首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complete and accurate knowledge of the genes and allelic variants of the human immunoglobulin gene loci is critical for studies of B cell repertoire development and somatic point mutation, but evidence from studies of VDJ rearrangements suggests that our knowledge of the available immunoglobulin gene repertoire is far from complete. The reported repertoire has changed little over the last 15 years. This is, in part, a consequence of the inefficiencies involved in searching for new members of large, multigenic gene families by cloning and sequencing. The advent of high-throughput sequencing provides a new avenue by which the germline repertoire can be explored. In this report, we describe pyrosequencing studies of the heavy chain IGHV1, IGHV3 and IGHV4 gene subgroups in ten Papua New Guineans. Thousands of 454 reads aligned with complete identity to 51 previously reported functional IGHV genes and allelic variants. A new gene, IGHV3-NL1*01, was identified, which differs from the nearest previously reported gene by 15 nucleotides. Sixteen new IGHV alleles were also identified, 15 of which varied from previously reported functional IGHV genes by between one and four nucleotides, while one sequence appears to be a functional variant of the pseudogene IGHV3-25. BLAST searches suggest that at least six of these new genes are carried within the relatively well-studied populations of North America, Europe or Asia. This study substantially expands the known immunoglobulin gene repertoire and demonstrates that genetic variation of immunoglobulin genes can now be efficiently explored in different human populations using high-throughput pyrosequencing.  相似文献   

2.
 Although human and mouse antibodies are similar when one considers their diversification strategies, they differ in the extent to which kappa and lambda light chains are present in their respective variable light chain repertoires. While the Igk-V germline genes are preponderant in mice (95% or more), they comprise only 60% in humans. This may account for differences in the structural repertoire encoded in the Igk-V germline genes of these species. However, this subject has not been properly investigated, partially because a systematic structural characterization of the mouse Igk-V germline genes has not been undertaken. In the present study we compiled all available information on mouse Igk-V germline genes to characterize their structural repertoire. As expected, comparison with the structural repertoire of human Igk-V germline genes indicates differences. The most interesting is that the mouse Igk-V germline gene repertoire is more diverse in structural terms than its human counterpart: the mouse encodes seven canonical structure classes (combination of canonical structures in L1 and L3). In contrast, the human encodes only four. Analysis of the evolutionary relationships of human and mouse Igk-V germline genes led us to propose that the difference reflects a strategy of mice to compensate for the small lambda chain contribution to the repertoire of their variable light chains. Received: 1 June 1997 / Revised: 6 October 1997  相似文献   

3.
Although the entire mouse genome has been sequenced, there remain challenges concerning the elucidation of particular complex and polymorphic genomic loci. In the murine Igh locus, different haplotypes exist in different inbred mouse strains. For example, the Igh(b) haplotype sequence of the Mouse Genome Project strain C57BL/6 differs considerably from the Igh(a) haplotype of BALB/c, which has been widely used in the analyses of Ab responses. We have sequenced and annotated the 3' half of the Igh(a) locus of 129S1/SvImJ, covering the C(H) region and approximately half of the V(H) region. This sequence comprises 128 V(H) genes, of which 49 are judged to be functional. The comparison of the Igh(a) sequence with the homologous Igh(b) region from C57BL/6 revealed two major expansions in the germline repertoire of Igh(a). In addition, we found smaller haplotype-specific differences like the duplication of five V(H) genes in the Igh(a) locus. We generated a V(H) allele table by comparing the individual V(H) genes of both haplotypes. Surprisingly, the number and position of D(H) genes in the 129S1 strain differs not only from the sequence of C57BL/6 but also from the map published for BALB/c. Taken together, the contiguous genomic sequence of the 3' part of the Igh(a) locus allows a detailed view of the recent evolution of this highly dynamic locus in the mouse.  相似文献   

4.
J B Cohen  D Givol 《The EMBO journal》1983,2(11):2013-2018
The nucleotide sequence of two germline immunoglobulin heavy chain variable region (VH) genes of mouse BALB/c origin was determined. These two genes are highly homologous to each other. They both have the unusual codon CCT for proline at position 7, which so far has been found only in a specific set of VH genes, called the NPb family. We show that the two VH genes belong to this set. One of our BALB/c genes, VH124, is more homologous to a C57BL/6 NPb VH gene than to any BALB/c VH gene, and we propose that these two genes are alleles. A comparison of the substitutions between these two genes with published sequences of all other BALB/c and C57BL/6 NPb VH genes reveals evidence for past homologous recombination events between related germline VH genes Homologous recombination may play an important role in the diversification of germline immunoglobulin VH genes.  相似文献   

