首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Cell Wall of Rickettsia mooseri I. Morphology and Chemical Composition   总被引:11,自引:6,他引:5  
Cell walls prepared by mechanically disrupting intact Rickettsia mooseri (R. typhi) were examined in an electron microscope and analyzed chemically. Electron micrographs of metal-shadowed and negatively stained rickettsial cell walls revealed no significant differences, except for smaller size, from bacterial cell walls prepared in a similar manner. The chemical composition was complex, and resembled that of gram-negative bacterial cell walls more closely than that of gram-positive bacterial cell walls. R. mooseri cell walls contained the sugars, glucose, galactose, and glucuronic acid, the amino sugars, glucosamine, and muramic acid, and at least 15 amino acids. Diaminopimelic acid, a compound hitherto found only in bacteria and blue-green algae, was demonstrated in rickettsiae for the first time. Teichoic acids were not detected. The compounds identified accounted for about 70% of the dry weight of the cell walls.  相似文献   

2.
Short and thick fibers were observed on the outer surface of the yeast phase of Paracoccidioides brasiliensis, and long and thin fibers were seen on the inner surface. The long fibers disappear with chitinase treatment and are composed of chitin. The short fibers disappear under alkali treatment and are composed of alpha-glucan. Comparisons with alpha-(1 --> 3)-glucan isolated from Aspergillus niger and Polyporus betulinus and with chitin from fungal origin support our point of view.  相似文献   

3.
Structure and Composition of the Cell Wall of Neurospora crassa   总被引:4,自引:2,他引:2       下载免费PDF全文
The structure and composition of the cell walls of hyphae of Neurospora crassa were investigated by electron microscopy, chemical analysis, and X-ray diffraction both before and after progressive enzymatic degradation by snail gut enzymes, chitinase, and trypsin. The wall consists of two phases: randomly disposed skeletal microfibrils of chitin only and an amorphous matrix which contains both beta-glucans and protein. The protein contains a high percentage of the amides of aspartic and glutamic acid but no hydroxy-proline or cysteine. A portion of this protein is a component of or is associated with a system of pores which is embedded in the matrix of the wall. These pores, 40 to 70 A in outside diameter, sometimes branch and seem to provide a three-dimensional network from one side of the wall to the other. They may be a general system of transport across the walls.  相似文献   

4.
5.
Action of Patulin on a Yeast   总被引:1,自引:0,他引:1       下载免费PDF全文
The action of patulin on Saccharomyces cerevisiae was studied. At weak doses, the drug inhibited growth, but inhibition was transient. After 10 min, syntheses of rRNA, tRNA, and probably mRNA were blocked; this was shown by radioactive precursor incorporation assays and gel electrophoresis of RNAs. After recovery of growth, patulin disappeared from the medium. It seemed that this degradation resulted from the activity of an inducible enzymatic system. Induced cells resisted very high patulin concentrations.  相似文献   

6.
Growth of Candida utilis and Saccharomyces cerevisiae in a medium supplemented with sulfur amino acids led to synthesis and accumulation of S-adenosylmethionine, accompanied by a reduction in the cell yield, an increased sensitivity of the cell wall to snail gut enzymes (Helix pomatia), as judged by spheroplast formation, and by a modification of the chemical composition of both the intact cells and their isolated walls. Walls of supplemented cultures of C. utilis were three times as sensitive to enzymatic digestion as walls from nonsupplemented cultures. In contrast to C. utilis, walls isolated from supplemented cultures of S. cerevisiae were digested slightly more rapidly by the purified snail extract than those from nonsupplemented cultures. Chemical modifications of the cell wall are interpreted to explain the ease with which cells from sulfur amino acid-supplemented cultures are converted to spheroplasts.  相似文献   

7.
Extraction of a partially purified preparation of cell walls from Escherichia coli with the nonionic detergent Triton X-100 removed all cytoplasmic membrane contamination but did not affect the normal morphology of the cell wall. This Triton-treated preparation, termed the “Triton-insoluble cell wall,” contained all of the protein of the cell wall but only about half of the lipopolysaccharide and one-third of the phospholipid of the cell wall. This Triton-insoluble cell wall preparation was used as a starting material in an investigation of several further treatments. Reextraction of the Triton-insoluble cell wall with either Triton X-100 or ethylenediaminetetraacetic acid (EDTA) caused no further solubilization of protein. However, when the Triton-insoluble cell wall was extracted with a combination of Triton X-100 and EDTA, about half of the protein and all of the remaining lipopolysaccharide and phospholipid were solubilized. The material which remained insoluble after this combined Triton and EDTA extraction still retained some of the morphological features of the intact cell wall. Treatment of the Triton-insoluble cell wall with lysozyme resulted in a destruction of the peptidoglycan layer as seen in the electron microscope and in a release of diaminopimelic acid from the cell wall but did not solubilize any cell wall protein. Extraction of this lysozyme-treated preparation with a combination of Triton X-100 and EDTA again solubilized about half of the cell wall protein but resulted in a drastic change in the morphology of the Triton-EDTA-insoluble material. After this treatment, the insoluble material formed lamellar structures. These results are interpreted in terms of the types of noncovalent bonds involved in maintaining the organized structure of the cell wall and suggest that the main forces involved are hydrophobic protein-protein interactions between the cell wall proteins and to a lesser degree a stabilization of protein-protein and protein-lipopolysaccharide interactions by divalent cations. A model for the structure of the E. coli cell wall is presented.  相似文献   

