首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Vascular smooth muscle cells (SMCs) play an important role in vascular remodeling. Heterogeneity and phenotypic changes in SMCs are usually accompanied by a morphological difference, i.e., elongated/spindle-like versus spread-out or epithelioid/rhomboid cell shapes. However, it is not known whether the cell shape directly regulates SMC proliferation, and what the underlying mechanisms are. In this study, microgrooves and micropatterned matrix islands were used to engineer the cell shape and investigate the associated biophysical and biological mechanisms. Compared to spread-out SMCs on nonpatterned surfaces, SMCs on micropatterned surfaces demonstrated elongated morphology, significantly lower cell and nucleus shape indexes, less spreading, a lower proliferation rate, and a similar response (but to a lesser extent) to platelet-derived growth factor, transforming growth factor-β, and mechanical stretching. DNA microarray profiling revealed a lower expression of neuron-derived orphan receptor-1 (NOR-1) in elongated SMCs. Knocking down NOR-1 suppressed DNA synthesis in SMCs, suggesting that NOR-1 is a mediator of cell elongation effects. Regulation of DNA synthesis in SMCs by the cell shape alone and a decrease in DNA synthesis in the case of small cell spreading area were achieved by micropatterning SMCs on matrix islands of different shapes and spreading areas. Changes in the cell shape also affected the nucleus shape, whereas variations in the cell spreading area modulated the nucleus volume, indicating a possible link between nucleus morphology (both shape and volume) and DNA synthesis. The findings of this investigation provide insight into cell shape effects on cell structure and proliferation, and have direct implications for vascular pathophysiology.  相似文献   

2.
Breast cancer nuclei have highly irregular shapes, which are diagnostic and prognostic markers of breast cancer progression. The mechanisms by which irregular cancer nuclear shapes develop are not well understood. Here we report the existence of vertical, apical cell protrusions in cultured MDA-MB-231 breast cancer cells. Once formed, these protrusions persist over time scales of hours and are associated with vertically upward nuclear deformations. They are absent in normal mammary epithelial cells (MCF-10A cells). Microtubule disruption enriched these protrusions preferentially in MDA-MB-231 cells compared with MCF-10A cells, whereas inhibition of nonmuscle myosin II (NMMII) abolished this enrichment. Dynamic confocal imaging of the vertical cell and nuclear shape revealed that the apical cell protrusions form first, and in response, the nucleus deforms and/or subsequently gets vertically extruded into the apical protrusion. Overexpression of lamin A/C in MDA-MB-231 cells reduced nuclear deformation in apical protrusions. These data highlight the role of mechanical stresses generated by moving boundaries, as well as abnormal nuclear mechanics in the development of abnormal nuclear shapes in breast cancer cells.  相似文献   

3.
It is well known that substrate properties like stiffness and adhesivity influence stem cell morphology and differentiation. Recent experiments show that cell morphology influences nuclear geometry and hence gene expression profile. The mechanism by which surface properties regulate cell and nuclear properties is only beginning to be understood. Direct transmission of forces as well as chemical signalling are involved in this process. Here, we investigate the formal aspect by studying the correlation between cell spreading and nuclear deformation using Mesenchymal stem cells under a wide variety of conditions. It is observed that a robust quantitative relation holds between the cell and nuclear projected areas, irrespective of how the cell area is modified or when various cytoskeletal or nuclear components are perturbed. By studying the role of actin stress fibers in compressing the nucleus we propose that nuclear compression by stress fibers can lead to enhanced cell spreading due to an interplay between elastic and adhesion factors. The significance of myosin-II in regulating this process is also explored. We demonstrate this effect using a simple technique to apply external compressive loads on the nucleus.  相似文献   

4.
With regard to the fact that, in anchorage-dependent lens epithelial cells, DNA synthesis can be switched on and off by cell flattening and cell rounding, respectively, the state of the microfilaments has been followed by labelling actin with FL-phalloidin during cell-shape alterations. Cell flattening proved to be accompanied by both a structural organization of actin filaments into stress fibres and an enlargement of the area of the cell nucleus. Cell rounding, on the other hand, caused the microfilament bundles to disappear and the area of the nucleus to become smaller. From the time course of the inhibition of DNA synthesis by cytochalasin B, it was inferred that functionally intact microfilaments are required for the entrance of the cells into DNA synthesis but not for the maintenance of ongoing DNA synthesis. The assumption has been made that the tension, generated by microfilaments during cell spreading, will affect the state of the plasma membrane as well as the shape and the structure of the nucleus, which in turn seems to be preparatory for cells to enter the cycle.  相似文献   

