首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract.  1. Theoretical models predict that ovipositional decisions of parasitoid females should lead to the selection of the most profitable host for parasitoid development. Most parasitoid species have evolved specific adaptations to exploit a single host stage. However, females of the aphid hyperparasitoid Syrphophagous aphidivorus (Mayr) (Hymenoptera: Encyrtidae) display a unique and atypical oviposition behaviour by attacking either primary parasitoid larvae in live aphids, or parasitoid pupae in dead, mummified aphids.
2. In the laboratory, the correlation between host suitability and host preference of S. aphidivorus on the host Aphidius nigripes Ashmead parasitising the aphid Macrosiphum euphorbiae (Thomas) was investigated.
3. The relative suitability of the two host stages was determined by measuring hyperparasitoid fitness parameters (survival, development time, fecundity, sex ratio, and adult size of progeny), and calculating the intrinsic rate of population increase ( r m). Host preference by S. aphidivorus females and the influence of aphid defence behaviour on host selection was also examined.
4. Hyperparasitoid offspring performance was highest when developing from hosts in aphid mummies and females consistently preferred this host to hosts in parasitised aphids. Although aphid defensive behaviour may influence host selection, it was not a determining factor. Ecological and evolutionary processes that might have led to dual oviposition behaviour in S. aphidivorus are discussed.  相似文献   

2.
The host-associated differentiation (HAD) hypothesis states that higher trophic levels in parasitic associations should exhibit similar divergence in case of host sympatric speciation. We tested HAD on populations of Aphidius ervi the main parasitoid of the pea aphid Acyrthosiphon pisum, emerging from host populations specialized on either alfalfa or red clover. Host and parasitoid populations were assessed for genetic variation and structure, while considering geography, host plant and host aphid protective symbionts Regiella insecticola and Hamiltonella defensa as potential covariables. Cluster and hierarchical analyses were used to assess the contribution of these variables to population structure, based on genotyping pea aphids and associated A. ervi with microsatellites, and host aphid facultative symbionts with 16S rDNA markers. Pea aphid genotypes were clearly distributed in two groups closely corresponding with their plant origins, confirming strong plant associated differentiation of this aphid in North America. Overall parasitism by A. ervi averaged 21.5 % across samples, and many parasitized aphids producing a wasp hosted defensive bacteria, indicating partial or ineffective protective efficacy of these symbionts in the field. The A. ervi population genetic data failed to support differentiation according to the host plant association of their pea aphid host. Potential for parasitoid specialization was also explored in experiments where wasps from alfalfa and clover aphids were reciprocally transplanted on alternate hosts, the hypothesis being that wasp behaviour and parasitic stages should be most adapted to their host of origin. Results revealed higher probability of oviposition on the alfalfa aphids, but higher adult emergence success on red clover aphids, with no interaction as expected under HAD. We conclude that our study provides no support for the HAD in this system. We discuss factors that might impair A. ervi specialization on its divergent aphid hosts on alfalfa and clover.  相似文献   

3.
In studies of foraging behaviour in a multitrophic context, the fourth trophic level has generally been ignored. We used four aphid hyperparasitoid species: Dendrocerus carpenteri (Curtis) (Hymenoptera: Megaspilidae), Asaphes suspensus Walker (Hymenoptera: Pteromalidae), Alloxysta victrix (Westwood) (Hymenoptera: Alloxystidae) and Syrphophagus aphidivorus (Mayr) (Hymenoptera: Encyrtidae), to correlate their response to different cues with their ecological attributes such as host range and host stage. In addition, we compared our results with studies of primary parasitoids on the same plant–herbivore system. First, the olfactory response of females was tested in a Y‐tube olfactometer (single choice: plant, aphid, honeydew, parasitised aphid, aphid mummy, or virgin female parasitoid; dual choice: clean plant, plant with aphids, or plant–host complex). Second, their foraging behaviour was described on plants with different stimuli (honeydew, aphids, parasitised aphids, and aphid mummies). The results indicated that olfactory cues are probably not essential cues for hyperparasitoid females. In foraging behaviour on the plant, all species prolonged their total visit time and search time as compared to the control treatment (clean plant). Only A. victrix did not react to the honeydew. Oviposition in mummies prolonged the total visit time because of the long handling time, but the effect of this behaviour on search time could not be determined. No clear correlation between foraging behaviour and host stage or host range was found. In contrast to specialised primary aphid parasitoids that have strong fixed responses to specific kairomones and herbivore‐induced synomones, more generalist aphid hyperparasitoids seem to depend less on volatile olfactory stimuli, but show similarities with primary parasitoids in their use of contact cues while searching on a plant.  相似文献   

