首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytol from chlorophyll degradation can be phosphorylated to phytyl-phosphate and phytyl-diphosphate, the substrate for tocopherol (vitamin E) synthesis. A candidate for the phytyl-phosphate kinase from Arabidopsis thaliana (At1g78620) was identified via a phylogeny-based approach. This gene was designated VITAMIN E DEFICIENT6 (VTE6) because the leaves of the Arabidopsis vte6 mutants are tocopherol deficient. The vte6 mutant plants are incapable of photoautotrophic growth. Phytol and phytyl-phosphate accumulate, and the phytyl-diphosphate content is strongly decreased in vte6 leaves. Phytol feeding and enzyme assays with Arabidopsis and recombinant Escherichia coli cells demonstrated that VTE6 has phytyl-P kinase activity. Overexpression of VTE6 resulted in increased phytyl-diphosphate and tocopherol contents in seeds, indicating that VTE6 encodes phytyl-phosphate kinase. The severe growth retardation of vte6 mutants was partially rescued by introducing the phytol kinase mutation vte5. Double mutant plants (vte5 vte6) are tocopherol deficient and contain more chlorophyll, but reduced amounts of phytol and phytyl-phosphate compared with vte6 mutants, suggesting that phytol or phytyl-phosphate are detrimental to plant growth. Therefore, VTE6 represents the missing phytyl-phosphate kinase, linking phytol release from chlorophyll with tocopherol synthesis. Moreover, tocopherol synthesis in leaves depends on phytol derived from chlorophyll, not on de novo synthesis of phytyl-diphosphate from geranylgeranyl-diphosphate.  相似文献   

2.
SUMMARY: Tocopherols are synthesized and accumulated by all plants and many cyanobacteria. The quenching and scavenging of reactive oxygen species and lipid peroxy radicals by tocopherols can result in the formation of various tocopherol oxidation compounds. A targeted GC/MS profiling method was developed to quantify all tocopherols and pathway intermediates, and 23 potential alpha- and gamma-tocopherol oxidation products. This method was used to study the response of wild-type Arabidopsis (Col) and the tocopherol biosynthetic mutants vte1, vte2 and vte4 during 12 h low- and high-light treatments (LL and HL, 90 and 1500 mumol photon m(-2) sec(-1), respectively) and a subsequent 12 h dark recovery period. All tocopherols and pathway intermediates exhibited HL-dependent increases except 2,3-dimethyl-6-phytyl-1,4-benzoquinone (DMPBQ) in vte1 and beta-tocopherol in Col. Profiling of potential tocopherol oxidation products during HL treatment indicated the presence of only alpha-tocopherolquinol (alpha-TQH(2)) in Col and only gamma-tocopherolquinol (gamma-TQH(2)) in vte4, both of which accumulated to similar levels and with similar kinetics the two genotypes. However, during dark recovery, the level of alpha-TQH(2) in Col decreased several times faster than that of gamma-TQH(2) in vte4, suggesting the presence of biochemical processes with higher specificity for alpha-TQH(2). (14)C-labeled alpha-tocopherolquinone (alpha-TQ) applied to isolated Col chloroplasts was converted to (14)C-alpha-tocopherol, demonstrating the existence of a plastid-based system for recycling oxidized alpha-tocopherol. The accumulation of (14)C-trimethylphytylbenzoquinone (TMPBQ) by isolated vte1 plastids treated with (14)C-labeled alpha-TQ is consistent with the tocopherolquinone-recycling pathway utilizing a yet to be identified plastid-localized dehydratase that converts tocopherolquinone to TMPBQ.  相似文献   

3.
LEPA is one of the most conserved translation factors and is found from bacteria to higher plants. However, the physiological function of the chloroplast LEPA homolog in higher plants remains unknown. Herein, we demonstrate the physiological role of cpLEPA in enabling efficient photosynthesis in higher plants. The cplepa-1 mutant displays slightly high chlorophyll fluorescence and pale green phenotypes under normal growth conditions. The growth of the cplepa-1 mutant is reduced when grown on soil, and greater reduction is observed under intense light illumination. Photosynthetic activity is impaired in the cplepa-1 mutants, which is reflected in the decreased steady-state levels of chloroplast proteins. In vivo protein labeling experiments explained the decrease in the steady-state levels of chloroplast proteins. An abnormal association of the chloroplast-encoded mRNAs with ribosomes suggests that the protein synthesis deficiencies in cplepa-1 are due to defects in translation initiation in the chloroplasts. The cpLEPA protein appears to be an essential translation factor that promotes the efficiency of chloroplast protein synthesis.  相似文献   

4.
Arabidopsis was transformed with double-stranded RNA interference (dsRNAi) constructs designed to silence three putative callose synthase genes: GLUCAN SYNTHASE-LIKE5 (GSL5), GSL6, and GSL11. Both wound callose and papillary callose were absent in lines transformed with GSL5 dsRNAi and in a corresponding sequence-indexed GSL5 T-DNA insertion line but were unaffected in GSL6 and GSL11 dsRNAi lines. These data provide strong genetic evidence that the GSL genes of higher plants encode proteins that are essential for callose formation. Deposition of callosic plugs, or papillae, at sites of fungal penetration is a widely recognized early response of host plants to microbial attack and has been implicated in impeding entry of the fungus. Depletion of callose from papillae in gsl5 plants marginally enhanced the penetration of the grass powdery mildew fungus Blumeria graminis on the nonhost Arabidopsis. Paradoxically, the absence of callose in papillae or haustorial complexes correlated with the effective growth cessation of several normally virulent powdery mildew species and of Peronospora parasitica.  相似文献   