5.
With regard to the fact that, in anchorage-dependent lens epithelial cells, DNA synthesis can be switched on and off by cell flattening and cell rounding, respectively, the state of the microfilaments has been followed by labelling actin with FL-phalloidin during cell-shape alterations. Cell flattening proved to be accompanied by both a structural organization of actin filaments into stress fibres and an enlargement of the area of the cell nucleus. Cell rounding, on the other hand, caused the microfilament bundles to disappear and the area of the nucleus to become smaller. From the time course of the inhibition of DNA synthesis by cytochalasin B, it was inferred that functionally intact microfilaments are required for the entrance of the cells into DNA synthesis but not for the maintenance of ongoing DNA synthesis. the assumption has been made that the tension, generated by microfilaments during cell spreading, will affect the state of the plasma membrane as well as the shape and the structure of the nucleus, which in turn seems to be preparatory for cells to enter the cycle.  相似文献   

6.
The cytoskeletal forces involved in translocating the nucleus in a migrating tissue cell remain unresolved. Previous studies have variously implicated actomyosin-generated pushing or pulling forces on the nucleus, as well as pulling by nucleus-bound microtubule motors. We found that the nucleus in an isolated migrating cell can move forward without any trailing-edge detachment. When a new lamellipodium was triggered with photoactivation of Rac1, the nucleus moved toward the new lamellipodium. This forward motion required both nuclear-cytoskeletal linkages and myosin activity. Apical or basal actomyosin bundles were found not to translate with the nucleus. Although microtubules dampen fluctuations in nuclear position, they are not required for forward translocation of the nucleus during cell migration. Trailing-edge detachment and pulling with a microneedle produced motion and deformation of the nucleus suggestive of a mechanical coupling between the nucleus and the trailing edge. Significantly, decoupling the nucleus from the cytoskeleton with KASH overexpression greatly decreased the frequency of trailing-edge detachment. Collectively, these results explain how the nucleus is moved in a crawling fibroblast and raise the possibility that forces could be transmitted from the front to the back of the cell through the nucleus.  相似文献   

7.
The cytoskeletal forces involved in translocating the nucleus in a migrating tissue cell remain unresolved. Previous studies have variously implicated actomyosin-generated pushing or pulling forces on the nucleus, as well as pulling by nucleus-bound microtubule motors. We found that the nucleus in an isolated migrating cell can move forward without any trailing-edge detachment. When a new lamellipodium was triggered with photoactivation of Rac1, the nucleus moved toward the new lamellipodium. This forward motion required both nuclear-cytoskeletal linkages and myosin activity. Apical or basal actomyosin bundles were found not to translate with the nucleus. Although microtubules dampen fluctuations in nuclear position, they are not required for forward translocation of the nucleus during cell migration. Trailing-edge detachment and pulling with a microneedle produced motion and deformation of the nucleus suggestive of a mechanical coupling between the nucleus and the trailing edge. Significantly, decoupling the nucleus from the cytoskeleton with KASH overexpression greatly decreased the frequency of trailing-edge detachment. Collectively, these results explain how the nucleus is moved in a crawling fibroblast and raise the possibility that forces could be transmitted from the front to the back of the cell through the nucleus.  相似文献   

8.
9.
Endothelial cell polarization and directional migration is required for angiogenesis. Polarization and motility requires not only local cytoskeletal remodeling but also the motion of intracellular organelles such as the nucleus. However, the physiological significance of nuclear positioning in the endothelial cell has remained largely unexplored. Here, we show that siRNA knockdown of nesprin-1, a protein present in the linker of nucleus to cytoskeleton complex, abolished the reorientation of endothelial cells in response to cyclic strain. Confocal imaging revealed that the nuclear height is substantially increased in nesprin-1 depleted cells, similar to myosin inhibited cells. Nesprin-1 depletion increased the number of focal adhesions and substrate traction while decreasing the speed of cell migration; however, there was no detectable change in nonmuscle myosin II activity in nesprin-1 deficient cells. Together, these results are consistent with a model in which the nucleus balances a portion of the actomyosin tension in the cell. In the absence of nesprin-1, actomyosin tension is balanced by the substrate, leading to abnormal adhesion, migration, and cyclic strain-induced reorientation.  相似文献   