5.
Human cord blood cell-derived IgM antibodies are important for the neonate immune responses and construction of germline-based immunoglobulin libraries. Several previous studies of a relatively small number of sequences found that they exhibit restrictions in the usage of germline genes and in the diversity of the variable heavy chain complementarity determining region 3 compared to adults. To further characterize such restrictions on a larger scale and to compare the early B-cell diversity to adult IgM repertoires, we performed 454 sequencing and IMGT/HighV-QUEST analysis of cord blood IG libraries from two babies and determined germline gene usage, V-D-J rearrangement, VHCDR3 diversity, and somatic mutations to characterize human neonate repertoire. Most of the germline subgroups were identified with frequencies comparable to those present in the adult IgM repertoire except for the IGHV1-2 gene that was preferentially expressed in the cord blood cells. The gene usage diversity contributed to 1,430 unique IGH V-D-J rearrangement patterns while the exonuclease trimming and N region addition at the V-D-J junctions along with gene diversity created a wide range of VHCDR3 with different lengths and sequence variability. We observed a lower degree of somatic mutations in the CDR and framework regions of antibodies from cord blood cells compared to adults. These results provide insights into the characteristics of human cord blood antibody repertoires, which have gene usage diversity and VHCDR3 lengths similar to that of the adult IgM repertoire but differ significantly in some of the gene usages, V-D-J rearrangements, junctional diversity, and somatic mutations.  相似文献   

6.
Ye J 《Immunogenetics》2004,56(6):399-404
Four immunoglobulin heavy chain diversity (IGHD) gene subgroups (DFL16, DSP2, DQ52, and DST4) have been identified previously in BALB/c mice. Although the locations of most IGHD genes have been established based on restriction map and Southern blot analysis, a complete mouse IGHD gene locus map at the sequence level is still not available. In addition, a previous restriction fragment length polymorphism study suggested that significant difference in the IGHD gene locus exists between C57BL/6 and BALB/c mice. The author has now analyzed the C57BL/6 mouse genomic data and established a complete map of the IGHD gene locus. All four IGHD subgroups previously identified in BALB/c mice were found to be present in C57BL/6 mice. However, unlike the BALB/c mice, which have at least 13 IGHD genes, the C57BL/6 genome contains only ten IGHD genes, which include one DFL16, six DSP2, one DQ52, and two DST4 genes. There are also differences in the coding regions of the DST4 and DQ52 genes between the two mouse strains.  相似文献   

7.
8.
The VK1GAC light chain represents the dominant V kappa structure employed in the antibody response of A/J mice to streptococcal group A carbohydrate ( GAC ). Two anti-idiotypic antisera, anti- Id5 and anti- Id20 , with specificity for the VK1GAC light chain were used to examine anti- GAC antibody responses in a series of inbred mouse strains that differ at the heavy chain constant region ( IgCH ) allotype locus. Both idiotypes were expressed in normal and immune sera from mice of most IgCH allotypes, except IgCHb (C57BL/6J) and IgCHf (CE/J). C57BL/6J mice expressed Id5 , but not Id20 , whereas CE/J mice did not express either idiotype. Testing of recombinant inbred strains between BALB/c and C57BL/6 indicated that the pattern of idiotype expression did not correlate with IgCH allotype. The C X B recombinants expressed all three idiotype patterns that were observed in the panel of inbred strains. Testing of allotype congenic mice between BALB/c and C57BL/6 showed that CB.20 and BC.8 mice were Id20 -, whereas BAB-14 mice were Id20 +, indicating that both VH and background (V kappa or regulatory) loci must be derived from BALB/c to obtain Id20 expression. The difference in the frequency of idiotype expression observed between BALB/c and BAB-14 mice indicates that the IgCH locus may exert a quantitative influence on the expression of this light chain. To examine the Id20 -, Id5 + antibodies of C57BL/6 mice, anti- GAC hybridomas were prepared. Of 16 C57BL/6-derived anti- GAC monoclonal antibodies, six were reactive with anti- Id5 and not with anti- Id20 . Isoelectric focusing of the purified kappa light chains from three of these antibodies revealed two distinct spectrotypes that co-migrated with the two known VK1GAC spectrotypes observed with A/J anti- GAC light chains. Idiotypic analysis of in vitro recombinants between the heavy and light chains of A/J and C57BL/6 monoclonal antibodies demonstrated that the C57BL/6 light chains were idiotypically similar to A/J light chains when they were free in solution or paired with A/J heavy chains. These results demonstrate that C57BL/6 mice can express a light chain that is very similar, if not identical, to the VK1GAC light chain, although the light chain is expressed in lower frequency and is paired with a distinct VH structure, which can mask expression of one of the VK1GAC idiotypes. These effects on V kappa expression map to at least three genetic loci: VH, CH, and an unlinked locus.  相似文献   

