首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

The identification of gene variants plays an important role in the diagnosis of genetic diseases.

Methodology/Principal Findings

To develop a rapid method for the diagnosis of phenylketonuria (PKU) and tetrahydrobiopterin (BH4) deficiency, we designed a multiplex, PCR-based primer panel to amplify all the exons and flanking regions (50 bp average) of six PKU-associated genes (PAH, PTS, GCH1, QDPR, PCBD1 and GFRP). The Ion Torrent Personal Genome Machine (PGM) System was used to detect mutations in all the exons of these six genes. We tested 93 DNA samples from blood specimens from 35 patients and their parents (32 families) and 26 healthy adults. Using strict bioinformatic criteria, this sequencing data provided, on average, 99.14% coverage of the 39 exons at more than 70-fold mean depth of coverage. We found 23 previously documented variants in the PAH gene and six novel mutations in the PAH and PTS genes. A detailed analysis of the mutation spectrum of these patients is described in this study.

Conclusions/Significance

These results were confirmed by Sanger sequencing. In conclusion, benchtop next-generation sequencing technology can be used to detect mutations in monogenic diseases and can detect both point mutations and indels with high sensitivity, fidelity and throughput at a lower cost than conventional methods in clinical applications.  相似文献   

2.
应用基因芯片技术检测非综合征型耳聋基因突变   总被引:3,自引:0,他引:3  
目的:应用遗传性耳聋基因芯片对散发性聋患者进行分子病因学检测,评估其在遗传性耳聋快速基因诊断中的可靠性。方法:门诊收集散发性聋患者10例,取外周血,提取基因组DNA,用遗传性耳聋基因芯片检测4个中国人中常见的耳聋相关基因中的9个热点突变,包括GJB2(35delG、176del16bp、235delC及299delAT)、GJB3(C538T)、SLC26A4(IVS7-2AG、A2168G)和线粒体DNA 12S rRNA(A1555G、C1494T)。同时,PCR扩增GJB2、线粒体12S rRNA基因全序列,DNA测序,以验证基因芯片检测结果的准确性。结果:在10名耳聋患者中,基因芯片方法检出1例携带线粒体DNA 12S rRNA C1494T突变;2例GJB2基因235delC纯合突变;2例235delC杂合突变;SLC26A4基因和GJB3基因未检出突变。基因芯片的结果与测序结果完全一致。结论:遗传性耳聋基因芯片技术对中国人常见耳聋相关基因热点突变的检出率高,结果准确、可靠,具有快速、高通量、高准确性、低成本等特点,能够满足临床耳聋基因检测的要求,同时结合产前诊断技术能有效预防耳聋患儿的出生,因而具有广阔的临床应用前景。  相似文献   

3.
4.
Mutations in Gap Junction Beta 2 (GJB2) have been reported to be a major cause of non-syndromic hearing loss in many populations worldwide. The spectrums and frequencies of GJB2 variants vary substantially among different ethnic groups, and the genotypes among these populations remain poorly understood. In the present study, we carried out a systematic and extended mutational screening of GJB2 gene in 1067 Han Chinese subjects with non-syndromic hearing loss, and the resultant GJB2 variants were evaluated by phylogenetic, structural and bioinformatic analysis. A total of 25 (23 known and 2 novel) GJB2 variants were identified, including 6 frameshift mutations, 1 nonsense mutation, 16 missense mutations and 2 silent mutations. In this cohort, c.235delC is the most frequently observed pathogenic mutation. The phylogenetic, structural and bioinformatic analysis showed that 2 novel variants c.127G>T (p.V43L), c.293G>C (p.R98P) and 2 known variants c. 107T>C (p.L36P) and c.187G>T (p.V63L) are localized at highly conserved amino acids. In addition, these 4 mutations are absent in 203 healthy individuals, therefore, they are probably the most likely candidate pathogenic mutations. In addition, 66 (24 novel and 42 known) genotypes were identified, including 6 homozygotes, 20 compound heterozygotes, 18 single heterozygotes, 21 genotypes harboring only polymorphism(s) and the wild type genotype. Among these, 153 (14.34%) subjects were homozygous for pathogenic mutations, 63 (5.91%) were compound heterozygotes, and 157 (14.71%) carried single heterozygous mutation. Furthermore, 65.28% (141/216) of these cases with two pathogenic mutations exhibited profound hearing loss. These data suggested that mutations in GJB2 gene are responsible for approximately 34.96% of non-syndromic hearing loss in Han Chinese population from Zhejiang Province in eastern China. In addition, our results also strongly supported the idea that other factors such as alterations in regulatory regions, additional genes, and environmental factors may contribute to the clinical manifestation of deafness.  相似文献   

5.
6.