4.
The influence of plant architecture, host colony size, and host colony structure on the foraging behaviour of the aphid parasitoidAphidius funebris Mackauer (Hymenoptera: Aphidiidae) was investigated using a factorial experimental design. The factorial design involved releasing individual parasitoid females in aphid colonies consisting of either 10 or 20 individuals ofUroleucon jaceae L. (Homoptera: Aphididae) of either only larval instar L3 or a mixture of host instars, both on unmanipulated plants and on plants that had all leaves adjacent to the colony removed. Interactions between the parasitoid and its host were recorded until the parasitoid had left the plant. The time females spent on the host plant and the number of eggs laid varied greatly among females. Host colony size significantly affected patch residence time and the number of contacts between parasitoids and aphids. Plant architecture influenced the time-budget of the parasitoids which used leaves adjacent to the aphid colony for attacking aphids. Female oviposition rate was higher on unmanipulated plants than on manipulated plants. No further significant treatment effects on patch residence time, the number of contacts, attacks or ovipositions were found. Oviposition success ofA. funebris was influenced by instar-specific host behaviour. Several rules-of-thumb proposed by foraging theory did not account for parasitoid patch-leaving behaviour.  相似文献   

5.
1. In solitary parasitoids, only one individual can complete development in a given host. Therefore, solitary parasitoids tend to prefer unparasitised hosts for oviposition, yet under high parasitoid densities, superparasitism is frequent and results in fierce competition for the host's limited resources. This may lead to selection for the best intra‐host competitors. 2. Increased intra‐host competitive ability may evolve under a high risk of superparasitism if this trait exhibits genetic variation, and if competitive differences among parasitoid genotypes are consistent across environments, e.g. different host genotypes. 3. These assumptions were addressed in the aphid parasitoid Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae) and its main host, the black bean aphid, Aphis fabae (Scopoli) (Hemiptera: Aphididae). Three parthenogenetic lines of L. fabarum were allowed to parasitise three aphid clones singly and in all pairwise combinations (superparasitism). The winning parasitoid in superparasitised aphids was determined by microsatellite analysis. 4. The proportions of singly parasitised aphids that were mummified were similar for the three parasitoid lines and did not differ significantly among host clones. 5. Under superparasitism, significant biases in favour of one parasitoid line were observed for some combinations, indicating that there is genetic variation for intra‐host competitive ability. However, the outcome of superparasitism was inconsistent across aphid clones and thus influenced significantly by the host clone in which parasitoids competed. 6. Overall, this study shows that the fitness of aphid parasitoids under superparasitism is determined by complex interactions with competitors as well as hosts, possibly hampering the evolution of improved intra‐host competitive ability.  相似文献   

6.
Xylem ingestion by winged aphids   总被引:3,自引:0,他引:3  
When aphids and their host plant are incorporated in a DC electrical circuit, phloem and xylem ingestion register as separate waveforms of the electrical penetration graph (EPG) signal. Aphids are primarily phloem feeders; xylem ingestion is seldom reported but can be induced experimentally by fasting the insects in desiccating conditions. In experiments with the black bean aphid, Aphis fabae Scop., young winged (alate) and unwinged (apterous) virginoparous adults were collected from their natal host plants (broad bean, Vicia faba L.) and allowed 3-h continuous EPG-recorded access to V. faba seedlings. Several aphids (47% of both morphs) showed ingestion from phloem sieve elements. Alate aphids also showed frequent xylem ingestion (60% of individuals), but no apterous aphids exhibited this activity. The EPG technique involves attachment of a fine gold wire electrode to each insect, a process that may affect normal behaviour at the plant surface. However, when the technique was modified to monitor the stylet activities of freely-settled aphids, high levels of xylem ingestion by alates were also recorded. The results suggest that the developmental physiology of winged aphids somehow predisposes them to xylem ingestion, possibly as a result of dehydration during the teneral period. Alate aphids may reduce their weight by fasting before take-off, giving aerodynamic benefits, but making rehydration, via xylem uptake, a priority following plant contact.  相似文献   

