首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oysters serve as keystone species and ecosystem engineers in estuaries due to their fundamental role of providing services to the surrounding environment and to humans. Globally, however, oysters have precipitously declined in numbers over the last century. To remedy this drastic decrease, many coastal areas have initiated oyster restoration projects. In the Indian River Lagoon (IRL) of Florida, where oyster loss was primarily the result of recreational boat wake dislodgment, researchers have put in place a unique method to supplement natural recruitment of oysters. This method consists of deploying stabilized shell attached to mesh mats. Larval oysters thus have substrate on which to settle and three‐dimensional reef habitats have been reestablished in historical footprints. This restoration project has proven to be successful, shown by 9 years of data collection on growth, recruitment, and survivability. In this study, we sought to determine the length of time required for newly restored oyster reefs to reach equivalent levels of genetic diversity as undisturbed, natural (reference) oyster reefs. Additionally, we determined if recreational harvesting impacted the genetic diversity of these reference reefs. Using nine microsatellite loci, we found that restored oyster reefs accumulated as much genetic diversity as natural reefs as quickly as 1 month after stabilized shells were deployed. We likewise found that harvesting did not impact genetic diversity in oyster reefs in the IRL. These results are encouraging, and are a valuable addition to understanding the importance of oyster reef restoration on the ecosystem.  相似文献   

2.
In the northern Gulf of Mexico (GOM), reefs built by eastern oysters, Crassostrea virginica, provide critical habitat within shallow estuaries, and recent efforts have focused on restoring reefs to benefit nekton and benthic macroinvertebrates. We compared nekton and benthic macroinvertebrate assemblages at historic, newly created (<5 years) and old (>6 years) shell and rock substrate reefs. Using crab traps, gill‐nets, otter trawls, cast nets, and benthic macroinvertebrate collectors, 20 shallow reefs (<5 m) in the northern GOM were sampled throughout the summer of 2011. We compared nekton and benthic assemblage abundance, diversity and composition across reef types. Except for benthic macroinvertebrate abundance, which was significantly higher on old rock reefs as compared to historic reefs, all reefs were similar to historic reefs, suggesting created reefs provide similar support of nekton and benthic assemblages as historic reefs. To determine refuge value of oyster structure for benthic macroinvertebrates compared to bare bottom, we tested preferences of juvenile crabs across depth and refuge complexity in the presence and absence of adult blue crabs (Callinectes sapidus). Juveniles were more likely to use deep water with predators present only when provided oyster structure. Provision of structural material to support and sustain development of benthic and mobile reef communities may be the most important factor in determining reef value to these assemblages, with biophysical characteristics related to reef location influencing assemblage patterns in areas with structure; if so, appropriately locating created reefs is critical.  相似文献   

3.
Baggett et al. (2015) identified a set of three universal environmental variables to be monitored for evaluating all oyster habitat restoration projects: salinity, temperature, and dissolved oxygen. Perhaps evidencing a bias toward subtidal reefs, this set of parameters omits another first‐order environmental factor, tidal emersion. Intertidal oyster reefs can be the dominant reef habitat in estuaries, with clear zonation in oyster performance across the intertidal exposure gradient. Therefore, we propose to include tidal emersion as a fourth universal environmental parameter when designing and evaluating oyster restoration projects to better encompass the whole environmental spectrum along which reefs occur.  相似文献   