10.
Epithelial cell migration is an essential part of embryogenesis and tissue regeneration, yet their migration is least understood. Using our three-dimensional (3D) motility analysis, migrating epithelial cells formed an atypical polarized cell shape with the nucleus leading the cell front and a contractile cell rear. Migrating epithelial cells exerted traction forces to deform both the anterior and posterior extracellular matrix toward the cell body. The cell leading edge exhibited a myosin II-dependent retrograde flow with the magnitude and direction consistent with surrounding network deformation. Interestingly, on a two-dimensional substrate, myosin IIA-deficient cells migrated faster than wild-type cells, but in a 3D gel, these myosin IIA-deficient cells were unpolarized and immobile. In contrast, the migration rates of myosin IIB-deficient cells were similar to wild-type cells. Therefore, myosin IIA, not myosin IIB, is required for 3D epithelial cell migration.  相似文献   

11.
Micropatterned substrates are often used to standardize cell experiments and to quantitatively study the relation between cell shape and function. Moreover, they are increasingly used in combination with traction force microscopy on soft elastic substrates. To predict the dynamics and steady states of cell shape and forces without any a priori knowledge of how the cell will spread on a given micropattern, here we extend earlier formulations of the two-dimensional cellular Potts model. The third dimension is treated as an area reservoir for spreading. To account for local contour reinforcement by peripheral bundles, we augment the cellular Potts model by elements of the tension-elasticity model. We first parameterize our model and show that it accounts for momentum conservation. We then demonstrate that it is in good agreement with experimental data for shape, spreading dynamics, and traction force patterns of cells on micropatterned substrates. We finally predict shapes and forces for micropatterns that have not yet been experimentally studied.  相似文献   

12.
13.
Interactions between microtubules and filamentous actin (F-actin) are essential to many cellular processes, but their mechanisms are poorly understood. We investigated possible roles of the myosin family of proteins in the interactions between filamentous actin (F-actin) and microtubules of budding yeast Saccharomyces cerevisiae with the general myosin ATPase inhibitor 2,3-butanedione-2-monoxime (BDM). The growth of S. cerevisiae was completely inhibited by BDM at 20 mmol/L and the effect of BDM on cell growth was reversible. In more than 80% of BDM-treated budding yeast cells, the polarized distribution of F-actin was lost and fewer F-actin dots were observed. When cells were synchronized in G1 with α-factor and released in the presence of BDM, cell number did not increase and cells were mainly arrested in G1 DNA content without any bud, suggesting that myosin activity is required for new bud formation and the start of a new cell cycle. More than 10% of the BDM-treated cells also revealed defects in nuclear migration to the bud neck as well as in nuclear shape. Consistent with these defects, the orientation of mitotic spindles was random in the 57% of cells treated with 20 mmol/L BDM and immunostained with anti-tubulin antibody. Furthermore, microtubule structures were completely disorganized in most of the cells incubated in 50 mmol/L BDM, while similar amounts of tubulin proteins were present in both BDM-treated and untreated cells. These results show that the general myosin inhibitor BDM disorganizes microtubule structures as well as F-actin, and suggest that BDM-sensitive myosin activities are necessary for the interaction of F-actin and microtubules to coordinate polarized bud growth and the shape and migration of the nucleus in S. cerevisiae. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Phosphorylation of the regulatory light chain of myosin II (RMLC) at Serine 19 by a specific enzyme, MLC kinase, is believed to control the contractility of actomyosin in smooth muscle and vertebrate nonmuscle cells. To examine how such phosphorylation is regulated in space and time within cells during coordinated cell movements, including cell locomotion and cell division, we generated a phosphorylation-specific antibody.