Objective

To study the molecular genetic and clinical features of cerebral cavernous malformations (CCM) in a cohort of Spanish patients.

Methods

We analyzed the CCM1, CCM2, and CCM3 genes by MLPA and direct sequencing of exons and intronic boundaries in 94 familial forms and 41 sporadic cases of CCM patients of Spanish extraction. When available, RNA studies were performed seeking for alternative or cryptic splicing.

Results

A total of 26 pathogenic mutations, 22 of which predict truncated proteins, were identified in 29 familial forms and in three sporadic cases. The repertoire includes six novel non-sense and frameshift mutations in CCM1 and CCM3. We also found four missense mutations, one of them located at the third NPXY motif of CCM1 and another one that leads to cryptic splicing of CCM1 exon 6. We found four genomic deletions with the loss of the whole CCM2 gene in one patient and a partial loss of CCM1and CCM2 genes in three other patients. Four families had mutations in CCM3. The results include a high frequency of intronic variants, although most of them localize out of consensus splicing sequences. The main symptoms associated to clinical debut consisted of cerebral haemorrhage, migraines and epileptic seizures. The rare co-occurrence of CCM with Noonan and Chiari syndromes and delayed menarche is reported.

Conclusions

Analysis of CCM genes by sequencing and MLPA has detected mutations in almost 35% of a Spanish cohort (36% of familial cases and 10% of sporadic patients). The results include 13 new mutations of CCM genes and the main clinical symptoms that deserves consideration in molecular diagnosis and genetic counselling of cerebral cavernous malformations.  相似文献   

7.
8.
<正>In all the connexin-associated human diseases,deafness is one of the most important diseases with high frequency.The mutations of GJB2(gap junction protein b2,also called connexin26,Cx26)gene link with nonsyndromic or syndromic sensorineural hearing loss and were shown to account for a large proportion of congenital deaf cases in many studied populations(del Castillo and del Castillo,2011).For example,the235del C mutation in GJB2 shows the frequency of approxi-  相似文献   

9.
Mutations of CFTR were studied in patients with cystic fibrosis (CF) from Bashkortostan. In total, 15 mutations were observed and 51% of all mutant alleles identified. The most diagnostically significant mutations were delF508 (33.8%), 394delTT (3.52%), CFTRdele2,3(21kb) (1.41%), R334W (1.41%), 3849 + 10kbC T (1.41%), and N1303K (1.41%). Mutations G542X, 2184insA, S1196X, and W1282X were each found in less than 1% patients. Five new mutations and two neutral substitutions were revealed. These were I488M (exon 10), 1811 + 12A C (intron 11), T663S (exon 13), I1226R (exon 19), 4005 + 9A C (intron 20), 2097A C (A655A, exon 13), and 3996G C (V1288V, exon 20). Bashkortostan was shown to differ in the CFTR mutation spectrum from other regions of Russia. The results will allow direct DNA diagnostics of CF in far more families. Molecular screening of probands" relatives will contribute to identification and medical genetic counseling of heterozygous carriers, which is essential for CF prevention.  相似文献   

10.
Tight junctions (TJs) are essential components of eukaryotic cells, and serve as paracellular barriers and zippers between adjacent tissues. TJs are critical for normal functioning of the organ of Corti, a part of the inner ear that causes loss of sensorineural hearing when damaged. To investigate the relation between genes involved in TJ function and hereditary loss of sensorineural hearing in the Korean population, we selected the TJP2 and CLDN14 genes as candidates for gene screening of 135 Korean individuals. The TJP2 gene, mutation of which causes autosomal dominant non-syndromic hearing loss (ADNSHL), lies at the DFNA51 locus on chromosome 9. The CLDN14 gene, mutation of which causes autosomal recessive non-syndromic hearing loss (ARNSHL), lies at the DFNB29 locus on chromosome 21. In the present study, we conducted genetic analyses of the TJP2 and CLDN14 genes in 87 unrelated patients with ADNSHL and 48 unrelated patients with either ARNSHL or potentially sporadic hearing loss. We identified two pathogenic variations, c.334G>A (p.A112T) and c.3562A>G (p.T1188A), and ten single nucleotide polymorphisms (SNPs) in the TJP2 gene. We found eight non-pathogenic variations in the CLDN14 gene. These findings indicate that, whereas mutation of the TJP2 gene might cause ADNSHL, CLDN14 is not a major causative gene for ARNSHL in the Korean population studied. Our findings may improve the understanding of the genetic cause of non-syndromic hearing loss in the Korean population.  相似文献   