4.
Oyster reefs are one of the most threatened marine habitats on earth, with habitat loss resulting from water quality degradation, coastal development, destructive fishing practices, overfishing, and storm impacts. For successful and sustainable oyster reef restoration efforts, it is necessary to choose sites that support long-term growth and survival of oysters. Selection of suitable sites is critically important as it can greatly influence mortality factors and may largely determine the ultimate success of the restoration project. The application of Geographic Information Systems (GIS) provides an effective methodology for identifying suitable sites for oyster reef restoration and removes much of the uncertainty involved in the sometimes trial and error selection process. This approach also provides an objective and quantitative tool for planning future oyster reef restoration efforts. The aim of this study was to develop a restoration suitability index model and reef quality index model to characterize locations based on their potential for successful reef restoration within the Mission-Aransas Estuary, Texas, USA. The restoration suitability index model focuses on salinity, temperature, turbidity, dissolved oxygen, and depth, while the reef quality index model focuses on abundance of live oysters, dead shell, and spat. Size-specific Perkinsus marinus infection levels were mapped to illustrate general disease trends. This application was effective in identifying suitable sites for oyster reef restoration, is flexible in its use, and provides a mechanism for considering alternative approaches. The end product is a practical decision-support tool that can be used by coastal resource managers to improve oyster restoration efforts. As oyster reef restoration activities continue at small and large-scales, site selection criteria are critical for assisting stakeholders and managers and for maximizing long-term sustainability of oyster resources.  相似文献   

5.
A shared origin with fresh and dredged cultch and availability via mining have made fossil cultch a commonly used reef restoration substrate. However, important differences in shape and size between whole‐shell cultch and fossil cultch may impact the complexity of reefs constructed from these materials. To determine if these differences may impact the development of restored reefs, we quantified the interstitial space each cultch type provides and constructed reef mesocosms to measure (1) the immediate effects of exposure to each cultch type on mortality of blue crab (Callinectes sapidus) and pink shrimp (Farfantepenaeus duorarum); (2) the tendency of crab, shrimp, and Florida crown conch (Melongena corona) to be found on habitats composed of each substrate type and their position within each in split‐substrate mesocosms; and (3) the influence of cultch type on predation of Eastern oysters (Crassostrea virginica) by crabs and conch. Aggregation of fossil cultch contains more shells and provides less interstitial space than an equivalent volume of whole‐shell cultch. Although immediate mortality following deployment was low and did not differ among cultch types, we found that all species were more likely to be found on fresh cultch over fossil cultch in choice experiments and used each habitat type differently. Cultch type also impacted the size of oysters consumed by crabs in short‐term feeding trials. The structure and traits of habitats created by various materials should be added to the growing list of issues considered when natural communities are to be restored in oyster reefs and other environments.  相似文献   

6.
王桃妮  张子莲  全为民 《生态学报》2024,44(7):2706-2716
牡蛎礁生境是指由聚集的牡蛎和其他生物及环境堆积形成的复合生态系统,其固碳和储碳潜力巨大,在海岸带生态系统中发挥着重要的作用。然而,目前对牡蛎礁生境碳源与汇的认识仍存在不足,主要在于牡蛎钙化和呼吸作用都释放CO2,而碳源与汇的评估忽视了钙化、同化和沉积过程带来的整体碳汇价值及牡蛎礁生态系统功能带来的碳汇效应。因此,有必要重新认识牡蛎礁生境的碳汇价值。一方面,牡蛎礁生境的碳源和碳汇需要从牡蛎礁自身的整体碳循环中进行评估,包括牡蛎礁系统中的沉积、钙化、呼吸作用及侵蚀、再悬浮和再矿化作用; 另一方面,牡蛎礁生态系统服务引起的碳汇效应需从牡蛎礁的生态系统服务价值角度进行评估,将生态系统服务价值及碳价值进行关联,从而纳入碳汇核算体系。从实现海岸带可持续增汇角度出发,综述了牡蛎礁生境中碳的源与汇;阐述了容易被人们忽视的微生物在牡蛎礁生境碳汇中的作用;以保护和生态修复为目的,进一步提出可实现牡蛎礁生境最大潜在碳汇的策略,以期为实现海洋负排放及践行"国家双碳战略"提供理论和技术支撑。  相似文献   