5.
Plant cell walls are important barriers against microbial pathogens. Cell walls of Arabidopsis thaliana leaves contain three major types of polysaccharides: cellulose, various hemicelluloses, and pectins. UDP-d-galacturonic acid, the key building block of pectins, is produced from the precursor UDP-d-glucuronic acid by the action of glucuronate 4-epimerases (GAEs). Pseudomonas syringae pv maculicola ES4326 (Pma ES4326) repressed expression of GAE1 and GAE6 in Arabidopsis, and immunity to Pma ES4326 was compromised in gae6 and gae1 gae6 mutant plants. These plants had brittle leaves and cell walls of leaves had less galacturonic acid. Resistance to specific Botrytis cinerea isolates was also compromised in gae1 gae6 double mutant plants. Although oligogalacturonide (OG)-induced immune signaling was unaltered in gae1 gae6 mutant plants, immune signaling induced by a commercial pectinase, macerozyme, was reduced. Macerozyme treatment or infection with B. cinerea released less soluble uronic acid, likely reflecting fewer OGs, from gae1 gae6 cell walls than from wild-type Col-0. Although both OGs and macerozyme-induced immunity to B. cinerea in Col-0, only OGs also induced immunity in gae1 gae6. Pectin is thus an important contributor to plant immunity, and this is due at least in part to the induction of immune responses by soluble pectin, likely OGs, that are released during plant-pathogen interactions.  相似文献   

6.
Ye  Jing  Ye  Shenghai  Zhai  Rongrong  Wu  Mingming  Yu  Faming  Zhu  Guofu  Zhang  Xiaoming 《Journal of Plant Growth Regulation》2023,42(1):423-432
Journal of Plant Growth Regulation - Crop yield is largely determined by the solar energy utilization efficiency of photosynthesis; plants with long stay-green periods have greater total...  相似文献   

7.
McConn M  Browse J 《The Plant cell》1996,8(3):403-416
The very high proportions of trienoic fatty acids found in chloroplast membranes of all higher plants suggest that these lipid structures might be essential for photosynthesis. We report here on the production of Arabidopsis triple mutants that contain negligible levels of trienoic fatty acids. Photosynthesis at 22[deg]C was barely affected, and vegetative growth of the mutants was identical with that of the wild type, demonstrating that any requirement for trienoic acyl groups in membrane structure and function is relatively subtle. Although vegetative growth and development were unaffected, the triple mutants are male sterlle and produce no seed under normal conditions. Comparisons of pollen development in wild-type and triple mutant flowers established that pollen grains in the mutant developed to the tricellular stage. Exogenous applications of [alpha]-llnolenate or jasmonate restored fertility. Taken together, the results demonstrate that the critical role of trienoic acids in the life cycle of plants is as the precursor of oxylipin, a signaling compound that regulates final maturation processes and the release of pollen.  相似文献   