8.
The purified red yeast cell wall lytic enzyme of Penicillium lilacinum No. 2093 has a potent saccharifying activity against cell walls, but the living cell lytic activity of it is considerably lower than that of the culture filtrate. Therefore, the living cell lytic factors in the culture filtrate were examined. The alkaline protease of Pen. lilacinum played an important role for living cell lysis. The synergistic effect on living cell lysis was also detected, when acid proteases from various origins were combined with the cell wall lytic enzyme. These results indicated that the protein layers of red yeast cell surface inhibited the action of a glycanase,cell wall lytic enzyme, and the protein molecule contributed to retain the rigid structure of the wall.  相似文献   

9.
10.
Porosity of the Yeast Cell Wall and Membrane   总被引:19,自引:7,他引:12  
The limiting sizes of molecules that can permeate the intact cell wall and protoplast membrane of Saccharomyces cerevisiae were determined from the inflection points in a triphasic pattern of passive equilibrium uptake values obtained with a series of inert probing molecules varying in molecular size. In the phase identified with the yeast protoplast, the uptake-exclusion threshold corresponded to a monodisperse ethylene glycol of molecular weight = 110 and Einstein-Stokes hydrodynamic radius (r(ES)) = 0.42 nm. In the cell wall phase, the threshold corresponded to a polydisperse polyethylene glycol of number-average molecular weight ( M(n)) = 620 and average radius (r(ES)) = 0.81 nm. The third phase corresponded to complete exclusion of larger molecules. The assessment of cell wall porosity was confirmed by use of a second method involving analytical gel chromatographic analyses of the molecular weight distribution for a single polydisperse polyglycol before and after uptake by the cells, which indicated a quasi-monodisperse threshold for the cell wall of M(n) = 760 and r(ES) = 0.89 nm. The results were reconciled with two situations in which much larger protein molecules previously have been reported able to penetrate the yeast cell wall.  相似文献   

11.
The viable but nonculturable (VBNC) state is a survival mechanism adopted by many bacteria (including those of medical interest) when exposed to adverse environmental conditions. In this state bacteria lose the ability to grow in bacteriological media but maintain viability and pathogenicity and sometimes are able to revert to regular division upon restoration of normal growth conditions. The aim of this work was to analyze the biochemical composition of the cell wall of Enterococcus faecalis in the VBNC state in comparison with exponentially growing and stationary cells. VBNC enterococcal cells appeared as slightly elongated and were endowed with a wall more resistant to mechanical disruption than dividing cells. Analysis of the peptidoglycan chemical composition showed an increase in total cross-linking, which rose from 39% in growing cells to 48% in VBNC cells. This increase was detected in oligomers of a higher order than dimers, such as trimers (24% increase), tetramers (37% increase), pentamers (65% increase), and higher oligomers (95% increase). Changes were also observed in penicillin binding proteins (PBPs), the enzymes involved in the terminal stages of peptidoglycan assembly, with PBPs 5 and 1 being prevalent, and in autolytic enzymes, with a threefold increase in the activity of latent muramidase-1 in E. faecalis in the VBNC state. Accessory wall polymers such as teichoic acid and lipoteichoic acid proved unchanged and doubled in quantity, respectively, in VBNC cells in comparison to dividing cells. It is suggested that all these changes in the cell wall of VBNC enterococci are specific to this particular physiological state. This may provide indirect confirmation of the viability of these cells.  相似文献   