7.
Bluefish, Pomatomus saltatrix, are recreationally valuable finfish along the Atlantic seaboard and in the Chesapeake Bay. Diet and habitat use patterns for bluefish life history intervals in Chesapeake Bay estuaries are poorly described although it is widely acknowledged that this apex piscivorous species relies on estuarine habitat for feeding and nursery grounds after oceanic spawning and inshore migration of larvae. Bluefish diet, distribution, and abundance patterns were examined in relation to oyster reef, oyster bar, and sand bottom habitat in the Piankatank River, Virginia. Bluefish from all sites were predominantly piscivorous and were more abundant at reef sites than non-reef sites. Bluefish caught in association with the oyster reef consumed a wider diversity of prey items than fish from other sites; diet diversity may contribute to bluefish success during periods when small pelagic food fish abundance is reduced. Bluefish estuarine habitat use is positively correlated with the presence of oyster shell habitat and the complex trophic communities centering on oyster reefs.  相似文献   

8.
Interactions between predators and their prey are influenced by the habitat they occupy. Using created oyster (Crassostrea virginica) reef mesocosms, we conducted a series of laboratory experiments that created structure and manipulated complexity as well as prey density and "predator-free space" to examine the relationship between structural complexity and prey survivorship. Specifically, volume and spatial arrangement of oysters as well as prey density were manipulated, and the survivorship of prey (grass shrimp, Palaemonetes pugio) in the presence of a predator (wild red drum, Sciaenops ocellatus) was quantified. We found that the presence of structure increased prey survivorship, and that increasing complexity of this structure further increased survivorship, but only to a point. This agrees with the theory that structural complexity may influence predator-prey dynamics, but that a threshold exists with diminishing returns. These results held true even when prey density was scaled to structural complexity, or the amount of "predator-free space" was manipulated within our created reef mesocosms. The presence of structure and its complexity (oyster shell volume) were more important in facilitating prey survivorship than perceived refugia or density-dependent prey effects. A more accurate indicator of refugia might require "predator-free space" measures that also account for the available area within the structure itself (i.e., volume) and not just on the surface of a structure. Creating experiments that better mimic natural conditions and test a wider range of "predator-free space" are suggested to better understand the role of structural complexity in oyster reefs and other complex habitats.  相似文献   

9.
Maryland's recently created oyster restored reefs provide us with a unique opportunity to observe the abundance and species composition of macrofauna assemblages on unexploited reefs with high concentrations of mature oysters and undisturbed reef architecture. They might thus be used to better understand the magnitude of losses to reef dwelling macrofauna communities, and the associated loss of ecological functions resulting from reef destruction. We sampled reef macrofaunal assemblages on restored plots at four restored oyster reefs and adjacent non-restored plots located outside restored boundaries. We then compared the effects of study site location, and habitat quality (restored versus non-restored) on macrofaunal density using thirteen response variables. Density of macrofauna was an order of magnitude higher on restored reefs, epifaunal density was more than twice as high on restored reefs and sessile macrofaunal density was two orders of magnitude higher on restored reefs. Three out of the five dominant taxonomic groups were much more abundant on restored plots. Mean amphipod density was 20 times higher on restored plots and densities of xanthid crabs and demersal fish were both four times greater on restored plots. Two out of four functional feeding groups: suspension feeders and carnivore/omnivores, were more abundant on restored plots. Since reef macrofauna include many important fish prey species, oyster reef restoration may have the potential to augment fish production by increasing fish prey densities and fish foraging efficiency.  相似文献   

10.
Restoration is increasingly implemented as a strategy to mitigate global declines in biogenic habitats, such as salt marshes and oyster reefs. Restoration efforts could be improved if we knew how site characteristics at landscape scales affect the ecological success of these foundation species. In this study, we determined how salt marsh shoreline geomorphologies (e.g. with variable hydrodynamic energy, fetch, erosion rates, and slopes) affect the success of restored intertidal oyster reefs, as well as how fauna utilize restored reefs and forage along marsh habitats. We constructed oyster reefs along three marsh shoreline geomorphologies in May 2012: 1) “creek” (small‐fetch, gradual‐sloped shoreline), “ramp” (large‐fetch, gradual‐sloped shoreline), and “scarp” (large‐fetch, steep‐sloped shoreline). Following recruitment, oyster spat density was greatest on ramp reefs; however, 2 years later, the highest adult oyster densities were found on creek reefs. Total nekton and blue crab catch rates in trawl nets were highest in the creek, while piscivore catch rates in gill nets were highest along the scarp shoreline. We found no difference in predation on snails in the salt marsh behind constructed reef and nonconstructed reference sites, but there were more snails consumed in the creek shoreline, which corresponded with the distribution of their major predator—blue crabs. We conclude that oyster reef construction was most successful for oysters in small‐fetch, gradual‐sloped, creek environments. However, nekton abundance did not always follow the same trends as oyster density, which could suggest constructed reefs may offer similar habitat‐related functions (prey availability and refuge) already present along existing salt marsh borders.  相似文献   