8.
Very-long-chain fatty acids (VLCFAs) with chain lengths from 20 to 34 carbons are involved in diverse biological functions such as membrane constituents, a surface barrier, and seed storage compounds. The first step in VLCFA biosynthesis is the condensation of two carbons to an acyl-coenzyme A, which is catalyzed by 3-ketoacyl-coenzyme A synthase (KCS). In this study, amino acid sequence homology and the messenger RNA expression patterns of 21 Arabidopsis (Arabidopsis thaliana) KCSs were compared. The in planta role of the KCS9 gene, showing higher expression in stem epidermal peels than in stems, was further investigated. The KCS9 gene was ubiquitously expressed in various organs and tissues, including roots, leaves, and stems, including epidermis, silique walls, sepals, the upper portion of the styles, and seed coats, but not in developing embryos. The fluorescent signals of the KCS9::enhanced yellow fluorescent protein construct were merged with those of BrFAD2::monomeric red fluorescent protein, which is an endoplasmic reticulum marker in tobacco (Nicotiana benthamiana) epidermal cells. The kcs9 knockout mutants exhibited a significant reduction in C24 VLCFAs but an accumulation of C20 and C22 VLCFAs in the analysis of membrane and surface lipids. The mutant phenotypes were rescued by the expression of KCS9 under the control of the cauliflower mosaic virus 35S promoter. Taken together, these data demonstrate that KCS9 is involved in the elongation of C22 to C24 fatty acids, which are essential precursors for the biosynthesis of cuticular waxes, aliphatic suberins, and membrane lipids, including sphingolipids and phospholipids. Finally, possible roles of unidentified KCSs are discussed by combining genetic study results and gene expression data from multiple Arabidopsis KCSs.Very-long-chain fatty acids (VLCFAs) are fatty acids of 20 or more carbons in length and are essential precursors of functionally diverse lipids, cuticular waxes, aliphatic suberins, phospholipids, sphingolipids, and seed oils in the Brassicaceae. These lipids are involved in various functions, such as acting as protective barriers between plants and the environment, impermeable barriers to water and ions, energy-storage compounds in seeds, structural components of membranes, and lipid signaling, which is involved in the hypersensitive response (Pollard et al., 2008; Kunst and Samuels, 2009; Franke et al., 2012). VLCFAs are synthesized by the microsomal fatty acid elongase complex, which catalyzes the cyclic addition of a C2 moiety obtained from malonyl-CoA to C16 or C18 acyl-CoA. The fatty acid elongation process has been shown to proceed through a series of four reactions: condensation of the C2 carbon moiety to acyl-CoA by 3-ketoacyl coenzyme A synthase (KCS), reduction of KCS by 3-ketoacyl coenzyme A reductase (KCR), dehydration of 3-hydroxyacyl-CoA by 3-hydroxyacyl-CoA dehydratase (PAS2), and reduction of trans-2,3-enoyl-CoA by trans-2-enoyl-CoA reductase (ECR). Except for KCS isoforms with redundancy, disruption of KCR1, ECR/ECERIFERUM10 (CER10), or PAS2 exhibited severe morphological abnormalities and embryo lethality, suggesting that VLCFA homeostasis is essential for plant developmental processes (Zheng et al., 2005; Bach et al., 2008; Beaudoin et al., 2009).Cuticular waxes that cover plant aerial surfaces are known to be involved in limiting nonstomatal water loss and gaseous exchanges (Boyer et al., 1997; Riederer and Schreiber, 2001), repelling lipophilic pathogenic spores and dust (Barthlott and Neinhuis, 1997), and protecting plants from UV light (Reicosky and Hanover, 1978). VLCFAs that are synthesized in the epidermal cells are either directly used or further modified into aldehydes, alkanes, secondary alcohols, ketones, primary alcohols, and wax esters for the synthesis of cuticular waxes. Reverse genetic analysis and Arabidopsis (Arabidopsis thaliana) epidermal peel microarray analysis (Suh et al., 2005) has enabled the research community to identify the functions of many genes involved in cuticular wax biosynthesis (Kunst and Samuels, 2009): CER1 (Bourdenx et al., 2011; Bernard et al., 2012), WAX2/CER3 (Chen et al., 2003; Rowland et al., 2007; Bernard et al., 2012), and MAH1(Greer et al., 2007; Wen and Jetter, 2009) have been shown to be involved in the decarbonylation pathway to form aldehydes, alkanes, secondary alcohols, and ketones, and acyl-coenzyme A reductase (FAR; Aarts et al., 1997; Rowland et al., 2006) and WSD1 (Li et al., 2008) have been shown to be involved in the decarboxylation pathway for the synthesis of primary alcohols and wax esters. The export of wax precursors to the extracellular space is mediated by a heterodimer of the ATP-binding cassette transporters in the plasma membrane (Pighin et al., 2004; Bird et al., 2007; McFarlane et al., 2010). In addition, glycosylphosphatidylinositol-anchored LTP (LTPG1) and LTPG2 contribute either directly or indirectly to the export of cuticular wax (DeBono et al., 2009; Lee et al., 2009; Kim et al., 2012).VLCFAs that are synthesized in the endodermis of primary roots, seed coats, and the chalaza-micropyle region of seeds are used as precursors for the synthesis of aliphatic suberins. The suberin layer is known to function as a barrier against uncontrolled water, gas, and ion loss and provides protection from environmental stresses and pathogens (Pollard et al., 2008; Franke et al., 2012). For aliphatic suberin biosynthesis, the ω-carbon of the VLCFAs is oxidized by the fatty acyl ω-hydroxylase (Xiao et al., 2004; Li et al., 2007; Höfer et al., 2008; Molina et al., 2008, 2009; Compagnon et al., 2009; Li-Beisson et al., 2009), and the ω-hydroxy VLCFAs are further oxidized into α,ω-dicarboxylic acids by the HOTHEAD-like oxidoreductase (Kurdyukov et al., 2006). α,ω-Dicarboxylic acids are acylated to glycerol-3-P via acyl-CoA:glycerol-3-P acyltransferase (Beisson et al., 2007; Li et al., 2007; Li-Beisson et al., 2009; Yang et al., 2010) or to ferulic acid. In addition, C18, C20, and C22 fatty acids are also reduced by FAR enzymes to primary fatty alcohols, which are a common component in root suberin (Vioque and Kolattukudy, 1997). Finally, the aliphatic suberin precursors are likely to be extensively polymerized and cross linked with the polysaccharides or lignins in the cell wall.In addition, VLCFAs are found in sphingolipids, including glycosyl inositolphosphoceramides, glycosylceramides, and ceramides and phospholipids, such as phosphatidylethanolamine (PE) and phosphatidyl-Ser (PS), which are present in the extraplastidial membrane (Pata et al., 2010; Yamaoka et al., 2011). For sphingolipid biosynthesis, VLCFA-CoAs and Ser are condensed to form 3-keto-sphinganine, which is subsequently reduced to produce sphinganine, a long chain base (LCB). LCBs are known to be further modified by 4-hydroxylation, 4-desaturation, and 8-desaturation (Lynch and Dunn, 2004; Chen et al., 2006, 2012; Pata et al., 2010). The additional VLCFAs are linked with 4-hydroxy LCBs via an amino group to form ceramides (Chen et al., 2008). The presence of VLCFA in sphingolipids may contribute to an increase of their hydrophobicity, membrane leaflet interdigitation, and the transition from a fluid to a gel phase, which is required for microdomain formation. In plants, PS is synthesized from CDP-diacylglycerol and Ser by PS synthase or through an exchange reaction between a phospholipid head group and Ser by a calcium-dependent base-exchange-type PS synthase (Vincent et al., 1999; Yamaoka et al., 2011). PE biosynthesis proceeds through decarboxylation via PS decarboxylase (Nerlich et al., 2007), the phosphoethanolamine transfer from CDP-ethanolamine to diacylglycerol (Kennedy pathway), and the exchange of the head group of PE with Ser via a base-exchange enzyme (Marshall and Kates, 1973). In particular, PS containing a relatively large amount of VLCFAs is enriched in endoplasmic reticulum (ER)-derived vesicles that may function in stabilizing small (70- to 80-nm-diameter) vesicles (Vincent et al., 2001).During the fatty acid elongation process, the first committed step is the condensation of C2 units to acyl-CoA by KCS. Arabidopsis harbors a large family containing 21 KCS members (Joubès et al., 2008). Characterization of Arabidopsis KCS mutants with defects in VLCFA synthesis revealed in planta roles and substrate specificities (based on differences in carbon chain length and degree of unsaturation) of KCSs. For example, FAE1, a seed-specific condensing enzyme, was shown to catalyze C20 and C22 VLCFA biosynthesis for seed storage lipids (James et al., 1995). KCS6/CER6/CUT1 and KCS5/CER60 are involved in the elongation of fatty acyl-CoAs longer than C28 VLCFA for cuticular waxes in epidermis and pollen coat lipids (Millar et al., 1999; Fiebig et al., 2000; Hooker et al., 2002). KCS20 and KCS2/DAISY are functionally redundant in the two-carbon elongation to C22 VLCFA, which is required for cuticular wax and root suberin biosynthesis (Franke et al., 2009; Lee et al., 2009). When KCS1 and KCS9 were expressed in yeast (Saccharomyces cerevisiae), KCS1 showed broad substrate specificity for saturated and monounsaturated C16 to C24 acyl-CoAs and KCS9 utilized the C16 to C22 acyl-CoAs (Trenkamp et al., 2004; Blacklock and Jaworski, 2006; Paul et al., 2006). Recently, CER2 encoding putative BAHD acyltransferase was reported to be a fatty acid elongase that was involved in the elongation of C28 fatty acids for the synthesis of wax precursors (Haslam et al., 2012).In this study, the expression patterns and subcellular localization of KCS9 were examined, and an Arabidopsis kcs9 mutant was isolated to investigate the roles of KCS9 in planta. Diverse classes of lipids, including cuticular waxes, aliphatic suberins, and sphingolipids, as well as fatty acids in various organs were analyzed from the wild type, the kcs9 mutant, and complementation lines. The combined results of this study revealed that KCS9 is involved in the elongation of C22 to C24 fatty acids, which are essential precursors for the biosynthesis of cuticular waxes, aliphatic suberins, and membrane lipids, including sphingolipids. To the best of our knowledge, this is the first study where a KCS9 isoform involved in sphingolipid biosynthesis was identified.  相似文献   

