sub-watersheds located in the south of LRW were recognized as the high risk areas of NPS P loss to Panjiakou reservoir. The upland and paddy fields near the river channels were particularly posing high risk and thus should be treated with prioritized management practices such as soil conservation and recommended fertilization. Rainfall-runoff related variables rather than P source variables explained more of the spatial variation in NPS P load and percentages. Using this tool could give policy makers insight into the component and location of NPS P pollution that needs to be the focus of policy at watershed scales before sophisticated studies were conducted in smaller scales.  相似文献   

13.
The provision of ecosystem services at the landscape level can be significantly influenced by land management practices. Within an agriculturally dominated case study area in Saxony, Germany, a more detailed land use classification, which includes differentiated information on agricultural management practices, was utilized within the raster-based planning support tool GISCAME. “Management” refers to typical, regional crop rotations and soil tillage practices.The focus of this research was based on an indicator-based approach to assess ecosystem services and the development of land use change (LUC) and land management change (LMC) scenarios. The EuroMaps Land Cover data set was specifically developed for the case study and included remote sensing information for the general land use classification and terrestrial mapping information. Furthermore, statistical data on detailed regional agricultural land management were included. The raster-based planning support tool GISCAME was then used to simulate scenarios and visualize results. The LUC and LMC scenarios showed that the more detailed land use classification provided better output for the prioritization of planning alternatives. Further it enabled a refined assessment of the provisioning services (i) food and fodder provision, (ii) biomass provision, the regulation services, (iii) soil erosion protection, (iv) drought risk regulation, (v) flood regulation, (vi) returns from land-based production (i.e. the market value of biomass provision), and (vii) ecological integrity. The results of this study support the view that the application of improved management measures, such as conservation tillage, can significantly enhance the provision of ecosystem services (e.g. soil erosion protection and drought risk regulation) at the landscape level. The study also indicates that a combination of strategic LUC, such as afforestation and LMC, might be an effective way to enhance regulating services with acceptable trade-offs regarding provisioning services. Our approach presents a refined foundation for ecosystem services assessment, which is designed to better support regional planning and the provision of information to non-experts in the participatory processes. For transfer into other regions, standardized land use and land management classification will have to be defined.  相似文献   

14.
土地利用模型时间尺度预测能力分析——以CLUE\|S模型为例   总被引:11,自引:0,他引:11  
刘淼  胡远满  常禹  贺红士  布仁仓 《生态学报》2009,29(11):6110-6119
模型模拟是生态学中的重要方法,特别是当实验不可进行时.在不同预案下基于模型的土地利用预测对于土地利用规划和政策制定具有十分重要意义.然而,很多研究没有对模型在研究区的时间尺度预测能力加以分析,从而可能导致模拟结果的不可靠.以岷江上游地区为例,采用Kappa指数系列对CLUE-S模型在研究区的时间尺度预测能力进行研究.结果表明CLUE-S模型在岷江上游地区时间尺度上的最大预测能力为22a,超过时间预测能力的预测结果不可靠.研究为土地利用模型模拟时间尺度确定提供了一种有效的方法.  相似文献   

15.
海湾型城市拥有丰富的海陆资源和较大的环境承载力,但人口和产业环绕海湾高密度聚集也让海湾型城市成为典型的生态环境脆弱区.本研究以典型的海湾型城市泉州市为例,基于土地利用数据、气象站点数据、地形数据和统计数据等多源数据,运用Logistic-CA-Markov耦合模型,设置自然情景、规划情景和保护情景,模拟了2030年3种不同情景下泉州市的土地利用及景观格局的变化,并进一步预测和估算了保水、保土、固碳(净初级生产力)和食物供给4种关键的生态系统服务功能及权衡关系.结果表明: 3种情景之下,2030年泉州市的耕地和建设用地面积增加,林地、草地和水体面积有不同程度减少,土地利用的破碎化程度加剧.与2015年相比,除保土服务功能外,泉州市2030年的保水、固碳和食物供给服务功能都出现了不同程度的下降;自然情景下生态系统服务功能的降幅更大,保护情景下的降幅低于规划情景.在保护情景和规划情景下,2030年的保水服务与保土服务、保水服务与固碳服务、保土服务与固碳服务的协同关系均增强,权衡关系减弱.  相似文献   