11.
Many coastal habitat restoration projects are focused on restoring the population of a single foundation species to recover an entire ecological community. Estimates of the ecosystem services provided by the restoration project are used to justify, prioritize, and evaluate such projects. However, estimates of ecosystem services provided by a single species may vastly under‐represent true provisioning, as we demonstrate here with an example of oyster reefs, often restored to improve estuarine water quality. In the brackish Chesapeake Bay, the hooked mussel Ischadium recurvum can have greater abundance and biomass than the focal restoration species, the eastern oyster Crassostrea virginica. We measured the temperature‐dependent phytoplankton clearance rates of both bivalves and their filtration efficiency on three size classes of phytoplankton to parameterize an annual model of oyster reef filtration, with and without hooked mussels, for monitored oyster reefs and restoration scenarios in the eastern Chesapeake Bay. The inclusion of filtration by hooked mussels increased the filtration capacity of the habitat greater than 2‐fold. Hooked mussels were also twice as effective as oysters at filtering picoplankton (1.5–3 µm), indicating that they fill a distinct ecological niche by controlling phytoplankton in this size class, which makes up a significant proportion of the phytoplankton load in summer. When mussel and oyster filtration are accounted for in this, albeit simplistic, model, restoration of oyster reefs in a tributary scale restoration is predicted to control 100% of phytoplankton during the summer months.  相似文献   

12.
Reducing uncertainty surrounding the biological responses of degraded habitat is key to providing confidence and efficiency in its restoration. Many coastal habitats are so extensively degraded that organismal responses to restoration interventions are entirely unknown. Among the most degraded coastal ecosystems are oyster reefs, whose restoration typically occurs where oysters are degraded to the point of functional extinction. This loss creates uncertainty on the fundamental processes for reef recovery; the timing of oyster recruitment and their preferred substratum for settlement. Such knowledge can inform restoration strategies to accelerate habitat recovery. Near the site of Australia's largest restoration of native oyster reef, we quantified temporal variability in recruitment of the native flat oyster (Ostrea angasi) and assessed their preference between the settlement substrata deployed for the reef restoration. Combining half a decade of environmental data with oyster recruitment data, we provide a model that identified distinct peaks in oyster recruitment which correlate with food availability and seawater temperature. In addition, oysters preferentially settled on oyster shell relative to other materials used in local restoration. In combination, these results suggest that there are opportunities to augment recruitment through addition of shell substratum synced with recruitment peaks. Our recruitment model likely represents a minor investment with large returns, providing opportunities to capture peak recruitment and greater confidence in utilizing natural recruitment as a restoration resource.  相似文献   

13.
Eastern oyster (Crassostrea virginica) habitat is increasingly being restored for the ecosystem services it provides rather than solely as a fishery resource. Community‐based projects with the goal of ecological restoration have successfully constructed oyster reefs; however, the habitat benefits of these restoration efforts are usually not assessed or reported. In this study, we examined oyster habitat development at five community‐based oyster restoration sites in South Carolina using oyster population parameters, resident fauna densities, and sedimentation (percent sediment coverage) as assessment metrics. All sites included multiple‐aged reefs (1–3 years old) at the time of the fall 2004 sampling. Resident crabs and mussels were abundant at all five sites and crab assemblages were related to the size structure of the oyster microhabitat. Scorched mussel (Brachidontes exustus) abundances were most frequently correlated with oyster and other resident species abundances. Associations among oysters and resident crabs and mussels were not evident when analyses were conducted with higher level taxonomic groupings (e.g., total number of crabs, mussels, or oysters), indicating that species‐level identifications improve our understanding of interactions among reef inhabitants and oyster populations. Community‐based restoration sites in South Carolina provide habitat for mussels and resident crabs, in some cases in the absence of dense populations of relatively large oysters. Monitoring programs that neglect species‐level identifications and counts of mussels and crabs may underestimate the successful habitat provision that can arise independent of large, dense oyster assemblages.  相似文献   