9.
In illuminated chloroplasts, one mechanism involved in reduction-oxidation (redox) homeostasis is the malate-oxaloacetate (OAA) shuttle. Excess electrons from photosynthetic electron transport in the form of nicotinamide adenine dinucleotide phosphate, reduced are used by NADP-dependent malate dehydrogenase (MDH) to reduce OAA to malate, thus regenerating the electron acceptor NADP. NADP-MDH is a strictly redox-regulated, light-activated enzyme that is inactive in the dark. In the dark or in nonphotosynthetic tissues, the malate-OAA shuttle was proposed to be mediated by the constitutively active plastidial NAD-specific MDH isoform (pdNAD-MDH), but evidence is scarce. Here, we reveal the critical role of pdNAD-MDH in Arabidopsis (Arabidopsis thaliana) plants. A pdnad-mdh null mutation is embryo lethal. Plants with reduced pdNAD-MDH levels by means of artificial microRNA (miR-mdh-1) are viable, but dark metabolism is altered as reflected by increased nighttime malate, starch, and glutathione levels and a reduced respiration rate. In addition, miR-mdh-1 plants exhibit strong pleiotropic effects, including dwarfism, reductions in chlorophyll levels, photosynthetic rate, and daytime carbohydrate levels, and disordered chloroplast ultrastructure, particularly in developing leaves, compared with the wild type. pdNAD-MDH deficiency in miR-mdh-1 can be functionally complemented by expression of a microRNA-insensitive pdNAD-MDH but not NADP-MDH, confirming distinct roles for NAD- and NADP-linked redox homeostasis.Reduction-oxidation (redox) reactions play pivotal roles for most metabolic processes and occur in all cellular compartments. The origin of all reducing power in plants is the chloroplast thylakoid membrane system, where light-driven photosynthetic electron transport leads to the coupled formation of ATP and the reducing equivalent NADPH (Dietz and Pfannschmidt, 2011). Sudden changes in light intensity and withdrawal of ATP and NADPH for biosynthetic processes in varying amounts can potentially disturb the ATP:NADPH ratio. Maintaining this ratio within certain limits, however, is crucial for plant metabolism, because it avoids the accumulation of excess electrons and the production of cytotoxic reactive oxygen species and allows for the continued production of ATP (Apel and Hirt, 2004; Logan, 2006; Scheibe and Dietz, 2012). Accordingly, plants have several mechanisms to dissipate excess electrons, avoid damage to cellular components, and maintain redox homeostasis. These mechanisms include nonphotochemical energy quenching, chlororespiration, cyclic electron transport, and the Mehler reaction (Scheibe et al., 2005).Reducing equivalents in the form of dedicated electron carriers or reduced cofactors (e.g. ferredoxin and NADH) are not generally transported directly across membranes; however, they can be shuttled indirectly as malate in exchange for oxaloacetic acid (OAA). This redox-poising mechanism is known as the malate valve in illuminated plastids or more generally, the malate-OAA shuttle (Heber, 1974; Scheibe, 2004; Taniguchi and Miyake, 2012). The key enzyme of the malate-OAA shuttle is malate dehydrogenase (MDH), which catalyses the reversible interconversion of malate and OAA. Isoforms of MDH are present in various cell compartments (Gietl, 1992), and each isoform is specific to either cosubstrate NAD (NAD-MDH; EC 1.1.1.37) or NADP (NADP-MDH; EC 1.1.1.82). The Arabidopsis genome encodes eight putative NAD-MDH isoforms: two isoforms are peroxisomal MDH (PMDH; PMDH1 and PMDH2; Pracharoenwattana et al., 2007; Eubel et al., 2008), two isoforms are mitochondrial MDH (MMDH; MMDH1 and MMDH2; Millar et al., 2001; Lee et al., 2008; Tomaz et al., 2010), and one isoform is plastidial MDH (plastid-localized NAD-dependent MDH [pdNAD-MDH]; Berkemeyer et al., 1998). The remaining three isoforms have no detectable target sequence and are thought to be cytosolic MDH (CMDH; CMDH1, CMDH2, and CMDH3). The Arabidopsis genome also encodes an additional NADP-dependent isoform of MDH, which is localized to the plastid (Hebbelmann et al., 2012).The physiological role of the different isoforms depends on the subcellular localization and the different metabolic pathways occurring there. For instance, MMDH was reported to be involved in two processes that are at least partly mitochondrial: leaf respiration and photorespiration (Tomaz et al., 2010). An MMDH null mutant (mmdh1 mmdh2) was slow growing and showed elevated leaf respiration in the dark and the light, although photosynthetic capacity was not affected. Tomaz et al. (2010) proposed that MMDH uses NADH to reduce OAA to malate, which is then shuttled to the cytosol, rather than generate NADH to fuel mitochondrial respiration (Tomaz et al., 2010). PMDH might serve at least two different functions. First, during fatty acid β-oxidation, which generates NADH, PMDH is proposed to regenerate the electron acceptor NAD by reducing OAA to malate, which is then shuttled to the cytosol in exchange for OAA (Pracharoenwattana et al., 2007). Second, PMDH is thought to generate NADH during photorespiration by oxidation of malate imported from the cytosol (Reumann and Weber, 2006; Cousins et al., 2008). Arabidopsis mutants lacking PMDH (pmdh1 pmdh2) are severely impaired in β-oxidation, and seedling establishment is strongly impaired and dependent on the supply of exogenous sugar (Pracharoenwattana et al., 2007), a phenotype characteristic of β-oxidation mutants (Pinfield-Wells et al., 2005; Baker et al., 2006). However, after transfer of established pmdh1 pmdh2 seedlings to compost, they grew only slightly slower than wild-type plants (Pracharoenwattana et al., 2007).Until recently, genetic evidence for the roles of the plastidial MDH isoforms was scarce. In most C4 plants, NADP-MDH is directly involved in CO2 fixation, catalyzing the formation of the stable CO2 carrier malate from the primary CO2 fixation product OAA (Scheibe, 1987). However, in C3 plants, NADP-MDH has long been proposed to have its major function in the malate valve, leading to shuttling of reducing power (as malate) from the chloroplast to the cytosol during the day and thereby regenerating the electron acceptor NADP inside the chloroplasts (Heber, 1974; Lance and Rustin, 1984; Scheibe, 1987). NADP-MDH is redox activated by thioredoxins in the light and essentially inactive in the dark (Scheibe, 1987; Buchanan and Balmer, 2005). The widely accepted belief that chloroplasts only possess this one strictly light-/redox-activated NADP-MDH temporarily led to the conclusion that the malate valve only works in illuminated chloroplasts (Berkemeyer et al., 1998; Scheibe, 2004). However, a recent study showed that Arabidopsis plants lacking NADP-MDH (nadp-mdh) were indistinguishable from wild-type plants, even under conditions that are supposed to provoke the accumulation of excess electrons and the production of cytotoxic reactive oxygen species (high light and short days; Hebbelmann et al., 2012). This finding indicates that NADP-MDH is not crucial for providing electron acceptors in chloroplasts, but it rather suggests that other mechanisms can counteract or prevent overreduction of the chloroplast.The existence of a second MDH isoform in plastids, which uses NAD as cofactor, has been questioned, because it could not be ruled out that NAD-MDH activity detected in isolated chloroplasts was caused by contamination from other organelles (Siebke et al., 1991; Backhausen et al., 1998). In 1998, Berkemeyer et al. (1998) reported the cloning, heterologous expression, and in vitro characterization of a pdNAD-MDH from Arabidopsis (At3g47520). In contrast to NADP-MDH, pdNAD-MDH is active under both light and dark conditions in isolated chloroplasts, and the activities of both enzymes are within the same range in the light (Backhausen et al., 1998; Berkemeyer et al., 1998). However, up to now, genetic evidence for the in vivo function of pdNAD-MDH is missing, and experimental data are scarce. Backhausen et al. (1998) showed that chloroplasts and heterotrophic chromoplasts isolated from different sources followed by incubation in the dark concomitantly produced 3-phosphoglycerate and malate on addition of dihydroxyacetone phosphate and OAA to the medium. It was proposed that 3-phosphoglycerate production was in a glycolytic step involving glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and that pdNAD-MDH regenerates the electron acceptor NAD required by GAPDH through reduction of OAA to malate, thus operating the malate-OAA shuttle in the dark and in nongreen tissues (Scheibe, 2004; Taniguchi and Miyake, 2012).Here, we aimed to evaluate the function of this MDH isoform in plastid metabolism by analyzing Arabidopsis plants with a transposon insertion in the pdNAD-MDH gene and Arabidopsis plants with reduced pdNAD-MDH by means of artificial microRNA silencing.  相似文献   