11.
目的:对过去已知的肺癌基因在中国人群中的突变分布进行综合性的分析,指导肺癌的临床治疗。方法:通过文献查阅,挑选出16个已知的肺癌基因。在112例肺癌样本中,对这16个基因进行大样本的靶基因测序并用Sanger测序来验证。同时,对突变在不同亚组中的分布差异进行分析。结果:16个已知肺癌基因突变可评价60.4%肺癌样本。同时,这些基因的在不同的样本亚组中表现出不同的突变特点;通过功能域的分析及蛋白空间结构的模拟,发现9个可能的突变热点既位于蛋白的功能域内又能导致蛋白空间结构或者表面电荷分布的异常。结论:通过靶基因深度测序,全面分析了16个已知肺癌基因在肺癌不同亚组中的突变分布差异,发现并初步验证了9个可能的肺癌突变热点。  相似文献   

12.
Genetic factors, the most common etiology in severe to profound hearing loss, are one of the key determinants of Cochlear Implantation (CI) and Electric Acoustic Stimulation (EAS) outcomes. Satisfactory auditory performance after receiving a CI/EAS in patients with certain deafness gene mutations indicates that genetic testing would be helpful in predicting CI/EAS outcomes and deciding treatment choices. However, because of the extreme genetic heterogeneity of deafness, clinical application of genetic information still entails difficulties. Target exon sequencing using massively parallel DNA sequencing is a new powerful strategy to discover rare causative genes in Mendelian disorders such as deafness. We used massive sequencing of the exons of 58 target candidate genes to analyze 8 (4 early-onset, 4 late-onset) Japanese CI/EAS patients, who did not have mutations in commonly found genes including GJB2, SLC26A4, or mitochondrial 1555A>G or 3243A>G mutations. We successfully identified four rare causative mutations in the MYO15A, TECTA, TMPRSS3, and ACTG1 genes in four patients who showed relatively good auditory performance with CI including EAS, suggesting that genetic testing may be able to predict the performance after implantation.  相似文献   

13.
应用PCR、PCR-SSCP和DNA序列分析等分子生物学技术,对一个有明确氨基糖苷类抗生素应用史的母系遗传耳聋家系共8人(包括聋人和听力正常者) 的线粒体DNA进行研究,结果显示,家系中有4份样品存在线粒体DNA 12S rRNA 1 555位点A→G的突变。提示线粒体DNA点突变是导致该家系致聋的主要因素之一。 Abstract:Blood samples were obtained from a pedigree with aminoglycoside antibiotic induced deafness.DNA was extracted from the isolated leukocytes.The mitochondrial DNA fragments were detected by PCR-SSCP and DNA sequencing.It was found that four individuals from the pedigree carried 1 555 A→G mutation.From our results,mitochondrial DNA mutation may be one of major factors in aminoglycoside antibiotic induced deafness.  相似文献   

14.
Target exon resequencing using Massively Parallel DNA Sequencing (MPS) is a new powerful strategy to discover causative genes in rare Mendelian disorders such as deafness. We attempted to identify genomic variations responsible for deafness by massive sequencing of the exons of 112 target candidate genes. By the analysis of 216randomly selected Japanese deafness patients (120 early-onset and 96 late-detected), who had already been evaluated for common genes/mutations by Invader assay and of which 48 had already been diagnosed, we efficiently identified causative mutations and/or mutation candidates in 57 genes. Approximately 86.6% (187/216) of the patients had at least one mutation. Of the 187 patients, in 69 the etiology of the hearing loss was completely explained. To determine which genes have the greatest impact on deafness etiology, the number of mutations was counted, showing that those in GJB2 were exceptionally higher, followed by mutations in SLC26A4, USH2A, GPR98, MYO15A, COL4A5 and CDH23. The present data suggested that targeted exon sequencing of selected genes using the MPS technology followed by the appropriate filtering algorithm will be able to identify rare responsible genes including new candidate genes for individual patients with deafness, and improve molecular diagnosis. In addition, using a large number of patients, the present study clarified the molecular epidemiology of deafness in Japanese. GJB2 is the most prevalent causative gene, and the major (commonly found) gene mutations cause 30–40% of deafness while the remainder of hearing loss is the result of various rare genes/mutations that have been difficult to diagnose by the conventional one-by-one approach. In conclusion, target exon resequencing using MPS technology is a suitable method to discover common and rare causative genes for a highly heterogeneous monogenic disease like hearing loss.  相似文献   