14.
Evaluating the success of habitat creation or restoration depends primarily on the selection of appropriate goals, relevant metrics and robust analytic approaches. For intertidal oyster reefs, the goal of restoring ecological function often is as important as the production of harvestable oysters, especially since oysters are the habitat. Assessing differences in resident faunal composition between created and natural reefs is one possible metric for evaluating ecological success. Yearly changes in the resident faunal composition on constructed and natural intertidal oyster reefs at one South Carolina restoration site were analyzed with a variety of statistical approaches to determine the most effective method(s) for documenting possible convergence in the similarity of reef assemblages over time. Two datasets were defined by the level of taxonomic identification, all taxa or a subset of common taxa, and the level of taxa reduction; all taxa, taxa > 1% of total abundance, and taxa significantly contributing to variation. Data were analyzed using “classic” multivariate analysis of variance (MANOVA), null model analysis of co-occurrence (ECOSIM), nonparametric analysis of similarity (ANOSIM), and permutation tests for multivariate analysis of similarity (PERMANOVA). Taxa abundance was used to weight MANOVA and ECOSIM analyses, while the Bray-Curtis dissimilarity index was used to weight ANOSIM and PERMANOVA analyses. Initial constraints on the analytic design and data manipulations resulted in only one test where convergence of the constructed and natural reef assemblages was indicated. Prescribed reductions in the suite of taxa considered did not alter appreciably the results. The analytic approaches varied in suitability and effectiveness at discriminating among changes in compositional similarity, even when initial constraints were relaxed. MANOVA results indicated either no difference or a significant difference in resident faunal composition between reefs, but were compromised by the inability to transform the data sufficiently to test for multivariate homogeneity violations even in analyses with reduced taxa numbers. Interpretation of ECOSIM results suggested fewer taxa in common even on natural reefs and were affected by a lack of design alternatives and the possible inflation of Type I error that weighting by abundance may cause. ANOSIM results identified no significant reef treatment effects and also suffered from design constraints and an inability to generate enough permutations to test for significant differences in datasets with relatively small sample sizes. All test results from PERMANOVA analyses except one indicated unambiguously that resident faunal assemblages on constructed reefs generally were not yet similar to natural reefs even after 7 years. Convergence of constructed and natural reef resident assemblages was suggested by PERMANOVA tests only for the dataset with the fewest taxa. The negligible limitations of PERMANOVA, flexible design options, and ability to generate significance tests for small sample sizes make the approach powerful. The ongoing development of effective statistical approaches for testing the significance of taxonomic compositional changes among habitats makes the determination of whether restoration projects are successful less dependent on the choice of analytic technique. More critical, biological questions including whether convergence of taxa abundance and composition is a valid indicator of similar ecological function remain to be answered.  相似文献   

15.
公丕海  李娇  关长涛  李梦杰  刘超   《生态学杂志》2014,25(10):3032-3038
通过对莱州湾增殖型人工鱼礁附着生物的取样调查,分析了礁体附着优势种褶牡蛎壳干质量、总湿质量和附着厚度的季节变化及其随礁龄变化的差异,并对礁区的总固碳量进行了估算.结果表明: 增殖礁礁体附着褶牡蛎壳干质量和总湿质量均呈现明显的季节性变化(P<0.01),4月最低,12月最高.增殖礁礁龄对附着褶牡蛎壳干质量、总湿质量和附着厚度影响显著(P<0.01),均随礁龄的增加呈递增趋势.莱州湾圆管型增殖礁5、4和3年礁龄的礁体附着牡蛎固碳量分别为17.61、16.33和10.45 kg·m-3.2009—2013年,莱州湾金城海域64.25 hm2海洋牧场圆管型增殖礁礁体上附着牡蛎总固碳量约为297.5 t C,相当于封存了1071 t CO2,而封存固定这些CO2所需费用约1.6×105~6.4×105美元.因此,增殖礁附着牡蛎具有巨大的生态效益.  相似文献   