10.
Carbohydrate metabolism in plants is tightly linked to photosynthesis and is essential for energy and carbon skeleton supply of the entire organism. Thus, the hexose phosphate pools of the cytosol and the chloroplast represent important metabolic resources that are maintained through action of phosphoglucose isomerase (PGI) and phosphoglucose mutase interconverting glucose 6-phosphate, fructose 6-phosphate, and glucose 1-phosphate. Here, we investigated the impact of disrupted cytosolic PGI (cPGI) function on plant viability and metabolism. Overexpressing an artificial microRNA targeted against cPGI (amiR-cpgi) resulted in adult plants with vegetative tissue essentially free of cPGI activity. These plants displayed diminished growth compared with the wild type and accumulated excess starch in chloroplasts but maintained low sucrose content in leaves at the end of the night. Moreover, amiR-cpgi plants exhibited increased nonphotochemical chlorophyll a quenching during photosynthesis. In contrast to amiR-cpgi plants, viable transfer DNA insertion mutants disrupted in cPGI function could only be identified as heterozygous individuals. However, homozygous transfer DNA insertion mutants could be isolated among plants ectopically expressing cPGI. Intriguingly, these plants were only fertile when expression was driven by the ubiquitin10 promoter but sterile when the seed-specific unknown seed protein promoter or the Cauliflower mosaic virus 35S promoter were employed. These data show that metabolism is apparently able to compensate for missing cPGI activity in adult amiR-cpgi plants and indicate an essential function for cPGI in plant reproduction. Moreover, our data suggest a feedback regulation in amiR-cpgi plants that fine-tunes cytosolic sucrose metabolism with plastidic starch turnover.Starch and Suc turnover are major pathways of primary metabolism in all higher plants. As such, they are essential for carbohydrate storage and the energy supply of sink tissues and as building blocks for amino acid, fatty acid, or cell wall biosynthesis (Stitt and Zeeman, 2012).A core reaction in both starch and Suc biosynthesis is the reversible interconversion of the hexose phosphate pool metabolites Fru 6-phosphate (Fru6P) and Glc 6-phosphate (Glc6P), which is mediated by phosphoglucose isomerase (PGI). Arabidopsis (Arabidopsis thaliana) contains two isoforms of PGI, one in the plastids and one in the cytosol (Caspar et al., 1985).During the light period, the plastid isoform of PGI (PGI1) is involved in starch biosynthesis by generating Glc6P from the primary photosynthetic product Fru6P. Glc6P is further converted to Glc 1-phosphate (Glc1P) and ADP-glucose via action of phosphoglucomutase (PGM) and ADP-glucose pyrophosphorylase (AGPase), respectively (Stitt and Zeeman, 2012). Finally, transfer of the glucosyl moiety of ADP-glucose to the growing carbohydrate chain of starch is mediated by starch synthases. Any of the enzymatic reactions of this linear pathway is essential for starch synthesis, as illustrated by the virtual absence of transitory starch in chloroplasts of mutant plant lines with impaired function of PGI1 (Yu et al., 2000; Kunz et al., 2010), PGM (Caspar et al., 1985; Kofler et al., 2000), or AGPase (Lin et al., 1988). Interestingly, in a few specific cell types, e.g. leaf guard cells and root columella cells, loss of PGI1 activity can be bypassed by the presence of the plastid Glc6P/phosphate translocator GPT1 (Niewiadomski et al., 2005; Kunz et al., 2010).The cytosolic isoform of PGI (cPGI) is involved in anabolism and catabolism of Suc, the major transport form of carbohydrates in plants. Glc6P and Fru6P interconversion is necessary for both Suc synthesis during the day and during the night. During the day, Suc synthesis in source leaves is fueled mainly by triose phosphates exported from chloroplasts that are eventually converted to Fru6P in the cytosol. However, Fru6P is only one substrate for the Suc-generating enzyme Suc phosphate synthase. The second substrate, UDP-glucose, is synthesized from Fru6P via Glc6P and Glc1P by the cytosolic isoenzymes of PGI1 and PGM as well as UDP-glucose pyrophosphorylase.Because Suc is the major long-distance carbon transport form, its synthesis has to continue throughout the night to supply energy and carbohydrates to all tissues. The nocturnal synthesis of Suc is dependent on breakdown and mobilization of transitory starch from chloroplasts (Zeeman et al., 2007) via export of maltose and Glc (Weber et al., 2000; Niittylä et al., 2004; Weise et al., 2004; Cho et al., 2011). Exported maltose is temporarily integrated into cytosolic heteroglycans (Fettke et al., 2005) mediated by disproportionating enzyme2 (DPE2; Chia et al., 2004; Lu and Sharkey, 2004) yielding Glc and a heteroglycan molecule elongated by an α1-4-bound glucosyl residue. Cytosolic Glc can directly be phosphorylated to Glc6P by the action of hexokinase, while temporarily stored Glc in heteroglycans is released as Glc1P mediated by cytosolic glucan phosphorylase2 (PHS2; Fettke et al., 2004; Lu et al., 2006). Both Glc6P and Glc1P can then be converted to UDP-glucose as during the day.Generation of Fru6P, the second substrate for Suc synthesis, can proceed only to a limited extent from triose phosphates during the night. This limitation is caused mainly by the nocturnal inactivation of Fru 1,6-bisphosphatase (Cséke et al., 1982; Stitt, 1990), a key enzyme in Suc biosynthesis during the day. Hence, in contrast to the situation in the light, cPGI activity is now crucial for providing Fru6P from Glc6P.On the catabolic side, degradation of Suc into its monosaccharides in sink tissues yields both Glc6P and Fru6P, of which only Fru6P can be utilized in glycolytic degradation. Therefore, cPGI is also required for Glc6P conversion to Fru6P in glycolysis, which, in combination with respiration, is the major path of energy production in heterotrophic tissues.Impairment or loss of function of enzymes contributing to the cytosolic hexose phosphate pool has recently been investigated for the Glc1P-forming enzyme PGM (Egli et al., 2010). The Arabidopsis genome encodes three PGM isoforms, with PGM1 localized to plastids and PGM2 and PGM3 localized to the cytosol (Caspar et al., 1985; Egli et al., 2010). Analyses of transfer DNA (T-DNA) mutants showed that homozygous pgm2/pgm3 double mutants were nonviable because of impaired gametophyte development. However, pgm2 and pgm3 single mutants grew like ecotype Columbia (Col-0) wild-type plants, indicating overlapping functions of PGM2 and PGM3 (Egli et al., 2010).By contrast, cPGI is encoded only by a single locus in Arabidopsis (Kawabe et al., 2000). Higher plant mutants reduced in cPGI activity have so far been characterized only in ethyl methanesulfonate-mutagenized Clarkia xantiana (Jones et al., 1986a; Kruckeberg et al., 1989; Neuhaus et al., 1989). The C. xantiana genome encodes for two isoenzymes of cPGI, and homozygous point mutations in each individual cPGI led to significant decrease in cPGI enzyme activity, which was further reduced to a residual activity of 18% in cpgi2/cpgi3 double mutants, where the cPGI3 locus was heterozygous for the mutation (Jones et al., 1986a; Kruckeberg et al., 1989). Detailed physiological analyses of these mutants indicated a negative impact on Suc biosynthesis and elevated starch levels when cPGI activity was decreased at least 3- to 5-fold (Kruckeberg et al., 1989).The physiological impact of decreased or even absent cPGI activity has not been characterized in the genetic model organism Arabidopsis. Here, we show that homozygous T-DNA insertion mutants in the cPGI locus are nonviable and present data from analyses of mature Arabidopsis plants constitutively expressing artificial microRNAs (amiRNAs) targeted against cPGI. These mutants reveal altered photosynthesis, a strong impact on nocturnal leaf starch degradation, and impaired Suc metabolism.  相似文献   