7.
The influence of aphid size on the host quality assessment and progeny performance of aphidiine parasitoids was examined using the mealy plum aphid parasitoid, Aphidius transcaspicus Telenga (Hymenoptera: Braconidae) and the black bean aphid, Aphis fabae Scopoli (Homoptera: Aphididae), as a readily acceptable alternate host. Aphid size in relation to stage of development was manipulated by rearing synchronous aphid cohorts at either 15 or 30 °C. At 15 °C, 2nd instar aphids were approximately the same size as 4th instar aphids reared at 30 °C. Cohorts of 30 aphids from each instar, reared at each temperature, were exposed to parasitism by a single parasitoid female for a period of 5 h. Overall susceptibility to parasitism did not vary between aphid cohorts, but the parasitoid response to aphid size differed significantly between rearing temperatures for both progeny sex ratio (parent female assessment of host quality) and larval growth and development (host suitability for parasitoid development). For aphids reared at 15 °C, the proportion of female progeny and emerging adult size for the parasitoid increased linearly with aphid size at the time of attack, while development time remained constant. In contrast, for aphids reared at 30 °C, the proportion of female progeny, emerging adult size, and the development time of the parasitoid all declined with aphid size at the time of attack. The contrasting responses of the parasitoid to host size for aphids reared at the two temperatures suggest that host quality is only indirectly related to aphid size among aphidiine parasitoids. The possible effects of higher temperatures on nutritional stress, obligate endosymbionts, and future growth potential of the aphids are discussed as explanations for the variation in host quality for parasitoid development.  相似文献   

8.
Plants provide aphids with unbalanced and low concentrations of amino acids. Likely, intracellular symbionts improve the aphid nutrition by participating to the synthesis of essential amino acids. To compare the aphid amino acid uptakes from the host plant and the aphids amino acid excretion into the honeydew, host plant exudates (phloem + xylem) from infested and uninfested Vicia faba L. plants were compared to the honeydew produced by two aphid species (Acyrthosiphon pisum Harris and Megoura viciae Buckton) feeding on V. faba. Our results show that an aphid infestation modifies the amino acid composition of the infested broad bean plant since the global concentration of amino acids significantly increased in the host plant in response to aphid infestations. Specifically, the concentrations of the two amino acids glutamine and asparagine were strongly enhanced. The amino acid profiles from honeydews were similar for the two aphid species, but the concentrations found in the honeydews were generally lower than those measured in the exudates of infested plants (aphids uptakes). This work also highlights that aphids take large amounts of amino acids from the host plant, especially glutamine and asparagine, which are converted into glutamic and aspartic acids but also into other essential amino acids. The amino acid profiles differed between the host plant exudates and the aphid excretion product. Finally, this study highlights that the pea aphid, a “specialist” for the V. faba host plant, induced more important modifications into the host plant amino acid composition than the “generalist” aphid M. viciae.  相似文献   

9.
Few studies have linked density dependence of parasitism and the tritrophic environment within which a parasitoid forages. In the non-crop plant-aphid, Centaurea nigraUroleucon jaceae system, mixed patterns of density-dependent parasitism by the parasitoids Aphidius funebris and Trioxys centaureae were observed in a survey of a natural population. Breakdown of density-dependent parasitism revealed that density dependence was inverse in smaller colonies but direct in larger colonies (>20 aphids), suggesting there is a threshold effect in parasitoid response to aphid density. The CV2 of searching parasitoids was estimated from parasitism data using a hierarchical generalized linear model, and CV2>1 for A. funebris between plant patches, while for T. centaureae CV2>1 within plant patches. In both cases, density independent heterogeneity was more important than density-dependent heterogeneity in parasitism. Parasitism by T. centaureae increased with increasing plant patch size. Manipulation of aphid colony size and plant patch size revealed that parasitism by A. funebris was directly density dependent at the range of colony sizes tested (50–200 initial aphids), and had a strong positive relationship with plant patch size. The effects of plant patch size detected for both species indicate that the tritrophic environment provides a source of host density independent heterogeneity in parasitism, and can modify density-dependent responses.  相似文献   