Motile fibroblasts with a polarized cell shape exhibit a bimodal distribution of phosphorylated myosin along the direction of cell movement. The level of myosin phosphorylation is high in an anterior region near membrane ruffles, as well as in a posterior region containing the nucleus, suggesting that the contractility of both ends is involved in cell locomotion. Phosphorylated myosin is also concentrated in cortical microfilament bundles, indicating that cortical filaments are under tension. The enrichment of phosphorylated myosin in the moving edge is shared with an epithelial cell sheet; peripheral microfilament bundles at the leading edge contain a higher level of phosphorylated myosin. On the other hand, the phosphorylation level of circumferential microfilament bundles in cell–cell contacts is low. These observations suggest that peripheral microfilaments at the edge are involved in force production to drive the cell margin forward while microfilaments in cell–cell contacts play a structural role. During cell division, both fibroblastic and epithelial cells exhibit an increased level of myosin phosphorylation upon cytokinesis, which is consistent with our previous biochemical study (Yamakita, Y., S. Yamashiro, and F. Matsumura. 1994. J. Cell Biol. 124:129–137). In the case of the NRK epithelial cells, phosphorylated myosin first appears in the midzones of the separating chromosomes during late anaphase, but apparently before the formation of cleavage furrows, suggesting that phosphorylation of RMLC is an initial signal for cytokinesis.

  相似文献   

15.
When microtubules are depolymerized in spreading cells, they experience morphological oscillations characterized by a period of about a minute, indicating that normal interactions between the microfilament and microtubule systems have been significantly altered. This experimental system provides a test bed for the development of both fine- and coarse-grained models of complex motile processes, but such models need to be adequately informed by experiment. Using criteria based on Fourier transform analysis, we detect spontaneous oscillations in spreading cells. However, their amplitude and tendency to operate at a single frequency are greatly enhanced by microtubule depolymerization. Knockdown of RhoA and addition of various inhibitors of the downstream effector of RhoA, Rho kinase, block oscillatory behavior. Inhibiting calcium fluxes from endoplasmic reticulum stores and from the extracellular medium does not significantly affect the ability of cells to oscillate, indicating that calcium plays a subordinate regulatory role compared to Rho. We characterized the dynamic structure of the oscillating cell by light, fluorescence, and electron microscopy, showing how oscillating cells are dynamically polarized in terms of their overall morphology, f-actin and phosphorylated myosin light chain distribution, and nuclear position and shape. Not only will these studies guide future experiments, they will also provide a framework for the development of refined mathematical models of the oscillatory process.  相似文献   

16.
植物通过控制细胞分裂和伸长决定器官的形状。为了研究器官形状决定的分子机理,通过EMS诱变分离得到一个叶形细长的拟南芥突变体。细胞生物学观察发现,该基因突变不仅影响了生长点中的细胞分裂,也影响了叶片细胞的形状和数目,其表皮细胞凸起数明显减少,呈单轴向伸长,因此将该突变体定名为slender leaves and cells(slc)。有趣的是,不同组织内细胞分裂和伸长受到不同程度的影响,说明SLC基因在协调细胞分裂和伸长过程中起关键作用。图位克隆结果表明,SLC与小RNA介导的基因沉默相关基因AGO1等位,其第574位组氨酸突变为酪氨酸。slc和ago1杂交F1代植物呈现突变体表型,证明AGO1和SLC确实为同一基因。以上结果表明,SLC/AGO1所介导的转录后基因沉默对控制植物器官和细胞形状决定均起重要作用。  相似文献   

17.
Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis   总被引:12,自引:0,他引:12  
Capillary endothelial cells can be switched between growth and differentiation by altering cell-extracellular matrix interactions and thereby, modulating cell shape. Studies were carried out to determine when cell shape exerts its growth-regulatory influence during cell cycle progression and to explore the role of cytoskeletal structure and mechanics in this control mechanism. When G0-synchronized cells were cultured in basic fibroblast growth factor (FGF)-containing defined medium on dishes coated with increasing densities of fibronectin or a synthelic integrin ligand (RGD-containing peptide), cell spreading, nuclear extention, and DNA synthesis all increased in parallel. To determine the minimum time cells must be adherent and spread on extracellular matrix (ECM) to gain entry into S phase, cells were removed with trypsin or induced to retract using cytochalasin D at different times after plating. Both approaches revealed that cells must remain extended for approximately 12–15 h and hence, most of G1, in order to enter S phase. After this restriction point was passed, normally ‘anchorage-dependent’ endothelial cells turned on DNA synthesis even when round and in suspension. The importance of actin-containing microfilaments in shape-dependent growth control was confirmed by culturing cells in the presence of cytochalasin D (25–1000 ng ml−1): dose-dependent inhibition of cell spreading, nuclear extension, and DNA synthesis resulted. In contrast, induction of microtubule disassembly using nocodazole had little effect on cell or nuclear spreading and only partially inhibited DNA synthesis. Interestingly, combination of nocodazole with a suboptimal dose of cytochalasin D (100 ng ml−1) resulted in potent inhibition of both spreading and growth, suggesting that microtubules are redundant structural elements which can provide critical load-bearing functions when microfilaments are partially compromised. Similar synergism between nocodazole and cytochalasin D was observed when cytoskeletal stiffness was measured directly in living cells using magnetic twisting cytometry. These results emphasize the importance of matrix-dependent changes in cell and nuclear shape as well as higher order structural interactions between different cytoskeletal filament systems for control of capillary cell growth during angiogenesis.  相似文献   