11.
12.
A randomized, blocked 23 factorial experiment was conducted with 48 young pigs. The treatment factors were: 2 levels of selenium (55 and 115 µg/kg), 2 levels of vitamin E (3 and 53 mg/kg) and 2 levels of the antioxidant feed additive Ethoxyquin (0 and 150 mg/kg). All pigs were kept in single pens and fed ad libitum throughout the experimental period of 9 weeks, i.e. from 3 to 12 weeks of age. Plasma, heart, liver and muscle Se levels as well as whole blood glutathione peroxidase activity (EC 1.11.1.9 GSH-Px) were significantly higher in pigs given a dietary supplement of Se than in pigs given no supplement of Se (P ≤ 0.001). The Se-supplemented pigs showed a tendency to lower mean serum transaminase activity (ASAT and ALAT) than unsupplemented pigs, but the influence was significant (P ≤ 0.05) only for the ALAT activity. Blood vit. E levels were higher for pigs receiving a supplement of vit. E than for unsupplemented pigs (P ≤ 0.001), and so was the resistance of red blood cells against lipid peroxidation (ELP), as expressed by lower ELP values. There were no effects of Ethoxyquin supplementation on the biochemical variables included in the study. The histological examination of heart muscle showed that the score for changes was negatively influenced by both Se and vit. E supplement (P ≤ 0.001) and to some extent also by Ethoxyquin supplement (P ≤ 0.05). The histological picture of m. long dorsi was influenced only by the vit. E supplement (P ≤ 0.01). No histological changes were found in the liver in this study. There were inverse relationships between whole blood GSH-Px defluorescence time and blood Se, and between ELP and whole blood vit. E (P ≤ 0.001).  相似文献   