15.
Imperfect Genes, Fisherian Mutation and the Evolution of Sex   总被引:2,自引:2,他引:0       下载免费PDF全文
J. R. Peck  G. Barreau    S. C. Heath 《Genetics》1997,145(4):1171-1199
In this paper we present a mathematical model of mutation and selection that allows for the coexistence of multiple alleles at a locus with very small selective differences between alleles. The model also allows for the determination of fitness by multiple loci. Models of this sort are biologically plausible. However, some previous attempts to construct similar models have assumed that all mutations produce a decrease in fitness, and this has led to a tendency for the average fitness of population members to decline when population numbers are finite. In our model we incorporate some of the ideas of R. A. FISHER, so that both deleterious and beneficial mutations are possible. As a result, average fitness tends to approach a stationary distribution. We have used computer simulation methods to apply the Fisherian mutation model to the problem of the evolution of sex and recombination. The results suggest that sex and recombination can provide very large benefits in terms of average fitness. The results also suggest that obligately sexual species will win ecological competitions with species that produce a substantial fraction of their offspring asexually, so long as the number of sites under selection within the genomes of the competing species is not too small and the population sizes are not too large. Our model focuses on fertility selection in an hermaphroditic plant. However, the results are likely to generalize to a wide variety of other situations as well.  相似文献   

16.
Comprehensive genetic testing has the potential to become the standard of care for individuals with hearing loss. In this study, we investigated the genetic etiology of autosomal recessive nonsyndromic hearing loss (ARNSHL) in a Turkish cohort including individuals with cochlear implant, who had a pedigree suggestive of an autosomal recessive inheritance. A workflow including prescreening of GJB2 and a targeted next generation sequencing panel (Illumına TruSightTM Exome) covering 2761 genes that we briefly called as mendelian exome sequencing was used. This panel includes 102 deafness genes and a number of genes causing Mendelian disorders. Using this approach, we identified causative variants in 21 of 29 families. Three different GJB2 variants were present in seven families. Remaining 14 families had 15 different variants in other known NSHL genes (MYO7A, MYO15A, MARVELD2, TMIE, DFNB31, LOXHD1, GPSM2, TMC1, USH1G, CDH23). Of these variants, eight are novel. Mutation detection rate of our workflow is 72.4%, confirming the usefulness of targeted sequencing approach in NSHL.  相似文献   

17.
18.
19.
A recent genome-wide association study (GWAS) identified association with variants in X-linked CLDN2 and MORC4, and PRSS1-PRSS2 loci with chronic pancreatitis (CP) in North American patients of European ancestry. We selected 9 variants from the reported GWAS and replicated the association with CP in Indian patients by genotyping 1807 unrelated Indians of Indo-European ethnicity, including 519 patients with CP and 1288 controls. The etiology of CP was idiopathic in 83.62% and alcoholic in 16.38% of 519 patients. Our study confirmed a significant association of 2 variants in CLDN2 gene (rs4409525—OR 1.71, P = 1.38 x 10-09; rs12008279—OR 1.56, P = 1.53 x 10-04) and 2 variants in MORC4 gene (rs12688220—OR 1.72, P = 9.20 x 10-09; rs6622126—OR 1.75, P = 4.04x10-05) in Indian patients with CP. We also found significant association at PRSS1-PRSS2 locus (OR 0.60; P = 9.92 x 10-06) and SAMD12-TNFRSF11B (OR 0.49, 95% CI [0.31–0.78], P = 0.0027). A variant in the gene MORC4 (rs12688220) showed significant interaction with alcohol (OR for homozygous and heterozygous risk allele -14.62 and 1.51 respectively, P = 0.0068) suggesting gene-environment interaction. A combined analysis of the genes CLDN2 and MORC4 based on an effective risk allele score revealed a higher percentage of individuals homozygous for the risk allele in CP cases with 5.09 fold enhanced risk in individuals with 7 or more effective risk alleles compared with individuals with 3 or less risk alleles (P = 1.88 x 10-14). Genetic variants in CLDN2 and MORC4 genes were associated with CP in Indian patients.  相似文献   

20.
Different ethnic groups have distinct mutation spectrums associated with inheritable deafness. In order to identify the mutations responsible for congenital hearing loss in the Tibetan population, mutation screening for 98 deafness-related genes by microarray and massively parallel sequencing of captured target exons was conducted in one Tibetan family with familiar hearing loss. A homozygous mutation, TMPRSS3: c.535G>A, was identified in two affected brothers. Both parents are heterozygotes and an unaffected sister carries wild type alleles. The same mutation was not detected in 101 control Tibetan individuals. This missense mutation results in an amino acid change (p.Ala179Thr) at a highly conserved site in the scavenger receptor cysteine rich (SRCR) domain of the TMPRSS3 protein, which is essential for protein-protein interactions. Thus, this mutation likely affects the interactions of this transmembrane protein with extracellular molecules. According to our bioinformatic analyses, the TMPRSS3: c.535G>A mutation might damage protein function and lead to hearing loss. These data suggest that the homozygous mutation TMPRSS3: c.535G>A causes prelingual hearing loss in this Tibetan family. This is the first TMPRSS3 mutation found in the Chinese Tibetan population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号