9.
Aging of mice is accompanied by both quantitative and qualitative changes in antibody responses to phosphorylcholine (PC), an immunodominant epitope of Streptococcus pneumoniae R36a strain (Pn). In order to study these changes at the molecular level, we generated PC-specific hybridomas from young (3 to 4 mo) and aged (20 to 24 mo) mice of different strains after primary immunization with S. pneumoniae R36a strain. These mAb were tested for Ig VH and VL gene family utilization, idiotopic repertoire, and cross-reactivity with unrelated Ag. Hybridomas from young mice (BALB/c, C57BL/6, and D1.LP) uniformly expressed the VH-S107 and V kappa-22 genes as well as most idiotopes of the T15 family, which were identified with different anti-T15 mAb. In contrast, the PC-reactive mAb from aged mice were quite heterogeneous: only 2 out of 13 utilized VHS107, 1 of 13 used VH7183, and 3 of 13 used VHJ558 gene family. Moreover, none of these mAb used L chain encoded by V kappa 22(0/13), but surprisingly they frequently expressed some of the T15 idiotope. In addition, the PC-binding mAb from aged mice showed broad cross-reactivity with various mouse and foreign proteins, whereas the mAb from young mice did not. These results demonstrate the genetic shift in antibody response of aging mice to PC, which is accompanied by a change in the antibody specificity. Interestingly, the qualitative repertoire change appears to be unrelated to the magnitude of antibody response, for the aged BALB/c mice maintain a very high reactivity to PC.  相似文献   

10.
The identification of the genes that make up rearranged immunoglobulin genes is critical to many studies. For example, the enumeration of mutations in immunoglobulin genes is important for the prognosis of chronic lymphocytic leukemia, and this requires the accurate identification of the germline genes from which a particular sequence is derived. The immunoglobulin heavy-chain variable (IGHV) gene repertoire is generally considered to be highly polymorphic. In this report, we describe a bioinformatic analysis of germline and rearranged immunoglobulin gene sequences which casts doubt on the existence of a substantial proportion of reported germline polymorphisms. We report a five-level classification system for IGHV genes, which indicates the likelihood that the genes have been reported accurately. The classification scheme also reflects the likelihood that germline genes could be incorrectly identified in mutated VDJ rearrangements, because of similarities to other alleles. Of the 226 IGHV alleles that have previously been reported, our analysis suggests that 104 of these alleles almost certainly include sequence errors, and should be removed from the available repertoire. The analysis also highlights the presence of common mismatches, with respect to the germline, in many rearranged heavy-chain sequences, suggesting the existence of twelve previously unreported alleles. Sequencing of IGHV genes from six individuals in this study confirmed the existence of three of these alleles, which we designate IGHV3-49*04, IGHV3-49*05 and IGHV4-39*07. We therefore present a revised repertoire of expressed IGHV genes, which should substantially improve the accuracy of immunoglobulin gene analysis.  相似文献   

11.
The diversity of the antibody response is achieved, in part, by rearrangement of different immunoglobulin (Ig) genes. The Ig heavy chain is made up of a variable region (IGHV), a diversity region (IGHD) and a joining region (IGHJ). Human germline IGHV genes have been grouped into seven multigene subgroups. Size and usage of these subgroups is not equal, the IGHV3 subgroup is the most commonly used (36%), followed by IGHV1/7 (26%), then IGHV4, IGHV5, IGHV2, IGHV6 (15%, 12%, 4%, 3% respectively). The rhesus macaque (Macaca mulatta) is a useful non-human primate model for studies of infection and the database of germline Ig genes for the macaque is gradually growing to become a useful tool in the study of B-cell responses. The proportions of IGHV subgroup usage in the macaque are similar to those in man. Representatives from IGHV3 and IGHV4 subgroups for the macaque have been published, as have germline sequences of the IGHD and IGHJ genes. However, to date there have been no sequences published from the second largest IGHV subgroup, IGHV1. We report the isolation and sequencing of a genomic fragment containing an IGHV1 gene from the macaque. Polymerase chain reaction (PCR) primers designed from this sequence enabled us to amplify and sequence 25 new IGHV1 germline genes. We also isolated two IGHV7 genes, using the same primers, and two IGHV5 genes, using human IGHV5 primers.  相似文献   