13.
Cold stress resulting from chilling and freezing temperatures substantially reduces crop production worldwide. To identify genes critical for cold tolerance in plants, we screened Arabidopsis thaliana mutants for deregulated expression of a firefly luciferase reporter gene under the control of the C-REPEAT BINDING FACTOR2 (CBF2) promoter (CBF2:LUC). A regulator of CBF gene expression1 (rcf1-1) mutant that is hypersensitive to cold stress was chosen for in-depth characterization. RCF1 encodes a cold-inducible DEAD (Asp-Glu-Ala-Asp) box RNA helicase. Unlike a previously reported DEAD box RNA helicase (LOW EXPRESSION OF OSMOTICALLY RESPONSIVE GENES4 [LOS4]) that regulates mRNA export, RCF1 does not play a role in mRNA export. Instead, RCF1 functions to maintain proper splicing of pre-mRNAs; many cold-responsive genes are mis-spliced in rcf1-1 mutant plants under cold stress. Functional characterization of four genes (PSEUDO-RESPONSE REGULATOR5 [PRR5], SHAGGY-LIKE SERINE/THREONINE KINASE12 [SK12], MYB FAMILY TRANSCRIPTION FACTOR CIRCADIAN1 [CIR1], and SPFH/PHB DOMAIN-CONTAINING MEMBRANE-ASSOCIATED PROTEIN [SPFH]) that are mis-spliced in rcf1-1 revealed that these genes are cold-inducible positive (CIR1 and SPFH) and negative (PRR5 and SK12) regulators of cold-responsive genes and cold tolerance. Together, our results suggest that the cold-inducible RNA helicase RCF1 is essential for pre-mRNA splicing and is important for cold-responsive gene regulation and cold tolerance in plants.  相似文献   

14.
In eukaryotes, crossovers together with sister chromatid cohesion maintain physical association between homologous chromosomes, ensuring accurate chromosome segregation during meiosis I and resulting in exchange of genetic information between homologues. The Arabidopsis PTD (Parting Dancers) gene affects the level of meiotic crossover formation, but its functional relationships with other core meiotic genes, such as AtSP011-1, AtRAD51, and AtMSH4, are unclear; whether PTD has other functions in meiosis is also unknown. To further analyze PTD function and to test for epistatic relationships, we compared the meiotic chromosome behaviors ofAtspoll-1 ptd and Atrad51 ptd double mutants with the relevant single mutants. The results suggest that PTD functions downstream of AtSP011-1 and AtRAD51 in the meiotic recombination pathway. Furthermore, we found that meiotic defects in rck pM and Atmsh4 ptd double mutants showed similar meiotic phenotypes to those of the relevant single mutants, providing genetic evidences for roles of PTD and RCK in the type I crossovers pathway. Moreover, we employed a pollen tetrad-based fluorescence method and found that the meiotic crossover frequencies in two genetic intervals were significantly reduced from 6.63% and 22.26% in wild-type to 1.14% and 6.36%, respectively, in the ptd~2 mutant. These results revealed new aspects of PTD function in meiotic crossover formation.  相似文献   