12.
Chemical analysis of cell walls obtained from Hyphomicrobium B-522 and from a morphologically and nutritionally distinct organism, Hyphomicrobium neptunium (ATCC 15444), showed that the organisms have a similar cell wall composition, which is typical of gram-negative bacteria. The walls of both strains contained many amino acids, including the characteristic mucopeptide components diaminopimelic acid and muramic acid. Isolation of the mucopeptide by use of sodium dodecyl sulfate was successful only with cell walls of H. neptunium, thus revealing a difference between the walls of the two strains. The mucopeptide preparation contained glucosamine, muramic acid, alanine, glutamic acid, diaminopimelic acid, and glycine in molar ratios of 1.05:1.21:1.84:1.0:1.04:0.31, respectively. The concentration of glycine was sufficiently high to suggest that it is a mucopeptide component rather than an impurity.  相似文献   

13.
A simple purification method which enables us to obtain homogeneous proteinase C from S. cerevisiae was developed. Physical and chemical properties of the purified enzyme were determined. The extinction coefficient at 280 mμ, , of yeast proteinase C was 14.8, and its isoelectric point was pH 3.60. Partial specific volume, intrinsic viscosity and the sedimentation and diffusion coefficients of homogeneous protein were , 0.71 ml/g, [η], 4.83 × 10?2ml/g, , 4.23 S and , w, 6.1 × 10?7 cm2/sec. From these values, molecular weights, M[·],D, MS,D and M[·],S, of 60,000, 59,000 and 58,000, respectively, were obtained. The sedimentation equilibrium experiment gave a molecular weight, Mequil, of 61,000. Yeast proteinase C contained 11.9% nitrogen and was a glycoprotein with 16.7% carbohydrate: The value of β-function, 2.163×l06 or 2.20×l06 indicates that the molecular shape of yeast proteinase C is a plorate with an axial ratio of 4.0, assuming 35% hydration. Furthermore, yeast proteinase C may be a compact, asymmetric ellipsoidal model having semi-axes 30Å × 30Å × 130Å.  相似文献   

14.
The location of the mucopeptide in the cell wall of Bacteroides convexus was determined by electron microscope after enzymatic and chemical treatment (papain, pepsin, lysozyme and phenol). In the five layered cell wall the innermost electron dense layer (or a part of it) proved to be the mucopeptide. The molar ratio of amino sugar and amino acid components of purified mucopeptide was about 1:1:1:1:1:1 for glucosamine, muramic acid, L-alanine, D-glutamic acid, DL(meso)-diaminopimelic acid and D-alanine.  相似文献   

15.
Purification of Phosphomannanase and Its Action on the Yeast Cell Wall   总被引:8,自引:2,他引:6  
An improved assay for phosphomannanase (an enzyme required for the preparation of yeast protoplasts) has been developed based on the release of mannan from yeast cell walls. A procedure for the growth of Bacillus circulans on a large scale for maximal production of the enzyme is described. The culture medium containing the secreted enzyme was concentrated, and the enzyme was purified by protamine sulfate treatment, ammonium sulfate fractionation, gel filtration on P-100, and isoelectric density gradient electrophoresis. Although the enzyme was purified to apparent homogeneity, it still contained laminarinase activity which could not be separated by size or charge. The two enzymatic activities also exhibited two isoelectric points (pH 5.9 and 6.8) on ampholine electrophoresis. The laminarinase was not active on yeast glucan. The enzyme preparation was shown to remove mannan from yeast without removing glucan. Electron microscopic observation supports the idea that this mannan is the outer layer of the yeast wall. Phosphomannanase will produce protoplasts from yeast when supplemented with relatively low amounts of snail enzyme. This activity is present in snail enzyme but appeares to be rate-limiting when snail enzyme alone is used. Phosphomannanase has proven useful for studying the macromolecular organization of polymers in the yeast cell wall.  相似文献   

16.
The structure and fine structure of leaf and culm cell walls of sugarcane plants were analyzed using a combination of microscopic, chemical, biochemical, and immunological approaches. Fluorescence microscopy revealed that leaves and culm display autofluorescence and lignin distributed differently through different cell types, the former resulting from phenylpropanoids associated with vascular bundles and the latter distributed throughout all cell walls in the tissue sections. Polysaccharides in leaf and culm walls are quite similar, but differ in the proportions of xyloglucan and arabinoxylan in some fractions. In both cases, xyloglucan (XG) and arabinoxylan (AX) are closely associated with cellulose, whereas pectins, mixed-linkage-β-glucan (BG), and less branched xylans are strongly bound to cellulose. Accessibility to hydrolases of cell wall fraction increased after fractionation, suggesting that acetyl and phenolic linkages, as well as polysaccharide–polysaccharide interactions, prevented enzyme action when cell walls are assembled in its native architecture. Differently from other hemicelluloses, BG was shown to be readily accessible to lichenase when in intact walls. These results indicate that wall architecture has important implications for the development of more efficient industrial processes for second-generation bioethanol production. Considering that pretreatments such as steam explosion and alkali may lead to loss of more soluble fractions of the cell walls (BG and pectins), second-generation bioethanol, as currently proposed for sugarcane feedstock, might lead to loss of a substantial proportion of the cell wall polysaccharides, therefore decreasing the potential of sugarcane for bioethanol production in the future.  相似文献   