10.
In order to maximize the lifetime reproductive success of parasitoids, they should be induced to dynamically accept individual hosts that have different suitability for oviposition. Parasitoids tend to exhibit higher host-selective behavior when their egg load is limited, and are less selective if they are facing time constraints. Here, we evaluated the effects of parasitoid age on egg load, fecundity and host instar preference of a honey-fed aphid parasitoid, Aphelinus asychis Walker (Hymenoptera: Aphelinidae). Host selective experiment was conducted to measure host-preference of honey-fed A. asychis females at different ages, using the second and fourth instars of the green peach aphid Myzus persicae as their hosts. The results showed that the choice of host-instar for oviposition was significantly influenced by the parasitoid age. Honey-fed parasitoids in the age groups of 1, 5, 10 and 20 days tended to parasitize predominantly second-instar aphids, whereas 15-days old parasitoids showed no significant preference of host instars. On the other hand, host-feeding preference was not affected by parasitoid age. Parasitoid females of all ages preferred younger aphids to older aphids. This result could help evaluate the effectiveness of A. asychis for biological control of M. persicae when they encountered mixed-instar aphids in the field. In addition, the results might be helpful in assessing the host killing effects of other host-feeding parasitoids.  相似文献   

11.
Females of the central European population of the aphid parasitoid, Aphidius ervi, did not attack wet pea aphids (Acyrthosiphon pisum) that were washed previously with water. After 1 hour, this phenomenon disappeared and A. ervi attacked washed hosts to the same degree as dry ones. Similarly, A. ervi attacked dead aphids killed in liquid nitrogen readily if they were dry but not if they were wet. This effect was also reversible and disappeared after 1 h. When A. ervi females were foraging on broad beans (Vicia faba), they laid significantly more eggs into dry aphids than into wet aphids. Resource utilization of wet aphids, however, was significantly lower in this design than in Petri dishes, due to a changed drop-off behaviour of the aphid. We conclude that females did not use visual cues for host recognition but instead relied on chemical cues. These cues may be covered by a thin water layer directly after aphids became wet. Our results also demonstrate the importance of abiotic factors for the estimation of the reproductive success of parasitoids in the field.  相似文献   

12.
Host‐parasitoid interactions may lead to strong reciprocal selection for traits involved in host defense and parasitoid counterdefense. In aphids, individuals harboring the facultative bacterial endosymbiont, Hamiltonella defensa, exhibit enhanced resistance to parasitoid wasps. We used an experimental evolution approach to investigate the ability of the parasitoid wasp, Lysiphlebus fabarum, to adapt to the presence of H. defensa in its aphid host Aphis fabae. Sexual populations of the parasitoid were exposed for 11 generations to a single clone of A. fabae, either free of H. defensa or harboring artificial infections with three different isolates of H. defensa. Parasitoids adapted rapidly to the presence of H. defensa in their hosts, but this adaptation was in part specific to the symbiont isolate they were evolving against and did not result in an improved infectivity on all symbiont‐protected hosts. Comparisons of life‐history traits among the evolved lines of parasitoids did not reveal any evidence for costs of adaptation to H. defensa in terms of correlated responses that could constrain such adaptation. These results show that parasitoids readily evolve counter‐adaptations to heritable defensive symbionts of their hosts, but that different symbiont strains impose different evolutionary challenges. The symbionts thus mediate the host‐parasite interaction by inducing line‐by‐line genetic specificity.  相似文献   

13.
Immune systems have repeatedly diversified in response to parasite diversity. Many animals have outsourced part of their immune defence to defensive symbionts, which should be affected by similar evolutionary pressures as the host’s own immune system. Protective symbionts provide efficient and specific protection and respond to changing selection pressure by parasites. Here we use the aphid Aphis fabae, its protective symbiont Hamiltonella defensa, and its parasitoid Lysiphlebus fabarum to test whether parasite diversity can maintain diversity in protective symbionts. We exposed aphid populations with the same initial symbiont composition to parasitoid populations that differed in their diversity. As expected, single parasitoid genotypes mostly favoured a single symbiont that was most protective against that particular parasitoid, while multiple symbionts persisted in aphids exposed to more diverse parasitoid populations, which in turn affected aphid population density and rates of parasitism. Parasite diversity may be crucial to maintaining symbiont diversity in nature.  相似文献   