16.
Efforts to restore the Eastern oyster (Crassostrea virginica) reef habitats in Chesapeake Bay typically begin with the placement of hard substrata to form three‐dimensional mounds on the seabed to serve as a base for oyster recruitment and growth. A shortage of oyster shell for creating large‐scale reefs has led to widespread use of other materials such as Surf clamshell (Spisula solidissima), as a substitute for oyster shell. Oyster recruitment, survival, and growth were monitored on intertidal reefs constructed from oyster and Surf clamshell near Fisherman’s Island, Virginia, U.S.A. and on a subtidal Surf clamshell reef in York River, Virginia, U.S.A. At the intertidal reefs, oyster larvae settlement occurred at similar levels on both substrate types throughout the monitoring period but higher levels of post‐settlement mortality occurred on clamshell reefs. The oyster shell reef supported greater oyster growth and survival and offered the highest degree of structural complexity. On the subtidal clamshell reef, the quality of the substrate varied with reef elevation. Large shell fragments and intact valves were scattered around the reef base, whereas small, tightly packed shell fragments paved the crest and flank of the reef mound. Oysters were more abundant and larger at the base of this reef and less abundant and smaller on the reef crest. The availability of interstitial space and appropriate settlement surfaces is hypothesized to account for the observed differences in oyster abundance across the reef systems. Patterns observed emphasize the importance of appropriate substrate selection for restoration activities to enhance natural recovery where an underlying habitat structure is destroyed.  相似文献   

17.
江苏海门蛎岈山牡蛎礁生态现状评价   总被引:4,自引:2,他引:2  
基于2013—2014年间的生态调查结果,评价了江苏海门蛎岈山牡蛎礁的生态现状。无人机航拍结果显示,江苏海门蛎岈山分布有750个潮间带区牡蛎礁斑块,总面积约为201519.37 m2;与2003年相比,海门蛎岈山牡蛎礁面积约下降了38.8%。活体牡蛎的平均盖度约为66%,2013年5和9月熊本牡蛎Crassostrea sikamea的平均密度分别为(2199±363)个/m2和(2894±330)个/m2。2013年5月海门蛎岈山熊本牡蛎种群的平均肥满度(CI)和性腺指数(GI)分别为(9.76±0.95)%和(1013±82)mg/g,均显著低于浙江象山港养殖的熊本牡蛎种群(P0.05)。海门蛎岈山熊本牡蛎的单倍体多样性和核苷酸多样性指数分别为0.119和0.00028,均高于长江口野生种群和浙江象山港养殖种群。海门蛎岈山熊本牡蛎种群受到尼氏单孢子虫(Haplosporidium nelson)的轻度浸染,其感染率(17.2%)低于浙江象山港养殖群体(47.3%)。泥沙沉积和人类捕捞是江苏海门蛎岈山牡蛎礁面临的主要胁迫因子,今后牡蛎礁恢复的重点是增加附着底物的数量。  相似文献   