16.
低碳导向下土地覆被演变模拟——以深圳市为例   总被引:5,自引:0,他引:5  
何海珊  赵宇豪  吴健生 《生态学报》2021,41(21):8352-8363
全球碳排放水平的不断增加引起的全球变暖越发严重,导致了严重的自然灾害和经济损失,这种失衡发展的态势促使着各个国家开始探索低碳环保的发展模式。为了探究何种土地利用组成可以更好的为低碳城市服务,以深圳市为研究区,结合2020年土地利用现状结构和2020年土地利用规划结构分别估算出碳汇最大化情景和碳排放量最小化情景下2020年各土地利用类型的数量结构,并运用FLUS模型模拟出深圳市土地利用类型在这两种情景下的空间分布特征。最后,从碳密度和碳排放视角对比这两种情景的低碳效益。研究结果如下:①碳汇最大化和碳排放最小化情景下土地利用总碳盈余均比2020年少,且碳汇最大化情景下土地利用总碳盈余最小。碳汇最大化情景下耕地、园地和林地面积增加而水域和建设用地减少,碳排放最小化情景下园地和林地面积增加来源于草地、水域和建设用地的减少,这两种低碳情景的碳汇能力增强而碳排放量减少;②碳汇最大化和碳排放最小化情景下林地明显增加故而土地利用总碳盈余均比实际情景小,而园地和草地的缩减和扩张是引起两种低碳情景碳密度和碳排放量有差异的主要原因。碳汇最大化和碳排放最小化情景下,西部和东南部主要是碳密度增加和碳排放减少的区域,而中部是碳密度减少和碳排放增加的区域。因此对中部区域进行重点调控,有利于深圳市碳中和和碳达峰的实现。研究可以为深圳的低碳发展提供规划建议,同时给其他区域的低碳规划提供参考意见。  相似文献   

17.
刘洋  韩雯颖  孙志贤  桑国庆 《生态学报》2024,44(10):4129-4141
洪涝灾害情景模拟与损失预估对湖泊型流域防洪减灾和可持续发展具有重要意义。以我国典型的湖泊型流域南四湖流域为例,利用CA-Markov模型预测2030年三种用地情景,采用P-III型概率曲线构建10、20、50、100 a四个重现期强降雨情景,得到12种组合情景;通过InVEST模型和等体积淹没法量化不同情景的径流和淹没深度;在各产业GDP空间预测的基础上计算12种情景的洪涝直接经济损失。结果表明:(1) CA-Markov模型在南四湖流域的土地利用模拟精度较高,三种用地情景的各地类变化显著;(2)用地变化对流域洪涝灾害的影响显著,其中城镇发展情景下洪涝灾害风险最大,而生态保护情景风险最低;(3)暴雨强度会明显增加各用地情景的经济损失,但增幅在50 a重现期后有所减缓;生态保护情景的经济损失最少,介于97.39-128.81亿元之间,与其他情景相比,该情景可在一定程度上减少洪灾损失。为此,在气候变化背景下湖泊型流域可持续发展应充分考虑土地利用变化对洪涝灾害风险的影响,合理扩张城镇建设用地,优化布局生态用地,充分发挥国土空间规划在防洪减灾方面的作用。  相似文献   