12.
13.
A cDNA clone was constructed from a mRNA encoding an anti-GAT (Glu60 Ala30 Tyr10) BALB/c monoclonal antibody heavy chain. Its sequence, covering codons -5 to 162 and therefore encompassing the complete V-D-J region, was determined. Surprisingly, the sequence of the VH gene-encoded region was almost identical with that of the BALB/c VH anti-HNP (4-hydroxy-3-nitrophenyl) acetyl VH region, suggesting that the same VH germ-line might be used to encode two heavy chains contributing to antibodies of discrete specificities. A specific VH probe was derived and annealed to Eco RI and Bg1 II restriction fragments of liver (unrearranged) DNA extracted from the BALB/c, DBA/2 and C57BL/6 mouse strains that differ in their H chain allotypes. Under stringent conditions, only a few bands were identified by Southern blotting. The different patterns observed suggest that the VH anti-GAT repertoire differs between these strains even though their various anti-GAT antibodies express the same public idiotypic specificities.  相似文献   

14.
Human anti-thyroid peroxidase (TPO) autoantibodies (aAb) are generated during autoimmune thyroid diseases (AITD). Within recent years, increasing knowledge of the TPO-specific aAb repertoire, gained mainly by the use of combinatorial library methodology, has led to the cloning and sequencing of around 180 human anti-TPO aAb. Analysis of the immunoglobulin (Ig) variable (V) genes encoding the TPO aAb in the ImMunoGeneTics database (IMGT) (http://imgt.cines.fr) reveals major features of the TPO-directed aAb repertoire during AITD. Heavy chain VH domains of TPO-specific aAb from Graves' disease patients preferentially use D proximal IGHV1 genes, whereas those from Hashimoto's thyroiditis are characterized more frequently by IGHV3 genes, mainly located in the middle of the IGH locus. A large proportion of the anti-TPO heavy chain VH domains is obtained following a VDJ recombination process that uses inverted D genes. J distal IGKV1 and IGLV1 genes are predominantly used in TPO aAb. In contrast to the numerous somatic hypermutations in the TPO-specific heavy chains, there is only limited amino acid replacement in most of the TPO-specific light chains, particularly in those encoded by J proximal IGLV or IGKV genes, suggesting that a defect in receptor editing can occur during aAb generation in AITD. Among the predominant IGHV1 or IGKV1 TPO aAb, conserved somatic mutations are the hallmark of the TPO aAb repertoire. The aim of this review is to provide new insights into aAb generation against TPO, a major autoantigen involved in AITD.  相似文献   

15.
Insertions and deletions of entire codons have recently been discovered as a mechanism by which B cells, in addition to conventional base substitution, evolve the antibodies produced by their immunoglobulin genes. These events frequently seem to involve repetitive sequence motifs in the antibody-encoding genes, and it has been suggested that they occur through polymerase slippage. In order to better understand the process of codon deletion, we have analyzed the human immunoglobulin heavy variable (IGHV) germline gene repertoire for the presence of trinucleotide repeats. Such repeats would ensure that the reading frame is maintained in the case of a deletional event, as slippage over multiples of three bases would be favored. We demonstrate here that IGHV genes specifically carry repetitive trinucleotide motifs in the complementarity-determining regions (CDR) 1 and 2, thus making these parts of the genes that encode highly flexible structures particularly prone to functional deletions. We propose that the human IGHV repertoire carries inherent motifs that allow an antibody response to develop efficiently by targeting codon deletion events to the parts of the molecule that are likely to be able to harbor such modifications. Received: 10 April 2001 / Accepted: 27 August 2001  相似文献   

16.
C57BL/6 mice transgenic for a mu heavy chain gene, the VDJ region of which came from the BALB/c hybridoma 17.2.25, expressed high levels of antibody carrying determinants specific for the transgene (idiotypes). The individual antibodies made by hybridomas from transgenic mice, however, were generally encoded by endogenous genes; in most cases the transgene was present but not expressed. The endogenous, idiotype-positive antibodies had heavy chains that were notable for the high frequencies of JH4 (as in the transgene) and VH segments from the VH81X family (unrelated to the transgene). The expression of endogenous genes mimicking the idiotype of the transgene suggests that a rearranged gene introduced into the germ line can activate powerful cellular regulatory influences.  相似文献   