18.
The Eastern oyster, Crassostrea virginica, may improve water quality by filtering large quantities of particulate matter (both organic and inorganic) and nutrients from the overlying water column. Additionally, oyster reefs alter hydrodynamic conditions, further increasing the removal of particulate matter from the water column. This study examined the effects of small-scale oyster additions on sediment loading, chlorophyll a, nutrient concentrations, and flow in small tidal creeks. Two reefs were established in Hewletts Creek, New Hanover County, North Carolina. Total suspended solids (TSS), chlorophyll a, and ammonium were measured upstream and downstream of each created reef and in an adjacent control channel that lacked a reef. Data were collected monthly during ebb tides over a 10-month period between September 2000 and June 2001. In the first month after initial reef placement, mean TSS concentrations downstream of reef placement were slightly lower than those upstream of the reef. Although not statistically significant, TSS concentrations downstream of the reefs were less than upstream concentrations for five out of nine and five out of seven post-reef sampling months for the upland and the lower creek sites, respectively. Chlorophyll a concentrations were not significantly affected by initial reef placement (2×3 m), but were reduced substantially after reef enlargement (3×4 m) in one of the experimental creeks. Reef placement resulted in significant increases in ammonium concentrations downstream of the transplanted-reefs. In addition, deposition of feces and pseudofeces by the oysters resulted in accumulation of finer-grained materials in the treated channel relative to the control channels. Oyster filtration was most effective three hours following high tide, when the ratio of flow discharge to reef surface area was the highest. This work demonstrates that small oyster reefs established and maintained in some small tributary channels can reduce TSS and chlorophyll a concentrations and that the magnitude of the effect may vary over the course of the tidal cycle.  相似文献   

19.
Shorelines at the interface of marine, estuarine and terrestrial biomes are among the most degraded and threatened habitats in the coastal zone because of their sensitivity to sea level rise, storms and increased human utilization. Previous efforts to protect shorelines have largely involved constructing bulkheads and seawalls which can detrimentally affect nearshore habitats. Recently, efforts have shifted towards "living shoreline" approaches that include biogenic breakwater reefs. Our study experimentally tested the efficacy of breakwater reefs constructed of oyster shell for protecting eroding coastal shorelines and their effect on nearshore fish and shellfish communities. Along two different stretches of eroding shoreline, we created replicated pairs of subtidal breakwater reefs and established unaltered reference areas as controls. At both sites we measured shoreline and bathymetric change and quantified oyster recruitment, fish and mobile macro-invertebrate abundances. Breakwater reef treatments mitigated shoreline retreat by more than 40% at one site, but overall vegetation retreat and erosion rates were high across all treatments and at both sites. Oyster settlement and subsequent survival were observed at both sites, with mean adult densities reaching more than eighty oysters m(-2) at one site. We found the corridor between intertidal marsh and oyster reef breakwaters supported higher abundances and different communities of fishes than control plots without oyster reef habitat. Among the fishes and mobile invertebrates that appeared to be strongly enhanced were several economically-important species. Blue crabs (Callinectes sapidus) were the most clearly enhanced (+297%) by the presence of breakwater reefs, while red drum (Sciaenops ocellatus) (+108%), spotted seatrout (Cynoscion nebulosus) (+88%) and flounder (Paralichthys sp.) (+79%) also benefited. Although the vertical relief of the breakwater reefs was reduced over the course of our study and this compromised the shoreline protection capacity, the observed habitat value demonstrates ecological justification for future, more robust shoreline protection projects.  相似文献   

20.
Ecosystem engineers are species that influence the abiotic and biotic environment around them and may assist the restoration of associated species, including other habitat‐forming species. We deployed an array of 28 artificial reefs with transplanted Ecklonia radiata, the dominant canopy‐forming kelp species across southern Australia, to investigate how the patch size and density of E. radiata influenced the establishment of the associated communities of plants and animals. Many of the reefs were rapidly colonized by Ostrea angasi, a critically depleted reef‐forming oyster. Over the 24‐month deployment of the reefs, thick oyster mats formed across the entire surface of many of the reefs with estimated biomass densities exceeding 5 kg of live oysters/m2; however, oyster density was dependent on E. radiata patch size and density. Increasing patch size and the presence of kelp resulted in significantly higher densities of oysters 5 months after the reefs were deployed and at the end of the experiment, where oysters were approximately three times more numerous on reefs with kelp compared to those without kelp. E. radiata appeared to facilitate the establishment of O. angasi largely through its capacity to reduce benthic light and thus suppress competition from turfing algae. These results may inform the development of novel approaches to tackle recruitment bottlenecks affecting the restoration of O. angasi reefs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号