18.
河流干支流水质与土地利用的相关关系   总被引:4,自引:0,他引:4  
洪超  刘茂松  徐驰  杨雪姣  池婷  田颖 《生态学报》2014,34(24):7271-7279
为探索不同等级河流水质状况及其对土地利用构成响应的差异,以江苏北部的灌河流域为研究对象,基于2006—2007年两个年度灌河及其支流的水质监测数据和研究区的Landsat TM影像,在河流两侧长度0.0—10.0 km、宽度0.0—0.5 km的范围内,运用多元回归分析,对研究区干、支流主要水质指标及其与相应土地利用构成的关系进行了研究。结果表明:2006—2007年间,研究区干流水质总体上显著好于支流,支流的总氮(TN)、总磷(TP)等营养盐指标显著高于干流,而干流的有机污染指标显著高于支流;比较不同观测尺度上土地利用构成对河流水质变化的方差贡献率发现,缓冲区宽度一定时,支流在所有观测尺度上的土地利用构成与水质变化皆存在显著相关关系,而干流仅在缓冲区长度0.0—4.0 km的观测尺度上其土地利用构成与水质变化的相关关系显著;缓冲区长度一定时,干、支流河道两侧0.0—0.3 km间土地利用状况对水质变化的解释能力较大。同时发现,氮、磷等营养盐浓度多与较大尺度上的土地利用构成相关,而化学需氧量(COD)、生化需氧量(BOD)等多与较小尺度上的土地利用构成相关。研究结果显示,有必要区分不同河流等级,选择适宜的观测尺度,分别研究不同水质指标与土地利用构成间的相关关系。  相似文献   

19.
Excess nutrients from fertilizer application, pollution discharge, and water regulations outflow through rivers from lands to oceans, seriously impacting coastal ecosystems. A reasonable representation of these processes in land surface models and River Transport Models (RTMs) is very important for understanding human–environment interactions. In this study, the schemes of riverine dissolved inorganic nitrogen (DIN) transport and human activities including nitrogen discharge and water regulation, were synchronously incorporated into a land surface model coupled with a RTM. The effects of anthropogenic nitrogen discharge on the DIN transport in rivers were studied based on simulations of the period 1991–2010 throughout the entire world, conducted using the developed model, which had a spatial resolution of about 1° for land processes and 0.5° for river transport, and data on fertilizer application, point source pollution, and water use. Our results showed that rivers in western Europe and eastern China were seriously polluted, on average, at a rate of 5,000–15,000 tons per year. In the Yangtze River Basin, the amount of point source pollution in 2010 was about four times more than that in 1991, while the amount of fertilizer used in 2010 doubled, which resulted in the increased riverine DIN levels. Further comparisons suggested that the riverine DIN in the USA was affected primarily by nitrogen fertilizer use, the changes in DIN flow rate in European rivers was dominated by point source pollution, and rivers in China were seriously polluted by both the two pollution sources. The total anthropogenic impact on the DIN exported to the Pacific Ocean has increased from 10% to 30%, more significantly than other oceans. In general, our results indicated that incorporating the schemes of nitrogen transport and human activities into land surface models could be an effective way to monitor global river water quality and diagnose the performance of the land surface modeling.  相似文献   

20.
Understanding the physical processes of point source (PS) and nonpoint source (NPS) pollution is critical to evaluate river water quality and identify major pollutant sources in a watershed. In this study, we used the physically-based hydrological/water quality model, Soil and Water Assessment Tool, to investigate the influence of PS and NPS pollution on the water quality of the East River (Dongjiang in Chinese) in southern China. Our results indicate that NPS pollution was the dominant contribution (>94%) to nutrient loads except for mineral phosphorus (50%). A comprehensive Water Quality Index (WQI) computed using eight key water quality variables demonstrates that water quality is better upstream than downstream despite the higher level of ammonium nitrogen found in upstream waters. Also, the temporal (seasonal) and spatial distributions of nutrient loads clearly indicate the critical time period (from late dry season to early wet season) and pollution source areas within the basin (middle and downstream agricultural lands), which resource managers can use to accomplish substantial reduction of NPS pollutant loadings. Overall, this study helps our understanding of the relationship between human activities and pollutant loads and further contributes to decision support for local watershed managers to protect water quality in this region. In particular, the methods presented such as integrating WQI with watershed modeling and identifying the critical time period and pollutions source areas can be valuable for other researchers worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号