15.
16.
Leukotriene-C4 synthase (LTC4S) generates LTC4 from arachidonic acid metabolism. LTC4 is a proinflammatory factor that acts on plasma membrane cysteinyl leukotriene receptors. Recently, however, we showed that LTC4 was also a cytosolic second messenger that activated store-independent LTC4-regulated Ca2+ (LRC) channels encoded by Orai1/Orai3 heteromultimers in vascular smooth muscle cells (VSMCs). We showed that Orai3 and LRC currents were up-regulated in medial and neointimal VSMCs after vascular injury and that Orai3 knockdown inhibited LRC currents and neointimal hyperplasia. However, the role of LTC4S in neointima formation remains unknown. Here we show that LTC4S knockdown inhibited LRC currents in VSMCs. We performed in vivo experiments where rat left carotid arteries were injured using balloon angioplasty to cause neointimal hyperplasia. Neointima formation was associated with up-regulation of LTC4S protein expression in VSMCs. Inhibition of LTC4S expression in injured carotids by lentiviral particles encoding shRNA inhibited neointima formation and inward and outward vessel remodeling. LRC current activation did not cause nuclear factor for activated T cells (NFAT) nuclear translocation in VSMCs. Surprisingly, knockdown of either LTC4S or Orai3 yielded more robust and sustained Akt1 and Akt2 phosphorylation on Ser-473/Ser-474 upon serum stimulation. LTC4S and Orai3 knockdown inhibited VSMC migration in vitro with no effect on proliferation. Akt activity was suppressed in neointimal and medial VSMCs from injured vessels at 2 weeks postinjury but was restored when the up-regulation of either LTC4S or Orai3 was prevented by shRNA. We conclude that LTC4S and Orai3 altered Akt signaling to promote VSMC migration and neointima formation.  相似文献   

17.
The viviparous tsetse fly utilizes proline as a hemolymph-borne energy source. In tsetse, biosynthesis of proline from alanine involves the enzyme alanine-glyoxylate aminotransferase (AGAT), which requires pyridoxal phosphate (vitamin B6) as a cofactor. This vitamin can be synthesized by tsetse''s obligate symbiont, Wigglesworthia glossinidia. In this study, we examined the role of Wigglesworthia-produced vitamin B6 for maintenance of proline homeostasis, specifically during the energetically expensive lactation period of the tsetse''s reproductive cycle. We found that expression of agat, as well as genes involved in vitamin B6 metabolism in both host and symbiont, increases in lactating flies. Removal of symbionts via antibiotic treatment of flies (aposymbiotic) led to hypoprolinemia, reduced levels of vitamin B6 in lactating females, and decreased fecundity. Proline homeostasis and fecundity recovered partially when aposymbiotic tsetse were fed a diet supplemented with either yeast or Wigglesworthia extracts. RNA interference-mediated knockdown of agat in wild-type flies reduced hemolymph proline levels to that of aposymbiotic females. Aposymbiotic flies treated with agat short interfering RNA (siRNA) remained hypoprolinemic even upon dietary supplementation with microbial extracts or B vitamins. Flies infected with parasitic African trypanosomes display lower hemolymph proline levels, suggesting that the reduced fecundity observed in parasitized flies could result from parasite interference with proline homeostasis. This interference could be manifested by competition between tsetse and trypanosomes for vitamins, proline, or other factors involved in their synthesis. Collectively, these results indicate that the presence of Wigglesworthia in tsetse is critical for the maintenance of proline homeostasis through vitamin B6 production.  相似文献   

18.
An x-ray study indicated that microsomal prostaglandin E synthase type 2 (mPGES2) is a heme-bound protein and catalyzes prostaglandin (PG) H2 degradation, but not PGE2 formation (Yamada, T., and Takusagawa, F. (2007) Biochemistry 46, 8414–8424). In response to the x-ray study, Watanabe et al. claimed that mPGES2 is a heme-free protein and that both the heme-free and heme-bound proteins have PGE2 synthesis activity in the presence of dithiothreitol (Watanabe, K., Ito, S., and Yamamoto, S. (2008) Biochem. Biophys. Res. Commun. 367, 782–786). To resolve the contradictory results, the heme-binding scheme of mPGES2 was further characterized in vivo and in vitro by absorption and fluorescence spectroscopies. A substantial amount of heme-bound mPGES2 was detected in cell extracts. The heme content in mPGES2 was increased along with an increase in Fe3+ in the culture medium. Heme-free mPGES2 was converted to the heme-bound form by mixing it with pig liver extract, indicating that mPGES2 is capable of forming a complex with heme in mammalian cells. Heme binds to mPGES2 only in the presence of glutathione. The newly determined heme dissociation constant (2.9 nm) supports strongly that mPGES2 is a heme-bound protein in vivo. The bound heme was not dissociated by oxidation by H2O2 or reduction by glutathione or 2-mercaptoethanol. However, reduction by dithiothreitol (an artificial reducing compound) induced the bound heme to dissociate from mPGES2 and released heme-free mPGES2, which exhibited PGE2 synthesis activity in vitro. Imidazole bound to mPGES2 by stacking on the bound heme and inhibited heme oxidation by H2O2 and reduction by dithiothreitol.  相似文献   

19.
The cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncogenic factor that stabilises the c-Myc protein. CIP2A is overexpressed in several tumours, and expression levels are an independent marker for long-term outcome. To determine whether CIP2A expression is elevated in colon cancer and whether it might serve as a prognostic marker for survival, we analysed CIP2A mRNA expression by real-time PCR in 104 colon cancer samples. CIP2A mRNA was overexpressed in colon cancer samples and CIP2A expression levels correlated significantly with tumour stage. We found that CIP2A serves as an independent prognostic marker for disease-free and overall survival. Further, we investigated CIP2A-dependent effects on levels of c-Myc, Akt and on cell proliferation in three colon cancer cell lines by silencing CIP2A using small interfering (si) and short hairpin (sh) RNAs. Depletion of CIP2A substantially inhibited growth of colon cell lines and reduced c-Myc levels without affecting expression or function of the upstream regulatory kinase, Akt. Expression of CIP2A was found to be dependent on MAPK activity, linking elevated c-Myc expression to deregulated signal transduction in colon cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号