14.
Aphids possess several facultative bacterial symbionts that have important effects on their hosts'' biology. These have been most closely studied in the pea aphid (Acyrthosiphon pisum), a species that feeds on multiple host plants. Whether secondary symbionts influence host plant utilization is unclear. We report the fitness consequences of introducing different strains of the symbiont Hamiltonella defensa into three aphid clones collected on Lathyrus pratensis that naturally lack symbionts, and of removing symbionts from 20 natural aphid–bacterial associations. Infection decreased fitness on Lathyrus but not on Vicia faba, a plant on which most pea aphids readily feed. This may explain the unusually low prevalence of symbionts in aphids collected on Lathyrus. There was no effect of presence of symbiont on performance of the aphids on the host plants of the clones from which the H. defensa strains were isolated. Removing the symbiont from natural aphid–bacterial associations led to an average approximate 20 per cent reduction in fecundity, both on the natural host plant and on V. faba, suggesting general rather than plant-species-specific effects of the symbiont. Throughout, we find significant genetic variation among aphid clones. The results provide no evidence that secondary symbionts have a major direct role in facilitating aphid utilization of particular host plant species.  相似文献   

15.
《Journal of Asia》2014,17(3):207-211
Laboratory experiments were conducted to determine the functional and numerical responses of the aphidophagous hover fly Episyrphus balteatus DeGeer (Diptera: Syrphidae) to different densities of 4th instar black bean aphids, Aphis fabae Scopoli (Homoptera: Aphididae), on broad bean, Vicia faba L. (Fabaceae). Two different-sized larvae of predators were tested in different densities of similar-sized prey to determine whether functional response parameters depended on the body sizes of predator and prey. In numerical response experiments, gravid E. balteatus females were exposed individually to different densities of 4th instars of A. fabae on cut sections of the broad bean plant, V. faba L. Logistic regression suggested a type II functional response for both larval sizes of E. balteatus. The searching efficiency (a) of the larger larvae was higher than that of the smaller ones. Prey consumption was higher, and handling time (Th) was lower for larger larvae than smaller ones. The theoretical maximum number of A. fabae nymphs eaten by the different-sized larvae was 125 and 269 nymphs per day. Larger E. balteatus larvae are more efficient predators for aphid management strategies. The reproductive numerical response, in terms of the number of eggs laid, increased curvilinearly with increasing prey density, but the proportion of eggs laid (egg number/prey density) decreased as the initial density of prey increased.  相似文献   

16.
  • 1 Aphids are the major group of insects that vector plant viruses, and they often display a preference for foliage showing disease symptoms. Although this behaviour will increase the numbers of vectors acquiring the pathogen, it will not in itself result in a greater spread of the disease.
  • 2 The present study examined how infection of Vicia faba by the nonpersistently transmitted virus bean yellow mosaic virus (BYMV) affected colonization by pea aphids Acyrthosiphon pisum. We then examined how foraging by the hymenopterous parasitoid Aphidius ervi affected aphid settling/movement behaviour and the consequences for dissemination of the virus.
  • 3 In Petri dish arenas, aphids colonized discs from BYMV‐infected leaves more rapidly than discs from uninfected plants. Reflectance from infected foliage was approximately 20% higher than from uninfected leaves in the green–yellow wavelengths, indicating that aphids might be responding to visual cues from the brighter foliage. Settling was reduced by A. ervi, with the foraging wasps preventing the aphids reaching and/or remaining on the leaf tissue.
  • 4 In multiple plant arenas, A. ervi caused a reduction in aphid numbers but also a nine‐fold increase in BYMV infection. It is hypothesized that disturbance by the parasitoids resulted in more aphid movement as well as more cases of aphids probing on a BYMV‐infected plant and then a new host within the critical time period for successful inoculation to occur. This effect of parasitoids on virus dispersal should be considered in epidemiological models of insect‐vectored plant diseases, and also when evaluating the use of natural enemies in biocontrol strategies of insect herbivore/vector pests.
  相似文献   