17.
Two very poorly lytic mutants of Bacillus licheniformis 6346 that had no teichuronic acid or glucose in their walls were phosphoglucomutase deficient. The walls of the mutants were less autolytic, and the lesion in the phosphoglucomutase gene and the formation of lytic amidase seemed to be interrelated. When phosphoglucomutase was regained or the effects of the deficiency were circumvented by the presence of galactose in the medium, the lytic enzyme was partially regained. When subjected to growth limitation by the supply of inorganic phosphate, the mutants ceased to make teichoic acid, and their walls contained a greatly increased proportion of mucopeptide. Under these conditions they formed irregular spheres which changed back to rods when inorganic phosphate was supplied. Both wall and protein synthesis were necessary for the changes in morphology. An intermediate crescent-shaped cell was formed in the change from sphere to a rod. The possible relationship of this morphological change to the distribution of biosynthetic sites is discussed.  相似文献   

18.
The effect of Ca++ on various parameters of apple fruit senescencewas investigated. Distinct and specific changes in polypeptideand phosphoprotein patterns were observed in Ca++ treated ascompared to control fruits. A 70 kDa salt-extracted polypeptidebecame apparent in control fruits after 8 months of cold storagewhich was not apparent in Ca++-treated fruits until 12 months.The soluble protein profile of Ca++-treated fruits showed anaccumulation of a 30 kDa polypeptide while the control fruitsaccumulated a 60 kDa polypeptide. Autoradiographs of phosphorylatedpolypeptides revealed a 60 kDa membrane polypeptide becomingphosphorylated in the Ca++-treated and not in the control fruitprotein fractions. Transmission electron micrographs of thecell showed Ca++ to be effective in maintaining the cell wallstructure, particularly the middle lamella. Furthermore, increasein fruit Ca++ reduced CO2 and C2H2 evolution and altered chlorophyllcontent, ascorbic acid level and hydraulic permeability. 1Scientific Paper No: 7930, College of Agriculture and HomeEconomics Research Center, Washington State University, Pullman,Washington, Project 0321. 2Supported by grants from the National Science Foundation CB-8502215and Washington State Tree Fruit Research Commission to BWP. (Received September 3, 1987; Accepted March 3, 1988)  相似文献   

19.
The cell wall of the H37Ra strain of Mycobacterium tuberculosis was isolated and freed of extraneous noncovalently linked material by a series of extraction and enzymatic procedures. Chemical analysis of the cell wall has revealed the following composition: 22.8% amino acids, principally alanine, glutamate, and diaminopimelate in a molar ratio of 1:1.8:0.8; 24.7% reducing sugars, all in the form of arabinose and galactose in a molar ratio of 2.6:1; and 3.95% amino sugars, all in the form of glucosamine, muramic acid, and galactosamine in a molar ratio of 1:6.6:0.8. About 32.1% of the dry weight of the cell wall is lipid, of this about 55% is in the form of two series of mycolic acids. Each series of mycolic acids contains two homologues differing by 28 mass units. One pair of homologues contains in each a carbonyl function and an unsaturated double bond; the other pair contains two cyclopropane groups in each homologue. The remaining lipids are composed principally of normal saturated fatty acids, including tuberculostearic acid.  相似文献   

20.
This paper deals with yeast cell-wall lytic enzymes formed by Streptomyces with regard to the connection with the cell-wall structure.

In the first place, 29 organisms of β-glucanase-producing Streptomycetes were selected among 777 strains belonging to genus Streptomyces by means of a cylinder-plate method employing the yeast glucan as a substrate. As for these organisms, the depolymerizing activity against the yeast glucan was considered to be mainly due to β-1,3-glucanase activity. Against the heat-treated cell of bakers’ yeast, the crude enzymes merely showed poor lytic activities, however, in the combined employment with some protease preparations, especially with an alkaline protease from St. satsumaensis nov. sp., a remarkable increase of the lytic activities was demonstrated. On the other hand, the intact cell wall of bakers’ yeast, or both the heat-treated and the intact cells of Sacch. cerevisiae 18.29 strain were dissolved very easily by a sole action of β-glucanase or of protease, respectively. In consequence, it seemed that the lysis occurred with different mechanisms in response to differences of substrates. On this subject, the results of investigations and discussions were described in special measure. In addition, the possibility, that some other enzymes than β-glucanase or protease might concern to the lysis of the cell wall, was also investigated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号