17.
We quantify the VDJ recombination and somatic hypermutation processes in human B cells using probabilistic inference methods on high-throughput DNA sequence repertoires of human B-cell receptor heavy chains. Our analysis captures the statistical properties of the naive repertoire, first after its initial generation via VDJ recombination and then after selection for functionality. We also infer statistical properties of the somatic hypermutation machinery (exclusive of subsequent effects of selection). Our main results are the following: the B-cell repertoire is substantially more diverse than T-cell repertoires, owing to longer junctional insertions; sequences that pass initial selection are distinguished by having a higher probability of being generated in a VDJ recombination event; somatic hypermutations have a non-uniform distribution along the V gene that is well explained by an independent site model for the sequence context around the hypermutation site.  相似文献   

18.
ENU is a powerful germline mutagen in the mouse, providing the opportunity to analyze the functions of large numbers of genes in the mammalian genome. In many mutagenesis experiments, it would be beneficial to exploit the advantages of inbred mouse strains. To perform an effective ENU mutagenesis screen using inbred mice, a dosage regimen is required to determine the optimal dose of ENU for that inbred strain, a time-consuming preliminary process. We have carried out dosage regimens for mutagenizing doses of ENU in ten inbred strains of mouse: 129X1/SvJ, 129S6/SvEv, A/J, BALB/cJ, BTBR/N, C3He/J, C3HeB/FeJ, C57BL/6J, C57BR/cdJ, and CBA/CaJ, and determined an optimal dose for each strain, defined by length of sterile period and number of males to survive treatment. Three strains: A/J, BALB/cJ and C57BL/6J, are able to tolerate high doses, up to 300 mg/kg body weight, and are highly recommended for mutagenesis studies.  相似文献   

19.
A cross-reactive idiotype family was previously identified from a very large library of phthalate-specific hybridoma clones. The prototype of this idiotype family is the hybridoma, 2E9, secreting an IgM antibody with phthalate specificity. A portion of both primary and secondary anti-phthalate antibodies elicited in all BALB/c mice tested expresses the 2E9 cross-reactive idiotype. This idiotype has now been found in the anti-phthalate antibodies of several other inbred strains of mice (A/HeHa, DBA/2, and C3Hf/HeHa) tested but not in C57BL/6 mice. Anti-phthalate antibodies elicited from congenic mice BC.8, which express the same IgCH allotype as BALB/c mice but possess C57BL/6 genetic background, contain the 2E9 cross-reactive idiotype, whereas this idiotype is not expressed on the anti-phthalate antibodies derived from another congenic mouse CB.20, which expresses a C57BL/6 IgCH allotype and a genetic background of the BALB/c strain. These results indicate that the gene controlling the 2E9 idiotype is closely linked to the IgCH allotype locus. The 2E9 cross-reactive idiotype was also found in all of the F1 mice (BALB/c X C57BL/6) tested, and the level of expression of this idiotype in the F1 mice was quantitatively equivalent to the allotype/idiotype homozygous mice. The expression of the 2E9 idiotype in the phthalate repertoire has been followed in 12 different wild mouse populations. As expected, the 2E9 idiotype was observed in a large proportion of the wild mouse strains. Surprisingly, several examples of nonconcordance in the expression of idiotype and allotype were observed in these mice. One likely explanation for the linkage breakdown is a crossing over of the heavy chain constant and variable region gene complexes. In the SM/J inbred strain of mice, where such a crossover has occurred, nonconcordance between allotype and 2E9 idiotype expression was demonstrated. By using the recombinant inbred BXD strains of mice, the VH gene encoding the 2E9 idiotype has been mapped with respect to other known VH gene families. Relative to other VH genes the VH-Xmp is situated very close to the IgCH gene region.  相似文献   

20.
The susceptibility to tumors induced by raf and raf/myc retroviruses was investigated in BALB/c, C57BL/6, (BALB/c x C57BL/6)F1 and (BALB/c x C57BL/6) backcross mice. Newborn mice were susceptible to neoplasms generated by both viruses, but resistance to raf-induced leukemia developed rapidly in all mice as they matured. Older C57BL/6 mice were also resistant to raf/myc lymphomas, whereas BALB/c mice remained susceptible to the virus at all ages, indicating that different genes control susceptibility to raf and raf/myc tumors. From these data and the susceptibility of C x B recombinant inbred strains, it appears that very few genes (perhaps even a single gene) may govern susceptibility to raf/myc lymphomas and that resistance is the dominant trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号