17.
Binodoxys communis (Gahan) (Hymenoptera:Braconidae), a parasitoid of aphids originally from China, was introduced into Hawaii and evaluated in the laboratory for its ability to detect, accept, oviposit and develop in Aphis gossypii reared on two host plants, plus five other common aphid species. The parasitoid was able to detect all six aphid species and to successfully sting five species, with highest preference for those in the genus Aphis. Aphis species were highly suitable for parasitoid development. Other species were only marginally suitable. Parasitoids spent less time searching on plants of less acceptable aphids. Aphid defensive behaviors did not affect oviposition success, but did lengthen the parasitoid’s handling time of several aphid species. Host acceptance was positively correlated with host suitability, yet one unsuitable host was readily accepted for oviposition.  相似文献   

18.
Larvicidal activity of lectins onLucilia cuprina: mechanism of action   总被引:1,自引:0,他引:1  
Foraging behaviour and host-instar preference of young and old females of the solitary aphid parasitoid,Lysiphlebus cardui Marshall (Hymenoptera: Aphidiidae), were studied in the laboratory. The analysis of interactions between parasitoids and different stages ofAphis fabae cirsiiacanthoidis Scop. (Homoptera: Aphididae) revealed that encounter rates between aphids and parasitoid females and defence reactions of the aphids influenced the degree to which a particular aphid age class is parasitized. Encounter rates between hosts and parasitoid females depended on the foraging pattern of the parasitoid, which varied with age. In mixed aphid colonies patch residence time increased with parasitoid age. Furthermore, younger parasitoids (≦1 day old) laid more eggs into second and third instars, while older parasitoids (≧4 days old) did not show distinct host instar preferences. It is suggested that the oviposition behaviour ofL. cardui is influenced by the physiological state, i.e. the age of the wasp.  相似文献   

19.
The biology of the aphid hyperparasitoid Alloxysta victrix was investigated with respect to its interaction with the primary parasitoid Aphidius colemani and the host aphid Myzus persicae. Laboratory investigations of host selection behaviour indicated that naive A. victrix females could rapidly distinguish between unparasitized aphids and those parasitized by A. colemani, but showed little tendency to discriminate between aphids parasitized by the primary parasitoid three, five, seven, or ten days earlier (even though the latter were already mummified). Host suitability studies, in contrast, indicated that aphids parasitized by A. colemani became progressively less suitable as the primary parasitoid developed. When aphids were exposed to A. victrix more than seven days after being parasitized by A. colemani, survivorship of both primary and secondary parasitoid species decreased, with a significantly higher proportion of mummies producing no viable adult parasitoid of either species. The developmental period (egg to adult eclosion) of surviving hyperparasitoids was also longer in older host stages, and females developed significantly more slowly than males (14.2 days versus 13.6 days, respectively). The sex ratio of hyperparasitoid broods emerging from all host stages was consistently male-biased (31–46% female), but adult longevity was higher for females than for males (37.1 days versus 23.6 days).  相似文献   

20.
Broad bean (Vicia faba), an annual plant bearing extrafloral nectaries (EFN) at the base of the upper leaves, is regularly infested by two aphid species, Aphis fabae and Acyrthosiphon pisum. EFN and A. fabae are commonly attended by the ant, Lasius niger, while Ac. pisum usually remains uninfested. Sugar concentration and sugar composition of extrafloral nectar did not change significantly after aphid infestation. The sugar concentration was significantly higher in EFN (c. 271 µg µl-1) than in the honeydew of A. fabae (37.5 µg µl-1). The presence of small A. fabae colonies had no significant effect on ant attendance of EFN, which remained at the same level as that on plants without A. fabae. Obviously, there was no significant competitive effect between the two sugar sources. We suggest that the high sugar concentration in the extrafloral nectar may outweigh the higher quality (due to the presence of melezitose) and quantity of aphid honeydew. Ants and the presence of EFN influenced aphid colony growth. While A. fabae colonies generally grew better in the presence of ants, Ac. pisum colonies declined on plants with EFN or A. fabae colonies. We conclude that EFN may provide some degree of protection for V. faba against those sucking herbivores that are not able to attract ants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号