18.
Intermediate filaments (IFs), together with microtubules and microfilaments build up the cytoskeleton of most eukaryotic cells. Cytoplasmic IFs form a dense filament network radiating from the nucleus and extending to the plasma membrane. The association between the cytoplasmic and nuclear surfaces appears to provide a continuous link important for the organisation of the cytoplasm, for cellular communication, and possibly for the transport into and out of the nucleus. Cytoplasmic IFs approach the nuclear surface, thin fibrils seem to connect the IFs with the nuclear pore complexes and a direct interaction of cytoplasmic IFs with the nuclear lamin B has been observed by in vitro binding studies. However, none of the components that cross-link IFs to the nucleus has been unambiguously identified. Furthermore, if a direct interaction between cytoplasmic IFs and the nuclear lamin B occurs in vivo, the question of how cytoplasmic IFs get access to the nuclear interior remains to be resolved. The association of IFs with the plasma membranes involves different components, some of which are cell type specific. Two specialised complexes in epithelial cells: the desmosome and the hemidesmosome, serve as attachment sites for keratin filaments. Desmoplakin is considered as the cross-linking component of IFs to the desmosomal plaque, whereas BPAG1 (bullous pemphigoid antigen) would cross-link IFs at the hemidesmosomal plaque. In other cell types the modality of how IFs are anchored to the plasma membrane is less well understood. It involves different components such as the spectrin based membrane skeleton, ankyrin, myosin, plectin and certainly many other still unravelled partners. Association between the IFs and cellular membranes plays an important role in determining cell shape and tissue integrity. Thus, the identification and characterisation of the components involved in these interactions will be crucial for understanding the function of intermediate filaments.  相似文献   

19.
Differentiation in the early mouse embryo begins at the 8-cell stage when the blastomeres flatten against each other by active spreading movements and surface and cytoplasmic elements become concentrated in the apical (uncontacted) region of the cells. A ring of cortical myosin marks the demarcation between the contacted and the uncontacted cellular domains. The organization of the cortical contractile apparatus in the blastomeres bears a formal resemblance to that of other cells that are engaged in similar motile activities. It has been proposed that a flow of cortical filaments could provide the motor that powers these movements. The applicability of such a cortical flow model to the early embryo and the implications for cell flattening and cell polarization are discussed in this review.  相似文献   

20.
For years the existence of nuclear actin has been heavily debated, but recent data have clearly demonstrated that actin, as well as actin-binding proteins (ABPs), are located in the nucleus. We examined live EGFP-actin-expressing cells using confocal microscopy and saw the presence of structures strongly resembling actin filaments in the nuclei of MDA-MB-231 human mammary epithelial tumor cells. Many nuclei had more than one of these filamentous structures, some of which appeared to cross the entire nucleus. Extensive analysis, including fluorescence recovery after photobleaching (FRAP), showed that all EGFP-actin in the nucleus is monomeric (G-actin) rather than filamentous (F-actin) and that the apparent filaments seen in the nucleus are invaginations of cytoplasmic monomeric actin. Immunolocalization of nuclear pore complex proteins shows that similar invaginations are seen in cells that are not overexpressing EGFP-actin. To determine whether there is a correlation between increased levels of invagination in the cell nuclei and the state of de-differentiation of the cell, we examined a variety of cell types, including live Xenopus embryonic cells. Cells that were highly de-differentiated, or cancerous, had an increased incidence of invagination, while cells that were differentiated had few nuclear invaginations. The nuclei of embryonic cells that were not yet differentiated underwent multiple shape changes throughout interphase, and demonstrated numerous transient invaginations of varying sizes and shapes. Although the function of these actin-filled invaginations remains speculative, their presence correlates with cells that have increased levels of nuclear activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号